kernel-fxtec-pro1x/drivers/gpu/drm/nouveau/nvd0_display.c
Ben Skeggs befb51e9c9 drm/nouveau/disp: parse connector info directly in nouveau_connector.c
Another case where we parsed vbios data to some structs, then again use
that info once to construct another set of data.  Skip the intermediate
step.

This is also slightly improved in that we can now use DCB 3.x connector
table info, which will allow NV4x to gain hotplug support, and to make
quirks for SPWG LVDS panels unnecessary.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2011-12-21 19:01:41 +10:00

1914 lines
51 KiB
C

/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <linux/dma-mapping.h>
#include "drmP.h"
#include "drm_crtc_helper.h"
#include "nouveau_drv.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include "nouveau_dma.h"
#include "nouveau_fb.h"
#include "nv50_display.h"
#define EVO_DMA_NR 9
#define EVO_MASTER (0x00)
#define EVO_FLIP(c) (0x01 + (c))
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
#define EVO_CURS(c) (0x0d + (c))
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
#define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
#define EVO_FLIP_SEM0(c) EVO_SYNC((c), 0x00)
#define EVO_FLIP_SEM1(c) EVO_SYNC((c), 0x10)
struct evo {
int idx;
dma_addr_t handle;
u32 *ptr;
struct {
u32 offset;
u16 value;
} sem;
};
struct nvd0_display {
struct nouveau_gpuobj *mem;
struct nouveau_bo *sync;
struct evo evo[9];
struct tasklet_struct tasklet;
u32 modeset;
};
static struct nvd0_display *
nvd0_display(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
return dev_priv->engine.display.priv;
}
static struct drm_crtc *
nvd0_display_crtc_get(struct drm_encoder *encoder)
{
return nouveau_encoder(encoder)->crtc;
}
/******************************************************************************
* EVO channel helpers
*****************************************************************************/
static inline int
evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
{
int ret = 0;
nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
nv_wr32(dev, 0x610704 + (id * 0x10), data);
nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
ret = -EBUSY;
nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
return ret;
}
static u32 *
evo_wait(struct drm_device *dev, int id, int nr)
{
struct nvd0_display *disp = nvd0_display(dev);
u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;
if (put + nr >= (PAGE_SIZE / 4)) {
disp->evo[id].ptr[put] = 0x20000000;
nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
NV_ERROR(dev, "evo %d dma stalled\n", id);
return NULL;
}
put = 0;
}
if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
NV_INFO(dev, "Evo%d: %p START\n", id, disp->evo[id].ptr + put);
return disp->evo[id].ptr + put;
}
static void
evo_kick(u32 *push, struct drm_device *dev, int id)
{
struct nvd0_display *disp = nvd0_display(dev);
if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) {
u32 curp = nv_rd32(dev, 0x640000 + (id * 0x1000)) >> 2;
u32 *cur = disp->evo[id].ptr + curp;
while (cur < push)
NV_INFO(dev, "Evo%d: 0x%08x\n", id, *cur++);
NV_INFO(dev, "Evo%d: %p KICK!\n", id, push);
}
nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
}
#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d) *((p)++) = (d)
static int
evo_init_dma(struct drm_device *dev, int ch)
{
struct nvd0_display *disp = nvd0_display(dev);
u32 flags;
flags = 0x00000000;
if (ch == EVO_MASTER)
flags |= 0x01000000;
nv_wr32(dev, 0x610494 + (ch * 0x0010), (disp->evo[ch].handle >> 8) | 3);
nv_wr32(dev, 0x610498 + (ch * 0x0010), 0x00010000);
nv_wr32(dev, 0x61049c + (ch * 0x0010), 0x00000001);
nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
nv_wr32(dev, 0x640000 + (ch * 0x1000), 0x00000000);
nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000013 | flags);
if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000)) {
NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
nv_rd32(dev, 0x610490 + (ch * 0x0010)));
return -EBUSY;
}
nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
return 0;
}
static void
evo_fini_dma(struct drm_device *dev, int ch)
{
if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000010))
return;
nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000000);
nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000003, 0x00000000);
nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000);
nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
}
static inline void
evo_piow(struct drm_device *dev, int ch, u16 mthd, u32 data)
{
nv_wr32(dev, 0x640000 + (ch * 0x1000) + mthd, data);
}
static int
evo_init_pio(struct drm_device *dev, int ch)
{
nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000001);
if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00010000)) {
NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
nv_rd32(dev, 0x610490 + (ch * 0x0010)));
return -EBUSY;
}
nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
return 0;
}
static void
evo_fini_pio(struct drm_device *dev, int ch)
{
if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000001))
return;
nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000001, 0x00000000);
nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00000000);
nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
}
static bool
evo_sync_wait(void *data)
{
return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
}
static int
evo_sync(struct drm_device *dev, int ch)
{
struct nvd0_display *disp = nvd0_display(dev);
u32 *push = evo_wait(dev, ch, 8);
if (push) {
nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x80000000 | EVO_MAST_NTFY);
evo_mthd(push, 0x0080, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_kick(push, dev, ch);
if (nv_wait_cb(dev, evo_sync_wait, disp->sync))
return 0;
}
return -EBUSY;
}
/******************************************************************************
* Page flipping channel
*****************************************************************************/
struct nouveau_bo *
nvd0_display_crtc_sema(struct drm_device *dev, int crtc)
{
return nvd0_display(dev)->sync;
}
void
nvd0_display_flip_stop(struct drm_crtc *crtc)
{
struct nvd0_display *disp = nvd0_display(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
u32 *push;
push = evo_wait(crtc->dev, evo->idx, 8);
if (push) {
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0094, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, crtc->dev, evo->idx);
}
}
int
nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
struct nouveau_channel *chan, u32 swap_interval)
{
struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
struct nvd0_display *disp = nvd0_display(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
u64 offset;
u32 *push;
int ret;
swap_interval <<= 4;
if (swap_interval == 0)
swap_interval |= 0x100;
push = evo_wait(crtc->dev, evo->idx, 128);
if (unlikely(push == NULL))
return -EBUSY;
/* synchronise with the rendering channel, if necessary */
if (likely(chan)) {
ret = RING_SPACE(chan, 10);
if (ret)
return ret;
offset = chan->dispc_vma[nv_crtc->index].offset;
offset += evo->sem.offset;
BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0010, 4);
OUT_RING (chan, upper_32_bits(offset));
OUT_RING (chan, lower_32_bits(offset));
OUT_RING (chan, 0xf00d0000 | evo->sem.value);
OUT_RING (chan, 0x1002);
BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0010, 4);
OUT_RING (chan, upper_32_bits(offset));
OUT_RING (chan, lower_32_bits(offset ^ 0x10));
OUT_RING (chan, 0x74b1e000);
OUT_RING (chan, 0x1001);
FIRE_RING (chan);
} else {
nouveau_bo_wr32(disp->sync, evo->sem.offset / 4,
0xf00d0000 | evo->sem.value);
evo_sync(crtc->dev, EVO_MASTER);
}
/* queue the flip */
evo_mthd(push, 0x0100, 1);
evo_data(push, 0xfffe0000);
evo_mthd(push, 0x0084, 1);
evo_data(push, swap_interval);
if (!(swap_interval & 0x00000100)) {
evo_mthd(push, 0x00e0, 1);
evo_data(push, 0x40000000);
}
evo_mthd(push, 0x0088, 4);
evo_data(push, evo->sem.offset);
evo_data(push, 0xf00d0000 | evo->sem.value);
evo_data(push, 0x74b1e000);
evo_data(push, NvEvoSync);
evo_mthd(push, 0x00a0, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, nv_fb->r_dma);
evo_mthd(push, 0x0110, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0400, 5);
evo_data(push, nv_fb->nvbo->bo.offset >> 8);
evo_data(push, 0);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nv_fb->r_pitch);
evo_data(push, nv_fb->r_format);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, crtc->dev, evo->idx);
evo->sem.offset ^= 0x10;
evo->sem.value++;
return 0;
}
/******************************************************************************
* CRTC
*****************************************************************************/
static int
nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
{
struct drm_device *dev = nv_crtc->base.dev;
struct nouveau_connector *nv_connector;
struct drm_connector *connector;
u32 *push, mode = 0x00;
nv_connector = nouveau_crtc_connector_get(nv_crtc);
connector = &nv_connector->base;
if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
mode = DITHERING_MODE_DYNAMIC2X2;
} else {
mode = nv_connector->dithering_mode;
}
if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
if (connector->display_info.bpc >= 8)
mode |= DITHERING_DEPTH_8BPC;
} else {
mode |= nv_connector->dithering_depth;
}
push = evo_wait(dev, EVO_MASTER, 4);
if (push) {
evo_mthd(push, 0x0490 + (nv_crtc->index * 0x300), 1);
evo_data(push, mode);
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, dev, EVO_MASTER);
}
return 0;
}
static int
nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
{
struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
struct drm_device *dev = nv_crtc->base.dev;
struct drm_crtc *crtc = &nv_crtc->base;
struct nouveau_connector *nv_connector;
int mode = DRM_MODE_SCALE_NONE;
u32 oX, oY, *push;
/* start off at the resolution we programmed the crtc for, this
* effectively handles NONE/FULL scaling
*/
nv_connector = nouveau_crtc_connector_get(nv_crtc);
if (nv_connector && nv_connector->native_mode)
mode = nv_connector->scaling_mode;
if (mode != DRM_MODE_SCALE_NONE)
omode = nv_connector->native_mode;
else
omode = umode;
oX = omode->hdisplay;
oY = omode->vdisplay;
if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
oY *= 2;
/* add overscan compensation if necessary, will keep the aspect
* ratio the same as the backend mode unless overridden by the
* user setting both hborder and vborder properties.
