kernel-fxtec-pro1x/arch/ia64/kernel/ptrace.c
Roland McGrath 7d94143291 Fix spurious syscall tracing after PTRACE_DETACH + PTRACE_ATTACH
When PTRACE_SYSCALL was used and then PTRACE_DETACH is used, the
TIF_SYSCALL_TRACE flag is left set on the formerly-traced task.  This
means that when a new tracer comes along and does PTRACE_ATTACH, it's
possible he gets a syscall tracing stop even though he's never used
PTRACE_SYSCALL.  This happens if the task was in the middle of a system
call when the second PTRACE_ATTACH was done.  The symptom is an
unexpected SIGTRAP when the tracer thinks that only SIGSTOP should have
been provoked by his ptrace calls so far.

A few machines already fixed this in ptrace_disable (i386, ia64, m68k).
But all other machines do not, and still have this bug.  On x86_64, this
constitutes a regression in IA32 compatibility support.

Since all machines now use TIF_SYSCALL_TRACE for this, I put the
clearing of TIF_SYSCALL_TRACE in the generic ptrace_detach code rather
than adding it to every other machine's ptrace_disable.

Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-10 18:57:47 -07:00

1674 lines
44 KiB
C

/*
* Kernel support for the ptrace() and syscall tracing interfaces.
*
* Copyright (C) 1999-2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* Derived from the x86 and Alpha versions.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/smp_lock.h>
#include <linux/user.h>
#include <linux/security.h>
#include <linux/audit.h>
#include <linux/signal.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace_offsets.h>
#include <asm/rse.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unwind.h>
#ifdef CONFIG_PERFMON
#include <asm/perfmon.h>
#endif
#include "entry.h"
/*
* Bits in the PSR that we allow ptrace() to change:
* be, up, ac, mfl, mfh (the user mask; five bits total)
* db (debug breakpoint fault; one bit)
* id (instruction debug fault disable; one bit)
* dd (data debug fault disable; one bit)
* ri (restart instruction; two bits)
* is (instruction set; one bit)
*/
#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
| IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
#define PFM_MASK MASK(38)
#define PTRACE_DEBUG 0
#if PTRACE_DEBUG
# define dprintk(format...) printk(format)
# define inline
#else
# define dprintk(format...)
#endif
/* Return TRUE if PT was created due to kernel-entry via a system-call. */
static inline int
in_syscall (struct pt_regs *pt)
{
return (long) pt->cr_ifs >= 0;
}
/*
* Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
* bitset where bit i is set iff the NaT bit of register i is set.
*/
unsigned long
ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
{
# define GET_BITS(first, last, unat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long nbits = (last - first + 1); \
unsigned long mask = MASK(nbits) << first; \
unsigned long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotr(unat, dist) & mask; \
})
unsigned long val;
/*
* Registers that are stored consecutively in struct pt_regs
* can be handled in parallel. If the register order in
* struct_pt_regs changes, this code MUST be updated.
*/
val = GET_BITS( 1, 1, scratch_unat);
val |= GET_BITS( 2, 3, scratch_unat);
val |= GET_BITS(12, 13, scratch_unat);
val |= GET_BITS(14, 14, scratch_unat);
val |= GET_BITS(15, 15, scratch_unat);
val |= GET_BITS( 8, 11, scratch_unat);
val |= GET_BITS(16, 31, scratch_unat);
return val;
# undef GET_BITS
}
/*
* Set the NaT bits for the scratch registers according to NAT and
* return the resulting unat (assuming the scratch registers are
* stored in PT).
*/
unsigned long
ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
{
# define PUT_BITS(first, last, nat) \
({ \
unsigned long bit = ia64_unat_pos(&pt->r##first); \
unsigned long nbits = (last - first + 1); \
unsigned long mask = MASK(nbits) << first; \
long dist; \
if (bit < first) \
dist = 64 + bit - first; \
else \
dist = bit - first; \
ia64_rotl(nat & mask, dist); \
})
unsigned long scratch_unat;
/*
* Registers that are stored consecutively in struct pt_regs
* can be handled in parallel. If the register order in
* struct_pt_regs changes, this code MUST be updated.
*/
scratch_unat = PUT_BITS( 1, 1, nat);
scratch_unat |= PUT_BITS( 2, 3, nat);
scratch_unat |= PUT_BITS(12, 13, nat);
scratch_unat |= PUT_BITS(14, 14, nat);
scratch_unat |= PUT_BITS(15, 15, nat);
scratch_unat |= PUT_BITS( 8, 11, nat);
scratch_unat |= PUT_BITS(16, 31, nat);
return scratch_unat;
# undef PUT_BITS
}
#define IA64_MLX_TEMPLATE 0x2
#define IA64_MOVL_OPCODE 6
void
ia64_increment_ip (struct pt_regs *regs)
{
unsigned long w0, ri = ia64_psr(regs)->ri + 1;
if (ri > 2) {
ri = 0;
regs->cr_iip += 16;
} else if (ri == 2) {
get_user(w0, (char __user *) regs->cr_iip + 0);
if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
/*
* rfi'ing to slot 2 of an MLX bundle causes
* an illegal operation fault. We don't want
* that to happen...
*/
ri = 0;
regs->cr_iip += 16;
}
}
ia64_psr(regs)->ri = ri;
}
void
ia64_decrement_ip (struct pt_regs *regs)
{
unsigned long w0, ri = ia64_psr(regs)->ri - 1;
if (ia64_psr(regs)->ri == 0) {
regs->cr_iip -= 16;
ri = 2;
get_user(w0, (char __user *) regs->cr_iip + 0);
if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
/*
* rfi'ing to slot 2 of an MLX bundle causes
* an illegal operation fault. We don't want
* that to happen...
*/
ri = 1;
}
}
ia64_psr(regs)->ri = ri;
}
/*
* This routine is used to read an rnat bits that are stored on the
* kernel backing store. Since, in general, the alignment of the user
* and kernel are different, this is not completely trivial. In
* essence, we need to construct the user RNAT based on up to two
* kernel RNAT values and/or the RNAT value saved in the child's
* pt_regs.
*
* user rbs
*
* +--------+ <-- lowest address
* | slot62 |
* +--------+
* | rnat | 0x....1f8
* +--------+
* | slot00 | \
* +--------+ |
* | slot01 | > child_regs->ar_rnat
* +--------+ |
* | slot02 | / kernel rbs
* +--------+ +--------+
* <- child_regs->ar_bspstore | slot61 | <-- krbs
* +- - - - + +--------+
* | slot62 |
* +- - - - + +--------+
* | rnat |
* +- - - - + +--------+
* vrnat | slot00 |
* +- - - - + +--------+
* = =
* +--------+
* | slot00 | \
* +--------+ |
* | slot01 | > child_stack->ar_rnat
* +--------+ |
* | slot02 | /
* +--------+
* <--- child_stack->ar_bspstore
*
* The way to think of this code is as follows: bit 0 in the user rnat
* corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
* value. The kernel rnat value holding this bit is stored in
* variable rnat0. rnat1 is loaded with the kernel rnat value that
* form the upper bits of the user rnat value.
*
* Boundary cases:
*
* o when reading the rnat "below" the first rnat slot on the kernel
* backing store, rnat0/rnat1 are set to 0 and the low order bits are
* merged in from pt->ar_rnat.
*
* o when reading the rnat "above" the last rnat slot on the kernel
* backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
*/
static unsigned long
get_rnat (struct task_struct *task, struct switch_stack *sw,
unsigned long *krbs, unsigned long *urnat_addr,
unsigned long *urbs_end)
{
unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
unsigned long umask = 0, mask, m;
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
long num_regs, nbits;
struct pt_regs *pt;
pt = task_pt_regs(task);
kbsp = (unsigned long *) sw->ar_bspstore;
ubspstore = (unsigned long *) pt->ar_bspstore;
if (urbs_end < urnat_addr)
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
else
nbits = 63;
mask = MASK(nbits);
/*
* First, figure out which bit number slot 0 in user-land maps
* to in the kernel rnat. Do this by figuring out how many
* register slots we're beyond the user's backingstore and
* then computing the equivalent address in kernel space.
*/
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
shift = ia64_rse_slot_num(slot0_kaddr);
rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
rnat0_kaddr = rnat1_kaddr - 64;
if (ubspstore + 63 > urnat_addr) {
/* some bits need to be merged in from pt->ar_rnat */
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
urnat = (pt->ar_rnat & umask);
mask &= ~umask;
if (!mask)
return urnat;
}
m = mask << shift;
if (rnat0_kaddr >= kbsp)
rnat0 = sw->ar_rnat;
else if (rnat0_kaddr > krbs)
rnat0 = *rnat0_kaddr;
urnat |= (rnat0 & m) >> shift;
m = mask >> (63 - shift);
if (rnat1_kaddr >= kbsp)
rnat1 = sw->ar_rnat;
else if (rnat1_kaddr > krbs)
rnat1 = *rnat1_kaddr;
urnat |= (rnat1 & m) << (63 - shift);
return urnat;
}
/*
* The reverse of get_rnat.
*/
static void
put_rnat (struct task_struct *task, struct switch_stack *sw,
unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
unsigned long *urbs_end)
{
unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
long num_regs, nbits;
struct pt_regs *pt;
unsigned long cfm, *urbs_kargs;
pt = task_pt_regs(task);
kbsp = (unsigned long *) sw->ar_bspstore;
ubspstore = (unsigned long *) pt->ar_bspstore;
urbs_kargs = urbs_end;
if (in_syscall(pt)) {
/*
* If entered via syscall, don't allow user to set rnat bits
* for syscall args.
*/
cfm = pt->cr_ifs;
urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
}
if (urbs_kargs >= urnat_addr)
nbits = 63;
else {
if ((urnat_addr - 63) >= urbs_kargs)
return;
nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
}
mask = MASK(nbits);
/*
* First, figure out which bit number slot 0 in user-land maps
* to in the kernel rnat. Do this by figuring out how many
* register slots we're beyond the user's backingstore and
* then computing the equivalent address in kernel space.
*/
num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
shift = ia64_rse_slot_num(slot0_kaddr);
rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
rnat0_kaddr = rnat1_kaddr - 64;
if (ubspstore + 63 > urnat_addr) {
/* some bits need to be place in pt->ar_rnat: */
umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
mask &= ~umask;
if (!mask)
return;
}
/*
* Note: Section 11.1 of the EAS guarantees that bit 63 of an
* rnat slot is ignored. so we don't have to clear it here.