*/
if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
(nv_connector->underscan == UNDERSCAN_AUTO &&
nv_connector->edid &&
drm_detect_hdmi_monitor(nv_connector->edid)))) {
u32 bX = nv_connector->underscan_hborder;
u32 bY = nv_connector->underscan_vborder;
u32 aspect = (oY << 19) / oX;
if (bX) {
oX -= (bX * 2);
if (bY) oY -= (bY * 2);
else oY = ((oX * aspect) + (aspect / 2)) >> 19;
} else {
oX -= (oX >> 4) + 32;
if (bY) oY -= (bY * 2);
else oY = ((oX * aspect) + (aspect / 2)) >> 19;
}
}
/* handle CENTER/ASPECT scaling, taking into account the areas
* removed already for overscan compensation
*/
switch (mode) {
case DRM_MODE_SCALE_CENTER:
oX = min((u32)umode->hdisplay, oX);
oY = min((u32)umode->vdisplay, oY);
/* fall-through */
case DRM_MODE_SCALE_ASPECT:
if (oY < oX) {
u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
oX = ((oY * aspect) + (aspect / 2)) >> 19;
} else {
u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
oY = ((oX * aspect) + (aspect / 2)) >> 19;
}
break;
default:
break;
}
push = evo_wait(dev, EVO_MASTER, 8);
if (push) {
evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
evo_data(push, (umode->vdisplay << 16) | umode->hdisplay);
evo_kick(push, dev, EVO_MASTER);
if (update) {
nvd0_display_flip_stop(crtc);
nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
}
}
return 0;
}
static int
nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
int x, int y, bool update)
{
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
u32 *push;
push = evo_wait(fb->dev, EVO_MASTER, 16);
if (push) {
evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
evo_data(push, nvfb->nvbo->bo.offset >> 8);
evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nvfb->r_pitch);
evo_data(push, nvfb->r_format);
evo_data(push, nvfb->r_dma);
evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
evo_data(push, (y << 16) | x);
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, fb->dev, EVO_MASTER);
}
nv_crtc->fb.tile_flags = nvfb->r_dma;
return 0;
}
static void
nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
{
struct drm_device *dev = nv_crtc->base.dev;
u32 *push = evo_wait(dev, EVO_MASTER, 16);
if (push) {
if (show) {
evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
evo_data(push, 0x85000000);
evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
evo_data(push, NvEvoVRAM);
} else {
evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
}
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, dev, EVO_MASTER);
}
}
static void
nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}
static void
nvd0_crtc_prepare(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 *push;
nvd0_display_flip_stop(crtc);
push = evo_wait(crtc->dev, EVO_MASTER, 2);
if (push) {
evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x03000000);
evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_kick(push, crtc->dev, EVO_MASTER);
}
nvd0_crtc_cursor_show(nv_crtc, false, false);
}
static void
nvd0_crtc_commit(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 *push;
push = evo_wait(crtc->dev, EVO_MASTER, 32);
if (push) {
evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
evo_data(push, nv_crtc->fb.tile_flags);
evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
evo_data(push, 0x83000000);
evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
evo_data(push, NvEvoVRAM);
evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0xffffff00);
evo_kick(push, crtc->dev, EVO_MASTER);
}
nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, false);
nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
}
static bool
nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static int
nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
{
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
int ret;
ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
if (ret)
return ret;
if (old_fb) {
nvfb = nouveau_framebuffer(old_fb);
nouveau_bo_unpin(nvfb->nvbo);
}
return 0;
}
static int
nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
struct drm_display_mode *mode, int x, int y,
struct drm_framebuffer *old_fb)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nouveau_connector *nv_connector;
u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
u32 vblan2e = 0, vblan2s = 1;
u32 magic = 0x31ec6000;
u32 syncs, *push;
int ret;
hactive = mode->htotal;
hsynce = mode->hsync_end - mode->hsync_start - 1;
hbackp = mode->htotal - mode->hsync_end;
hblanke = hsynce + hbackp;
hfrontp = mode->hsync_start - mode->hdisplay;
hblanks = mode->htotal - hfrontp - 1;
vactive = mode->vtotal * vscan / ilace;
vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
vblanke = vsynce + vbackp;
vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
vblanks = vactive - vfrontp - 1;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vblan2e = vactive + vsynce + vbackp;
vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
vactive = (vactive * 2) + 1;
magic |= 0x00000001;
}
syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
ret = nvd0_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
push = evo_wait(crtc->dev, EVO_MASTER, 64);
if (push) {
evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
evo_data(push, 0x00000000);
evo_data(push, (vactive << 16) | hactive);
evo_data(push, ( vsynce << 16) | hsynce);
evo_data(push, (vblanke << 16) | hblanke);
evo_data(push, (vblanks << 16) | hblanks);
evo_data(push, (vblan2e << 16) | vblan2s);
evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000); /* ??? */
evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
evo_data(push, mode->clock * 1000);
evo_data(push, 0x00200000); /* ??? */
evo_data(push, mode->clock * 1000);
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs);
evo_data(push, magic);
evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
evo_data(push, 0x00000311);
evo_data(push, 0x00000100);
evo_kick(push, crtc->dev, EVO_MASTER);
}
nv_connector = nouveau_crtc_connector_get(nv_crtc);
nvd0_crtc_set_dither(nv_crtc, false);
nvd0_crtc_set_scale(nv_crtc, false);
nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
return 0;
}
static int
nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
int ret;
if (!crtc->fb) {
NV_DEBUG_KMS(crtc->dev, "No FB bound\n");
return 0;
}
ret = nvd0_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
nvd0_display_flip_stop(crtc);
nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
return 0;
}
static int
nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb, int x, int y,
enum mode_set_atomic state)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nvd0_display_flip_stop(crtc);
nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
return 0;
}
static void
nvd0_crtc_lut_load(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
int i;
for (i = 0; i < 256; i++) {
writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
}
}
static int
nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
uint32_t handle, uint32_t width, uint32_t height)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_gem_object *gem;
struct nouveau_bo *nvbo;
bool visible = (handle != 0);
int i, ret = 0;
if (visible) {
if (width != 64 || height != 64)
return -EINVAL;
gem = drm_gem_object_lookup(dev, file_priv, handle);
if (unlikely(!gem))
return -ENOENT;
nvbo = nouveau_gem_object(gem);
ret = nouveau_bo_map(nvbo);
if (ret == 0) {
for (i = 0; i < 64 * 64; i++) {
u32 v = nouveau_bo_rd32(nvbo, i);
nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
}
nouveau_bo_unmap(nvbo);
}
drm_gem_object_unreference_unlocked(gem);
}
if (visible != nv_crtc->cursor.visible) {
nvd0_crtc_cursor_show(nv_crtc, visible, true);
nv_crtc->cursor.visible = visible;
}
return ret;
}
static int
nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
int ch = EVO_CURS(nv_crtc->index);
evo_piow(crtc->dev, ch, 0x0084, (y << 16) | x);
evo_piow(crtc->dev, ch, 0x0080, 0x00000000);
return 0;
}
static void
nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
uint32_t start, uint32_t size)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 end = max(start + size, (u32)256);
u32 i;
for (i = start; i < end; i++) {
nv_crtc->lut.r[i] = r[i];
nv_crtc->lut.g[i] = g[i];
nv_crtc->lut.b[i] = b[i];
}
nvd0_crtc_lut_load(crtc);
}
static void
nvd0_crtc_destroy(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nouveau_bo_unmap(nv_crtc->cursor.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
nouveau_bo_unmap(nv_crtc->lut.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
.dpms = nvd0_crtc_dpms,
.prepare = nvd0_crtc_prepare,
.commit = nvd0_crtc_commit,
.mode_fixup = nvd0_crtc_mode_fixup,
.mode_set = nvd0_crtc_mode_set,
.mode_set_base = nvd0_crtc_mode_set_base,
.mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
.load_lut = nvd0_crtc_lut_load,
};
static const struct drm_crtc_funcs nvd0_crtc_func = {
.cursor_set = nvd0_crtc_cursor_set,
.cursor_move = nvd0_crtc_cursor_move,
.gamma_set = nvd0_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = nvd0_crtc_destroy,
.page_flip = nouveau_crtc_page_flip,
};
static void
nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
{
}
static void
nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
{
}
static int
nvd0_crtc_create(struct drm_device *dev, int index)
{
struct nouveau_crtc *nv_crtc;
struct drm_crtc *crtc;
int ret, i;
nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
if (!nv_crtc)
return -ENOMEM;
nv_crtc->index = index;
nv_crtc->set_dither = nvd0_crtc_set_dither;
nv_crtc->set_scale = nvd0_crtc_set_scale;
nv_crtc->cursor.set_offset = nvd0_cursor_set_offset;
nv_crtc->cursor.set_pos = nvd0_cursor_set_pos;
for (i = 0; i < 256; i++) {
nv_crtc->lut.r[i] = i << 8;
nv_crtc->lut.g[i] = i << 8;
nv_crtc->lut.b[i] = i << 8;
}
crtc = &nv_crtc->base;
drm_crtc_init(dev, crtc, &nvd0_crtc_func);
drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
drm_mode_crtc_set_gamma_size(crtc, 256);
ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, &nv_crtc->cursor.nvbo);
if (!ret) {
ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
if (!ret)
ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
if (ret)
nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
}
if (ret)
goto out;
ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, &nv_crtc->lut.nvbo);
if (!ret) {
ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
if (!ret)
ret = nouveau_bo_map(nv_crtc->lut.nvbo);
if (ret)
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
}
if (ret)
goto out;
nvd0_crtc_lut_load(crtc);
out:
if (ret)
nvd0_crtc_destroy(crtc);
return ret;
}
/******************************************************************************
* DAC
*****************************************************************************/
static void
nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
int or = nv_encoder->or;
u32 dpms_ctrl;
dpms_ctrl = 0x80000000;
if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
dpms_ctrl |= 0x00000001;
if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
dpms_ctrl |= 0x00000004;
nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
nv_mask(dev, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl);
nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
}
static bool
nvd0_dac_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->native_mode) {
if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
int id = adjusted_mode->base.id;
*adjusted_mode = *nv_connector->native_mode;
adjusted_mode->base.id = id;
}
}
return true;
}
static void
nvd0_dac_prepare(struct drm_encoder *encoder)
{
}
static void
nvd0_dac_commit(struct drm_encoder *encoder)
{
}
static void
nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
u32 *push;
nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);
push = evo_wait(encoder->dev, EVO_MASTER, 4);
if (push) {
evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 2);
evo_data(push, 1 << nv_crtc->index);
evo_data(push, 0x00ff);
evo_kick(push, encoder->dev, EVO_MASTER);
}
nv_encoder->crtc = encoder->crtc;
}
static void
nvd0_dac_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
u32 *push;
if (nv_encoder->crtc) {
nvd0_crtc_prepare(nv_encoder->crtc);
push = evo_wait(dev, EVO_MASTER, 4);
if (push) {
evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, dev, EVO_MASTER);
}
nv_encoder->crtc = NULL;
}
}
static enum drm_connector_status
nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
enum drm_connector_status status = connector_status_disconnected;
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
int or = nv_encoder->or;
u32 load;
nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00100000);
udelay(9500);
nv_wr32(dev, 0x61a00c + (or * 0x800), 0x80000000);
load = nv_rd32(dev, 0x61a00c + (or * 0x800));
if ((load & 0x38000000) == 0x38000000)
status = connector_status_connected;
nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00000000);
return status;
}
static void
nvd0_dac_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
.dpms = nvd0_dac_dpms,
.mode_fixup = nvd0_dac_mode_fixup,
.prepare = nvd0_dac_prepare,
.commit = nvd0_dac_commit,
.mode_set = nvd0_dac_mode_set,
.disable = nvd0_dac_disconnect,
.get_crtc = nvd0_display_crtc_get,
.detect = nvd0_dac_detect
};
static const struct drm_encoder_funcs nvd0_dac_func = {
.destroy = nvd0_dac_destroy,
};
static int
nvd0_dac_create(struct drm_connector *connector, struct dcb_entry *dcbe)
{
struct drm_device *dev = connector->dev;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Audio
*****************************************************************************/
static void
nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
struct drm_device *dev = encoder->dev;
int i, or = nv_encoder->or * 0x30;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_monitor_audio(nv_connector->edid))
return;
nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000001);
drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
if (nv_connector->base.eld[0]) {
u8 *eld = nv_connector->base.eld;
for (i = 0; i < eld[2] * 4; i++)