*/
rnat0 = (urnat << shift);
m = mask << shift;
if (rnat0_kaddr >= kbsp)
sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
else if (rnat0_kaddr > krbs)
*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
rnat1 = (urnat >> (63 - shift));
m = mask >> (63 - shift);
if (rnat1_kaddr >= kbsp)
sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
else if (rnat1_kaddr > krbs)
*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
}
static inline int
on_kernel_rbs (unsigned long addr, unsigned long bspstore,
unsigned long urbs_end)
{
unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
urbs_end);
return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
}
/*
* Read a word from the user-level backing store of task CHILD. ADDR
* is the user-level address to read the word from, VAL a pointer to
* the return value, and USER_BSP gives the end of the user-level
* backing store (i.e., it's the address that would be in ar.bsp after
* the user executed a "cover" instruction).
*
* This routine takes care of accessing the kernel register backing
* store for those registers that got spilled there. It also takes
* care of calculating the appropriate RNaT collection words.
*/
long
ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
unsigned long user_rbs_end, unsigned long addr, long *val)
{
unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
struct pt_regs *child_regs;
size_t copied;
long ret;
urbs_end = (long *) user_rbs_end;
laddr = (unsigned long *) addr;
child_regs = task_pt_regs(child);
bspstore = (unsigned long *) child_regs->ar_bspstore;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
if (on_kernel_rbs(addr, (unsigned long) bspstore,
(unsigned long) urbs_end))
{
/*
* Attempt to read the RBS in an area that's actually
* on the kernel RBS => read the corresponding bits in
* the kernel RBS.
*/
rnat_addr = ia64_rse_rnat_addr(laddr);
ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
if (laddr == rnat_addr) {
/* return NaT collection word itself */
*val = ret;
return 0;
}
if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
/*
* It is implementation dependent whether the
* data portion of a NaT value gets saved on a
* st8.spill or RSE spill (e.g., see EAS 2.6,
* 4.4.4.6 Register Spill and Fill). To get
* consistent behavior across all possible
* IA-64 implementations, we return zero in
* this case.
*/
*val = 0;
return 0;
}
if (laddr < urbs_end) {
/*
* The desired word is on the kernel RBS and
* is not a NaT.
*/
regnum = ia64_rse_num_regs(bspstore, laddr);
*val = *ia64_rse_skip_regs(krbs, regnum);
return 0;
}
}
copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
if (copied != sizeof(ret))
return -EIO;
*val = ret;
return 0;
}
long
ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
unsigned long user_rbs_end, unsigned long addr, long val)
{
unsigned long *bspstore, *krbs, regnum, *laddr;
unsigned long *urbs_end = (long *) user_rbs_end;
struct pt_regs *child_regs;
laddr = (unsigned long *) addr;
child_regs = task_pt_regs(child);
bspstore = (unsigned long *) child_regs->ar_bspstore;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
if (on_kernel_rbs(addr, (unsigned long) bspstore,
(unsigned long) urbs_end))
{
/*
* Attempt to write the RBS in an area that's actually
* on the kernel RBS => write the corresponding bits
* in the kernel RBS.
*/
if (ia64_rse_is_rnat_slot(laddr))
put_rnat(child, child_stack, krbs, laddr, val,
urbs_end);
else {
if (laddr < urbs_end) {
regnum = ia64_rse_num_regs(bspstore, laddr);
*ia64_rse_skip_regs(krbs, regnum) = val;
}
}
} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
!= sizeof(val))
return -EIO;
return 0;
}
/*
* Calculate the address of the end of the user-level register backing
* store. This is the address that would have been stored in ar.bsp
* if the user had executed a "cover" instruction right before
* entering the kernel. If CFMP is not NULL, it is used to return the
* "current frame mask" that was active at the time the kernel was
* entered.
*/
unsigned long
ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
unsigned long *cfmp)
{
unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
long ndirty;
krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
bspstore = (unsigned long *) pt->ar_bspstore;
ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
if (in_syscall(pt))
ndirty += (cfm & 0x7f);
else
cfm &= ~(1UL << 63); /* clear valid bit */
if (cfmp)
*cfmp = cfm;
return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
}
/*
* Synchronize (i.e, write) the RSE backing store living in kernel
* space to the VM of the CHILD task. SW and PT are the pointers to
* the switch_stack and pt_regs structures, respectively.
* USER_RBS_END is the user-level address at which the backing store
* ends.
*/
long
ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
unsigned long user_rbs_start, unsigned long user_rbs_end)
{
unsigned long addr, val;
long ret;
/* now copy word for word from kernel rbs to user rbs: */
for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
if (ret < 0)
return ret;
if (access_process_vm(child, addr, &val, sizeof(val), 1)
!= sizeof(val))
return -EIO;
}
return 0;
}
static inline int
thread_matches (struct task_struct *thread, unsigned long addr)
{
unsigned long thread_rbs_end;
struct pt_regs *thread_regs;
if (ptrace_check_attach(thread, 0) < 0)
/*
* If the thread is not in an attachable state, we'll
* ignore it. The net effect is that if ADDR happens
* to overlap with the portion of the thread's
* register backing store that is currently residing
* on the thread's kernel stack, then ptrace() may end
* up accessing a stale value. But if the thread
* isn't stopped, that's a problem anyhow, so we're
* doing as well as we can...
*/
return 0;
thread_regs = task_pt_regs(thread);
thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
return 0;
return 1; /* looks like we've got a winner */
}
/*
* GDB apparently wants to be able to read the register-backing store
* of any thread when attached to a given process. If we are peeking
* or poking an address that happens to reside in the kernel-backing
* store of another thread, we need to attach to that thread, because
* otherwise we end up accessing stale data.
*
* task_list_lock must be read-locked before calling this routine!
*/
static struct task_struct *
find_thread_for_addr (struct task_struct *child, unsigned long addr)
{
struct task_struct *p;
struct mm_struct *mm;
struct list_head *this, *next;
int mm_users;
if (!(mm = get_task_mm(child)))
return child;
/* -1 because of our get_task_mm(): */
mm_users = atomic_read(&mm->mm_users) - 1;
if (mm_users <= 1)
goto out; /* not multi-threaded */
/*
* Traverse the current process' children list. Every task that
* one attaches to becomes a child. And it is only attached children
* of the debugger that are of interest (ptrace_check_attach checks
* for this).
*/
list_for_each_safe(this, next, &current->children) {
p = list_entry(this, struct task_struct, sibling);
if (p->tgid != child->tgid)
continue;
if (thread_matches(p, addr)) {
child = p;
goto out;
}
}
out:
mmput(mm);
return child;
}
/*
* Write f32-f127 back to task->thread.fph if it has been modified.
*/
inline void
ia64_flush_fph (struct task_struct *task)
{
struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
/*
* Prevent migrating this task while
* we're fiddling with the FPU state
*/
preempt_disable();
if (ia64_is_local_fpu_owner(task) && psr->mfh) {
psr->mfh = 0;
task->thread.flags |= IA64_THREAD_FPH_VALID;
ia64_save_fpu(&task->thread.fph[0]);
}
preempt_enable();
}
/*
* Sync the fph state of the task so that it can be manipulated
* through thread.fph. If necessary, f32-f127 are written back to
* thread.fph or, if the fph state hasn't been used before, thread.fph
* is cleared to zeroes. Also, access to f32-f127 is disabled to
* ensure that the task picks up the state from thread.fph when it
* executes again.
*/
void
ia64_sync_fph (struct task_struct *task)
{
struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
ia64_flush_fph(task);
if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
task->thread.flags |= IA64_THREAD_FPH_VALID;
memset(&task->thread.fph, 0, sizeof(task->thread.fph));
}
ia64_drop_fpu(task);
psr->dfh = 1;
}
static int
access_fr (struct unw_frame_info *info, int regnum, int hi,
unsigned long *data, int write_access)
{
struct ia64_fpreg fpval;
int ret;
ret = unw_get_fr(info, regnum, &fpval);
if (ret < 0)
return ret;
if (write_access) {
fpval.u.bits[hi] = *data;
ret = unw_set_fr(info, regnum, fpval);
} else
*data = fpval.u.bits[hi];
return ret;
}
/*
* Change the machine-state of CHILD such that it will return via the normal
* kernel exit-path, rather than the syscall-exit path.
*/
static void
convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
unsigned long cfm)
{
struct unw_frame_info info, prev_info;
unsigned long ip, sp, pr;
unw_init_from_blocked_task(&info, child);
while (1) {
prev_info = info;
if (unw_unwind(&info) < 0)
return;
unw_get_sp(&info, &sp);
if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
< IA64_PT_REGS_SIZE) {
dprintk("ptrace.%s: ran off the top of the kernel "
"stack\n", __FUNCTION__);
return;
}
if (unw_get_pr (&prev_info, &pr) < 0) {
unw_get_rp(&prev_info, &ip);
dprintk("ptrace.%s: failed to read "
"predicate register (ip=0x%lx)\n",
__FUNCTION__, ip);
return;
}
if (unw_is_intr_frame(&info)
&& (pr & (1UL << PRED_USER_STACK)))
break;
}
/*
* Note: at the time of this call, the target task is blocked
* in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
* (aka, "pLvSys") we redirect execution from
* .work_pending_syscall_end to .work_processed_kernel.
*/
unw_get_pr(&prev_info, &pr);
pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
pr |= (1UL << PRED_NON_SYSCALL);
unw_set_pr(&prev_info, pr);
pt->cr_ifs = (1UL << 63) | cfm;
/*
* Clear the memory that is NOT written on syscall-entry to
* ensure we do not leak kernel-state to user when execution
* resumes.