nv_wr32(dev, 0x10ec00 + or, (i << 8) | eld[i]);
for (i = eld[2] * 4; i < 0x60; i++)
nv_wr32(dev, 0x10ec00 + or, (i << 8) | 0x00);
nv_mask(dev, 0x10ec10 + or, 0x80000002, 0x80000002);
}
}
static void
nvd0_audio_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
int or = nv_encoder->or * 0x30;
nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000000);
}
/******************************************************************************
* HDMI
*****************************************************************************/
static void
nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct drm_device *dev = encoder->dev;
int head = nv_crtc->index * 0x800;
u32 rekey = 56; /* binary driver, and tegra constant */
u32 max_ac_packet;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_hdmi_monitor(nv_connector->edid))
return;
max_ac_packet = mode->htotal - mode->hdisplay;
max_ac_packet -= rekey;
max_ac_packet -= 18; /* constant from tegra */
max_ac_packet /= 32;
/* AVI InfoFrame */
nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
nv_wr32(dev, 0x61671c + head, 0x000d0282);
nv_wr32(dev, 0x616720 + head, 0x0000006f);
nv_wr32(dev, 0x616724 + head, 0x00000000);
nv_wr32(dev, 0x616728 + head, 0x00000000);
nv_wr32(dev, 0x61672c + head, 0x00000000);
nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000001);
/* ??? InfoFrame? */
nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
nv_wr32(dev, 0x6167ac + head, 0x00000010);
nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000001);
/* HDMI_CTRL */
nv_mask(dev, 0x616798 + head, 0x401f007f, 0x40000000 | rekey |
max_ac_packet << 16);
/* NFI, audio doesn't work without it though.. */
nv_mask(dev, 0x616548 + head, 0x00000070, 0x00000000);
nvd0_audio_mode_set(encoder, mode);
}
static void
nvd0_hdmi_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
struct drm_device *dev = encoder->dev;
int head = nv_crtc->index * 0x800;
nvd0_audio_disconnect(encoder);
nv_mask(dev, 0x616798 + head, 0x40000000, 0x00000000);
nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
}
/******************************************************************************
* SOR
*****************************************************************************/
static void
nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
struct drm_encoder *partner;
int or = nv_encoder->or;
u32 dpms_ctrl;
nv_encoder->last_dpms = mode;
list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
continue;
if (nv_partner != nv_encoder &&
nv_partner->dcb->or == nv_encoder->dcb->or) {
if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
return;
break;
}
}
dpms_ctrl = (mode == DRM_MODE_DPMS_ON);
dpms_ctrl |= 0x80000000;
nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
}
static bool
nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->native_mode) {
if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
int id = adjusted_mode->base.id;
*adjusted_mode = *nv_connector->native_mode;
adjusted_mode->base.id = id;
}
}
return true;
}
static void
nvd0_sor_prepare(struct drm_encoder *encoder)
{
}
static void
nvd0_sor_commit(struct drm_encoder *encoder)
{
}
static void
nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
struct drm_display_mode *mode)
{
struct drm_device *dev = encoder->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nvbios *bios = &dev_priv->vbios;
u32 mode_ctrl = (1 << nv_crtc->index);
u32 *push, or_config;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
switch (nv_encoder->dcb->type) {
case OUTPUT_TMDS:
if (nv_encoder->dcb->sorconf.link & 1) {
if (mode->clock < 165000)
mode_ctrl |= 0x00000100;
else
mode_ctrl |= 0x00000500;
} else {
mode_ctrl |= 0x00000200;
}
or_config = (mode_ctrl & 0x00000f00) >> 8;
if (mode->clock >= 165000)
or_config |= 0x0100;
nvd0_hdmi_mode_set(encoder, mode);
break;
case OUTPUT_LVDS:
or_config = (mode_ctrl & 0x00000f00) >> 8;
if (bios->fp_no_ddc) {
if (bios->fp.dual_link)
or_config |= 0x0100;
if (bios->fp.if_is_24bit)
or_config |= 0x0200;
} else {
if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
if (((u8 *)nv_connector->edid)[121] == 2)
or_config |= 0x0100;
} else
if (mode->clock >= bios->fp.duallink_transition_clk) {
or_config |= 0x0100;
}
if (or_config & 0x0100) {
if (bios->fp.strapless_is_24bit & 2)
or_config |= 0x0200;
} else {
if (bios->fp.strapless_is_24bit & 1)
or_config |= 0x0200;
}
if (nv_connector->base.display_info.bpc == 8)
or_config |= 0x0200;
}
break;
default:
BUG_ON(1);
break;
}
nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);
push = evo_wait(dev, EVO_MASTER, 4);
if (push) {
evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 2);
evo_data(push, mode_ctrl);