*/
pt->r2 = 0;
pt->r3 = 0;
pt->r14 = 0;
memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
pt->b7 = 0;
pt->ar_ccv = 0;
pt->ar_csd = 0;
pt->ar_ssd = 0;
}
static int
access_nat_bits (struct task_struct *child, struct pt_regs *pt,
struct unw_frame_info *info,
unsigned long *data, int write_access)
{
unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
char nat = 0;
if (write_access) {
nat_bits = *data;
scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
dprintk("ptrace: failed to set ar.unat\n");
return -1;
}
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(info, regnum, &dummy, &nat);
unw_set_gr(info, regnum, dummy,
(nat_bits >> regnum) & 1);
}
} else {
if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
dprintk("ptrace: failed to read ar.unat\n");
return -1;
}
nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
for (regnum = 4; regnum <= 7; ++regnum) {
unw_get_gr(info, regnum, &dummy, &nat);
nat_bits |= (nat != 0) << regnum;
}
*data = nat_bits;
}
return 0;
}
static int
access_uarea (struct task_struct *child, unsigned long addr,
unsigned long *data, int write_access)
{
unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
struct switch_stack *sw;
struct pt_regs *pt;
# define pt_reg_addr(pt, reg) ((void *) \
((unsigned long) (pt) \
+ offsetof(struct pt_regs, reg)))
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
if ((addr & 0x7) != 0) {
dprintk("ptrace: unaligned register address 0x%lx\n", addr);
return -1;
}
if (addr < PT_F127 + 16) {
/* accessing fph */
if (write_access)
ia64_sync_fph(child);
else
ia64_flush_fph(child);
ptr = (unsigned long *)
((unsigned long) &child->thread.fph + addr);
} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
/* scratch registers untouched by kernel (saved in pt_regs) */
ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
} else if (addr >= PT_F12 && addr < PT_F15 + 16) {
/*
* Scratch registers untouched by kernel (saved in
* switch_stack).
*/
ptr = (unsigned long *) ((long) sw
+ (addr - PT_NAT_BITS - 32));
} else if (addr < PT_AR_LC + 8) {
/* preserved state: */
struct unw_frame_info info;
char nat = 0;
int ret;
unw_init_from_blocked_task(&info, child);
if (unw_unwind_to_user(&info) < 0)
return -1;
switch (addr) {
case PT_NAT_BITS:
return access_nat_bits(child, pt, &info,
data, write_access);
case PT_R4: case PT_R5: case PT_R6: case PT_R7:
if (write_access) {
/* read NaT bit first: */
unsigned long dummy;
ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
&dummy, &nat);
if (ret < 0)
return ret;
}
return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
&nat, write_access);
case PT_B1: case PT_B2: case PT_B3:
case PT_B4: case PT_B5:
return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
write_access);
case PT_AR_EC:
return unw_access_ar(&info, UNW_AR_EC, data,
write_access);
case PT_AR_LC:
return unw_access_ar(&info, UNW_AR_LC, data,
write_access);
default:
if (addr >= PT_F2 && addr < PT_F5 + 16)
return access_fr(&info, (addr - PT_F2)/16 + 2,
(addr & 8) != 0, data,
write_access);
else if (addr >= PT_F16 && addr < PT_F31 + 16)
return access_fr(&info,
(addr - PT_F16)/16 + 16,
(addr & 8) != 0,
data, write_access);
else {
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
}
} else if (addr < PT_F9+16) {
/* scratch state */
switch (addr) {
case PT_AR_BSP:
/*
* By convention, we use PT_AR_BSP to refer to
* the end of the user-level backing store.
* Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
* to get the real value of ar.bsp at the time
* the kernel was entered.
*
* Furthermore, when changing the contents of
* PT_AR_BSP (or PT_CFM) we MUST copy any
* users-level stacked registers that are
* stored on the kernel stack back to
* user-space because otherwise, we might end
* up clobbering kernel stacked registers.
* Also, if this happens while the task is
* blocked in a system call, which convert the
* state such that the non-system-call exit
* path is used. This ensures that the proper
* state will be picked up when resuming
* execution. However, it *also* means that
* once we write PT_AR_BSP/PT_CFM, it won't be
* possible to modify the syscall arguments of
* the pending system call any longer. This
* shouldn't be an issue because modifying
* PT_AR_BSP/PT_CFM generally implies that
* we're either abandoning the pending system
* call or that we defer it's re-execution
* (e.g., due to GDB doing an inferior
* function call).
*/
urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
if (write_access) {
if (*data != urbs_end) {
if (ia64_sync_user_rbs(child, sw,
pt->ar_bspstore,
urbs_end) < 0)
return -1;
if (in_syscall(pt))
convert_to_non_syscall(child,
pt,
cfm);
/*
* Simulate user-level write
* of ar.bsp:
*/
pt->loadrs = 0;
pt->ar_bspstore = *data;
}
} else
*data = urbs_end;
return 0;
case PT_CFM:
urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
if (write_access) {
if (((cfm ^ *data) & PFM_MASK) != 0) {
if (ia64_sync_user_rbs(child, sw,
pt->ar_bspstore,
urbs_end) < 0)
return -1;
if (in_syscall(pt))
convert_to_non_syscall(child,
pt,
cfm);
pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
| (*data & PFM_MASK));
}
} else
*data = cfm;
return 0;
case PT_CR_IPSR:
if (write_access) {
unsigned long tmp = *data;
/* psr.ri==3 is a reserved value: SDM 2:25 */
if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
tmp &= ~IA64_PSR_RI;
pt->cr_ipsr = ((tmp & IPSR_MASK)
| (pt->cr_ipsr & ~IPSR_MASK));
} else
*data = (pt->cr_ipsr & IPSR_MASK);
return 0;
case PT_AR_RSC:
if (write_access)
pt->ar_rsc = *data | (3 << 2); /* force PL3 */
else
*data = pt->ar_rsc;
return 0;
case PT_AR_RNAT:
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
rnat_addr = (long) ia64_rse_rnat_addr((long *)
urbs_end);
if (write_access)
return ia64_poke(child, sw, urbs_end,
rnat_addr, *data);
else
return ia64_peek(child, sw, urbs_end,
rnat_addr, data);
case PT_R1:
ptr = pt_reg_addr(pt, r1);
break;
case PT_R2: case PT_R3:
ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
break;
case PT_R8: case PT_R9: case PT_R10: case PT_R11:
ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
break;
case PT_R12: case PT_R13:
ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
break;
case PT_R14:
ptr = pt_reg_addr(pt, r14);
break;
case PT_R15:
ptr = pt_reg_addr(pt, r15);
break;
case PT_R16: case PT_R17: case PT_R18: case PT_R19:
case PT_R20: case PT_R21: case PT_R22: case PT_R23:
case PT_R24: case PT_R25: case PT_R26: case PT_R27:
case PT_R28: case PT_R29: case PT_R30: case PT_R31:
ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
break;
case PT_B0:
ptr = pt_reg_addr(pt, b0);
break;
case PT_B6:
ptr = pt_reg_addr(pt, b6);
break;
case PT_B7:
ptr = pt_reg_addr(pt, b7);
break;
case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
break;
case PT_AR_BSPSTORE:
ptr = pt_reg_addr(pt, ar_bspstore);
break;
case PT_AR_UNAT:
ptr = pt_reg_addr(pt, ar_unat);
break;
case PT_AR_PFS:
ptr = pt_reg_addr(pt, ar_pfs);
break;
case PT_AR_CCV:
ptr = pt_reg_addr(pt, ar_ccv);
break;
case PT_AR_FPSR:
ptr = pt_reg_addr(pt, ar_fpsr);
break;
case PT_CR_IIP:
ptr = pt_reg_addr(pt, cr_iip);
break;
case PT_PR:
ptr = pt_reg_addr(pt, pr);
break;
/* scratch register */
default:
/* disallow accessing anything else... */
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
} else if (addr <= PT_AR_SSD) {
ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
} else {
/* access debug registers */
if (addr >= PT_IBR) {
regnum = (addr - PT_IBR) >> 3;
ptr = &child->thread.ibr[0];
} else {
regnum = (addr - PT_DBR) >> 3;
ptr = &child->thread.dbr[0];
}
if (regnum >= 8) {
dprintk("ptrace: rejecting access to register "
"address 0x%lx\n", addr);
return -1;
}
#ifdef CONFIG_PERFMON
/*
* Check if debug registers are used by perfmon. This
* test must be done once we know that we can do the
* operation, i.e. the arguments are all valid, but
* before we start modifying the state.
*
* Perfmon needs to keep a count of how many processes
* are trying to modify the debug registers for system
* wide monitoring sessions.
*
* We also include read access here, because they may
* cause the PMU-installed debug register state
* (dbr[], ibr[]) to be reset. The two arrays are also
* used by perfmon, but we do not use
* IA64_THREAD_DBG_VALID. The registers are restored
* by the PMU context switch code.
*/
if (pfm_use_debug_registers(child)) return -1;
#endif
if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
child->thread.flags |= IA64_THREAD_DBG_VALID;
memset(child->thread.dbr, 0,
sizeof(child->thread.dbr));
memset(child->thread.ibr, 0,
sizeof(child->thread.ibr));
}
ptr += regnum;
if ((regnum & 1) && write_access) {
/* don't let the user set kernel-level breakpoints: */
*ptr = *data & ~(7UL << 56);
return 0;
}
}
if (write_access)
*ptr = *data;
else
*data = *ptr;
return 0;
}
static long
ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
{
unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
struct unw_frame_info info;
struct ia64_fpreg fpval;
struct switch_stack *sw;
struct pt_regs *pt;
long ret, retval = 0;
char nat = 0;
int i;
if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
return -EIO;
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
unw_init_from_blocked_task(&info, child);
if (unw_unwind_to_user(&info) < 0) {
return -EIO;
}
if (((unsigned long) ppr & 0x7) != 0) {
dprintk("ptrace:unaligned register address %p\n", ppr);