evo_data(push, or_config);
evo_kick(push, dev, EVO_MASTER);
}
nv_encoder->crtc = encoder->crtc;
}
static void
nvd0_sor_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
u32 *push;
if (nv_encoder->crtc) {
nvd0_crtc_prepare(nv_encoder->crtc);
push = evo_wait(dev, EVO_MASTER, 4);
if (push) {
evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, dev, EVO_MASTER);
}
nvd0_hdmi_disconnect(encoder);
nv_encoder->crtc = NULL;
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
}
}
static void
nvd0_sor_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
.dpms = nvd0_sor_dpms,
.mode_fixup = nvd0_sor_mode_fixup,
.prepare = nvd0_sor_prepare,
.commit = nvd0_sor_commit,
.mode_set = nvd0_sor_mode_set,
.disable = nvd0_sor_disconnect,
.get_crtc = nvd0_display_crtc_get,
};
static const struct drm_encoder_funcs nvd0_sor_func = {
.destroy = nvd0_sor_destroy,
};
static int
nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
{
struct drm_device *dev = connector->dev;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* IRQ
*****************************************************************************/
static struct dcb_entry *
lookup_dcb(struct drm_device *dev, int id, u32 mc)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
int type, or, i;
if (id < 4) {
type = OUTPUT_ANALOG;
or = id;
} else {
switch (mc & 0x00000f00) {
case 0x00000000: type = OUTPUT_LVDS; break;
case 0x00000100: type = OUTPUT_TMDS; break;
case 0x00000200: type = OUTPUT_TMDS; break;
case 0x00000500: type = OUTPUT_TMDS; break;
default:
NV_ERROR(dev, "PDISP: unknown SOR mc 0x%08x\n", mc);
return NULL;
}
or = id - 4;
}
for (i = 0; i < dev_priv->vbios.dcb.entries; i++) {
struct dcb_entry *dcb = &dev_priv->vbios.dcb.entry[i];
if (dcb->type == type && (dcb->or & (1 << or)))
return dcb;
}
NV_ERROR(dev, "PDISP: DCB for %d/0x%08x not found\n", id, mc);
return NULL;
}
static void
nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask)
{
struct dcb_entry *dcb;
int i;
for (i = 0; mask && i < 8; i++) {
u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
if (!(mcc & (1 << crtc)))
continue;
dcb = lookup_dcb(dev, i, mcc);
if (!dcb)
continue;
nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc);
}
nv_wr32(dev, 0x6101d4, 0x00000000);
nv_wr32(dev, 0x6109d4, 0x00000000);
nv_wr32(dev, 0x6101d0, 0x80000000);
}
static void
nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask)
{
struct dcb_entry *dcb;
u32 or, tmp, pclk;
int i;
for (i = 0; mask && i < 8; i++) {
u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
if (!(mcc & (1 << crtc)))
continue;
dcb = lookup_dcb(dev, i, mcc);
if (!dcb)
continue;
nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc);
}
pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
if (mask & 0x00010000) {
nv50_crtc_set_clock(dev, crtc, pclk);
}
for (i = 0; mask && i < 8; i++) {
u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
if (!(mcp & (1 << crtc)))
continue;
dcb = lookup_dcb(dev, i, mcp);
if (!dcb)
continue;
or = ffs(dcb->or) - 1;
nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc);
nv_wr32(dev, 0x612200 + (crtc * 0x800), 0x00000000);
switch (dcb->type) {
case OUTPUT_ANALOG:
nv_wr32(dev, 0x612280 + (or * 0x800), 0x00000000);
break;
case OUTPUT_TMDS:
case OUTPUT_LVDS:
if (cfg & 0x00000100)
tmp = 0x00000101;
else
tmp = 0x00000000;
nv_mask(dev, 0x612300 + (or * 0x800), 0x00000707, tmp);
break;
default:
break;
}
break;
}
nv_wr32(dev, 0x6101d4, 0x00000000);
nv_wr32(dev, 0x6109d4, 0x00000000);
nv_wr32(dev, 0x6101d0, 0x80000000);
}
static void
nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask)
{
struct dcb_entry *dcb;
int pclk, i;
pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
for (i = 0; mask && i < 8; i++) {
u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
if (!(mcp & (1 << crtc)))
continue;
dcb = lookup_dcb(dev, i, mcp);
if (!dcb)
continue;
nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc);
}
nv_wr32(dev, 0x6101d4, 0x00000000);
nv_wr32(dev, 0x6109d4, 0x00000000);
nv_wr32(dev, 0x6101d0, 0x80000000);
}
static void
nvd0_display_bh(unsigned long data)
{
struct drm_device *dev = (struct drm_device *)data;
struct nvd0_display *disp = nvd0_display(dev);
u32 mask, crtc;
int i;
if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) {
NV_INFO(dev, "PDISP: modeset req %d\n", disp->modeset);
NV_INFO(dev, " STAT: 0x%08x 0x%08x 0x%08x\n",
nv_rd32(dev, 0x6101d0),
nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
for (i = 0; i < 8; i++) {
NV_INFO(dev, " %s%d: 0x%08x 0x%08x\n",
i < 4 ? "DAC" : "SOR", i,
nv_rd32(dev, 0x640180 + (i * 0x20)),
nv_rd32(dev, 0x660180 + (i * 0x20)));
}
}
mask = nv_rd32(dev, 0x6101d4);
crtc = 0;