return -EIO;
}
if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
|| access_uarea(child, PT_AR_EC, &ec, 0) < 0
|| access_uarea(child, PT_AR_LC, &lc, 0) < 0
|| access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
|| access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
|| access_uarea(child, PT_CFM, &cfm, 0)
|| access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
return -EIO;
/* control regs */
retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
retval |= __put_user(psr, &ppr->cr_ipsr);
/* app regs */
retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
retval |= __put_user(cfm, &ppr->cfm);
/* gr1-gr3 */
retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
/* gr4-gr7 */
for (i = 4; i < 8; i++) {
if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
return -EIO;
retval |= __put_user(val, &ppr->gr[i]);
}
/* gr8-gr11 */
retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
/* gr12-gr15 */
retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
/* gr16-gr31 */
retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
/* b0 */
retval |= __put_user(pt->b0, &ppr->br[0]);
/* b1-b5 */
for (i = 1; i < 6; i++) {
if (unw_access_br(&info, i, &val, 0) < 0)
return -EIO;
__put_user(val, &ppr->br[i]);
}
/* b6-b7 */
retval |= __put_user(pt->b6, &ppr->br[6]);
retval |= __put_user(pt->b7, &ppr->br[7]);
/* fr2-fr5 */
for (i = 2; i < 6; i++) {
if (unw_get_fr(&info, i, &fpval) < 0)
return -EIO;
retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
}
/* fr6-fr11 */
retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
sizeof(struct ia64_fpreg) * 6);
/* fp scratch regs(12-15) */
retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
sizeof(struct ia64_fpreg) * 4);
/* fr16-fr31 */
for (i = 16; i < 32; i++) {
if (unw_get_fr(&info, i, &fpval) < 0)
return -EIO;
retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
}
/* fph */
ia64_flush_fph(child);
retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
sizeof(ppr->fr[32]) * 96);
/* preds */
retval |= __put_user(pt->pr, &ppr->pr);
/* nat bits */
retval |= __put_user(nat_bits, &ppr->nat);
ret = retval ? -EIO : 0;
return ret;
}
static long
ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
{
unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
struct unw_frame_info info;
struct switch_stack *sw;
struct ia64_fpreg fpval;
struct pt_regs *pt;
long ret, retval = 0;
int i;
memset(&fpval, 0, sizeof(fpval));
if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
return -EIO;
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
unw_init_from_blocked_task(&info, child);
if (unw_unwind_to_user(&info) < 0) {
return -EIO;
}
if (((unsigned long) ppr & 0x7) != 0) {
dprintk("ptrace:unaligned register address %p\n", ppr);
return -EIO;
}
/* control regs */
retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
retval |= __get_user(psr, &ppr->cr_ipsr);
/* app regs */
retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
retval |= __get_user(cfm, &ppr->cfm);
/* gr1-gr3 */
retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
/* gr4-gr7 */
for (i = 4; i < 8; i++) {
retval |= __get_user(val, &ppr->gr[i]);
/* NaT bit will be set via PT_NAT_BITS: */
if (unw_set_gr(&info, i, val, 0) < 0)
return -EIO;
}
/* gr8-gr11 */
retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
/* gr12-gr15 */
retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
/* gr16-gr31 */
retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
/* b0 */
retval |= __get_user(pt->b0, &ppr->br[0]);
/* b1-b5 */
for (i = 1; i < 6; i++) {
retval |= __get_user(val, &ppr->br[i]);
unw_set_br(&info, i, val);
}
/* b6-b7 */
retval |= __get_user(pt->b6, &ppr->br[6]);
retval |= __get_user(pt->b7, &ppr->br[7]);
/* fr2-fr5 */
for (i = 2; i < 6; i++) {
retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
if (unw_set_fr(&info, i, fpval) < 0)
return -EIO;
}
/* fr6-fr11 */
retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
sizeof(ppr->fr[6]) * 6);
/* fp scratch regs(12-15) */
retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
sizeof(ppr->fr[12]) * 4);
/* fr16-fr31 */
for (i = 16; i < 32; i++) {
retval |= __copy_from_user(&fpval, &ppr->fr[i],
sizeof(fpval));
if (unw_set_fr(&info, i, fpval) < 0)
return -EIO;
}
/* fph */
ia64_sync_fph(child);
retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
sizeof(ppr->fr[32]) * 96);
/* preds */
retval |= __get_user(pt->pr, &ppr->pr);
/* nat bits */
retval |= __get_user(nat_bits, &ppr->nat);
retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
retval |= access_uarea(child, PT_AR_EC, &ec, 1);
retval |= access_uarea(child, PT_AR_LC, &lc, 1);
retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
retval |= access_uarea(child, PT_CFM, &cfm, 1);
retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
ret = retval ? -EIO : 0;
return ret;
}
/*
* Called by kernel/ptrace.c when detaching..
*
* Make sure the single step bit is not set.
*/
void
ptrace_disable (struct task_struct *child)
{
struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
/* make sure the single step/taken-branch trap bits are not set: */
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
child_psr->ss = 0;
child_psr->tb = 0;
}
asmlinkage long
sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
{
struct pt_regs *pt;
unsigned long urbs_end, peek_or_poke;
struct task_struct *child;
struct switch_stack *sw;
long ret;
lock_kernel();
ret = -EPERM;
if (request == PTRACE_TRACEME) {
ret = ptrace_traceme();
goto out;
}
peek_or_poke = (request == PTRACE_PEEKTEXT
|| request == PTRACE_PEEKDATA
|| request == PTRACE_POKETEXT
|| request == PTRACE_POKEDATA);
ret = -ESRCH;
read_lock(&tasklist_lock);
{
child = find_task_by_pid(pid);
if (child) {
if (peek_or_poke)
child = find_thread_for_addr(child, addr);
get_task_struct(child);
}
}
read_unlock(&tasklist_lock);
if (!child)
goto out;
ret = -EPERM;
if (pid == 1) /* no messing around with init! */
goto out_tsk;
if (request == PTRACE_ATTACH) {
ret = ptrace_attach(child);
goto out_tsk;
}
ret = ptrace_check_attach(child, request == PTRACE_KILL);
if (ret < 0)
goto out_tsk;
pt = task_pt_regs(child);
sw = (struct switch_stack *) (child->thread.ksp + 16);
switch (request) {
case PTRACE_PEEKTEXT:
case PTRACE_PEEKDATA:
/* read word at location addr */
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
ret = ia64_peek(child, sw, urbs_end, addr, &data);
if (ret == 0) {
ret = data;
/* ensure "ret" is not mistaken as an error code: */
force_successful_syscall_return();
}
goto out_tsk;
case PTRACE_POKETEXT:
case PTRACE_POKEDATA:
/* write the word at location addr */
urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
ret = ia64_poke(child, sw, urbs_end, addr, data);
goto out_tsk;
case PTRACE_PEEKUSR:
/* read the word at addr in the USER area */
if (access_uarea(child, addr, &data, 0) < 0) {
ret = -EIO;
goto out_tsk;
}
ret = data;
/* ensure "ret" is not mistaken as an error code */
force_successful_syscall_return();
goto out_tsk;
case PTRACE_POKEUSR:
/* write the word at addr in the USER area */
if (access_uarea(child, addr, &data, 1) < 0) {
ret = -EIO;
goto out_tsk;
}
ret = 0;
goto out_tsk;
case PTRACE_OLD_GETSIGINFO:
/* for backwards-compatibility */
ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
goto out_tsk;
case PTRACE_OLD_SETSIGINFO:
/* for backwards-compatibility */
ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
goto out_tsk;
case PTRACE_SYSCALL:
/* continue and stop at next (return from) syscall */
case PTRACE_CONT:
/* restart after signal. */
ret = -EIO;
if (!valid_signal(data))
goto out_tsk;
if (request == PTRACE_SYSCALL)
set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
else
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
child->exit_code = data;
/*
* Make sure the single step/taken-branch trap bits
* are not set:
*/
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
ia64_psr(pt)->ss = 0;
ia64_psr(pt)->tb = 0;
wake_up_process(child);
ret = 0;
goto out_tsk;
case PTRACE_KILL:
/*
* Make the child exit. Best I can do is send it a
* sigkill. Perhaps it should be put in the status
* that it wants to exit.
*/
if (child->exit_state == EXIT_ZOMBIE)
/* already dead */
goto out_tsk;
child->exit_code = SIGKILL;
ptrace_disable(child);
wake_up_process(child);
ret = 0;
goto out_tsk;
case PTRACE_SINGLESTEP:
/* let child execute for one instruction */
case PTRACE_SINGLEBLOCK:
ret = -EIO;
if (!valid_signal(data))
goto out_tsk;
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
set_tsk_thread_flag(child, TIF_SINGLESTEP);
if (request == PTRACE_SINGLESTEP) {
ia64_psr(pt)->ss = 1;
} else {
ia64_psr(pt)->tb = 1;
}
child->exit_code = data;
/* give it a chance to run. */
wake_up_process(child);
ret = 0;
goto out_tsk;
case PTRACE_DETACH:
/* detach a process that was attached. */
ret = ptrace_detach(child, data);
goto out_tsk;
case PTRACE_GETREGS:
ret = ptrace_getregs(child,
(struct pt_all_user_regs __user *) data);
goto out_tsk;
case PTRACE_SETREGS:
ret = ptrace_setregs(child,
(struct pt_all_user_regs __user *) data);
goto out_tsk;
default:
ret = ptrace_request(child, request, addr, data);
goto out_tsk;
}
out_tsk:
put_task_struct(child);
out:
unlock_kernel();
return ret;
}
static void
syscall_trace (void)
{
/*
* The 0x80 provides a way for the tracing parent to
* distinguish between a syscall stop and SIGTRAP delivery.
*/
ptrace_notify(SIGTRAP
| ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
/*
* This isn't the same as continuing with a signal, but it
* will do for normal use. strace only continues with a
* signal if the stopping signal is not SIGTRAP. -brl
*/
if (current->exit_code) {
send_sig(current->exit_code, current, 1);
current->exit_code = 0;
}
}
/* "asmlinkage" so the input arguments are preserved... */
asmlinkage void
syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
long arg4, long arg5, long arg6, long arg7,
struct pt_regs regs)
{
if (test_thread_flag(TIF_SYSCALL_TRACE)
&& (current->ptrace & PT_PTRACED))
syscall_trace();
if (unlikely(current->audit_context)) {
long syscall;
int arch;
if (IS_IA32_PROCESS(&regs)) {
syscall = regs.r1;
arch = AUDIT_ARCH_I386;
} else {
syscall = regs.r15;
arch = AUDIT_ARCH_IA64;
}
audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
}
}
/* "asmlinkage" so the input arguments are preserved... */
asmlinkage void
syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
long arg4, long arg5, long arg6, long arg7,
struct pt_regs regs)
{
if (unlikely(current->audit_context)) {
int success = AUDITSC_RESULT(regs.r10);
long result = regs.r8;
if (success != AUDITSC_SUCCESS)
result = -result;
audit_syscall_exit(success, result);
}
if ((test_thread_flag(TIF_SYSCALL_TRACE)
|| test_thread_flag(TIF_SINGLESTEP))
&& (current->ptrace & PT_PTRACED))
syscall_trace();
}