if (!mask) {
mask = nv_rd32(dev, 0x6109d4);
crtc = 1;
}
if (disp->modeset & 0x00000001)
nvd0_display_unk1_handler(dev, crtc, mask);
if (disp->modeset & 0x00000002)
nvd0_display_unk2_handler(dev, crtc, mask);
if (disp->modeset & 0x00000004)
nvd0_display_unk4_handler(dev, crtc, mask);
}
static void
nvd0_display_intr(struct drm_device *dev)
{
struct nvd0_display *disp = nvd0_display(dev);
u32 intr = nv_rd32(dev, 0x610088);
if (intr & 0x00000001) {
u32 stat = nv_rd32(dev, 0x61008c);
nv_wr32(dev, 0x61008c, stat);
intr &= ~0x00000001;
}
if (intr & 0x00000002) {
u32 stat = nv_rd32(dev, 0x61009c);
int chid = ffs(stat) - 1;
if (chid >= 0) {
u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));
NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
"0x%08x 0x%08x\n",
chid, (mthd & 0x0000ffc), data, mthd, unkn);
nv_wr32(dev, 0x61009c, (1 << chid));
nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
}
intr &= ~0x00000002;
}
if (intr & 0x00100000) {
u32 stat = nv_rd32(dev, 0x6100ac);
if (stat & 0x00000007) {
disp->modeset = stat;
tasklet_schedule(&disp->tasklet);
nv_wr32(dev, 0x6100ac, (stat & 0x00000007));
stat &= ~0x00000007;
}
if (stat) {
NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
nv_wr32(dev, 0x6100ac, stat);
}
intr &= ~0x00100000;
}
if (intr & 0x01000000) {
u32 stat = nv_rd32(dev, 0x6100bc);
nv_wr32(dev, 0x6100bc, stat);
intr &= ~0x01000000;
}
if (intr & 0x02000000) {
u32 stat = nv_rd32(dev, 0x6108bc);
nv_wr32(dev, 0x6108bc, stat);
intr &= ~0x02000000;
}
if (intr)
NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
}
/******************************************************************************
* Init
*****************************************************************************/
void
nvd0_display_fini(struct drm_device *dev)
{
int i;
/* fini cursors + overlays + flips */
for (i = 1; i >= 0; i--) {
evo_fini_pio(dev, EVO_CURS(i));
evo_fini_pio(dev, EVO_OIMM(i));
evo_fini_dma(dev, EVO_OVLY(i));
evo_fini_dma(dev, EVO_FLIP(i));
}
/* fini master */
evo_fini_dma(dev, EVO_MASTER);
}
int
nvd0_display_init(struct drm_device *dev)
{
struct nvd0_display *disp = nvd0_display(dev);
int ret, i;
u32 *push;
if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
nv_wr32(dev, 0x6100ac, 0x00000100);
nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
nv_rd32(dev, 0x6194e8));
return -EBUSY;
}
}
/* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
* work at all unless you do the SOR part below.
*/
for (i = 0; i < 3; i++) {
u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
}
for (i = 0; i < 4; i++) {
u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
}
for (i = 0; i < dev->mode_config.num_crtc; i++) {
u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
}
/* point at our hash table / objects, enable interrupts */
nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
/* init master */
ret = evo_init_dma(dev, EVO_MASTER);
if (ret)
goto error;
/* init flips + overlays + cursors */
for (i = 0; i < dev->mode_config.num_crtc; i++) {
if ((ret = evo_init_dma(dev, EVO_FLIP(i))) ||
(ret = evo_init_dma(dev, EVO_OVLY(i))) ||
(ret = evo_init_pio(dev, EVO_OIMM(i))) ||
(ret = evo_init_pio(dev, EVO_CURS(i))))
goto error;
}
push = evo_wait(dev, EVO_MASTER, 32);
if (!push) {
ret = -EBUSY;
goto error;
}
evo_mthd(push, 0x0088, 1);
evo_data(push, NvEvoSync);
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x80000000);
evo_mthd(push, 0x008c, 1);
evo_data(push, 0x00000000);
evo_kick(push, dev, EVO_MASTER);
error:
if (ret)
nvd0_display_fini(dev);
return ret;
}
void
nvd0_display_destroy(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nvd0_display *disp = nvd0_display(dev);
struct pci_dev *pdev = dev->pdev;
int i;
for (i = 0; i < EVO_DMA_NR; i++) {
struct evo *evo = &disp->evo[i];
pci_free_consistent(pdev, PAGE_SIZE, evo->ptr, evo->handle);
}
nouveau_gpuobj_ref(NULL, &disp->mem);
nouveau_bo_unmap(disp->sync);
nouveau_bo_ref(NULL, &disp->sync);
nouveau_irq_unregister(dev, 26);
dev_priv->engine.display.priv = NULL;
kfree(disp);
}
int
nvd0_display_create(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
struct dcb_table *dcb = &dev_priv->vbios.dcb;
struct drm_connector *connector, *tmp;
struct pci_dev *pdev = dev->pdev;
struct nvd0_display *disp;
struct dcb_entry *dcbe;
int ret, i;
disp = kzalloc(sizeof(*disp), GFP_KERNEL);
if (!disp)
return -ENOMEM;
dev_priv->engine.display.priv = disp;
/* create crtc objects to represent the hw heads */
for (i = 0; i < 2; i++) {
ret = nvd0_crtc_create(dev, i);
if (ret)
goto out;
}
/* create encoder/connector objects based on VBIOS DCB table */
for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
connector = nouveau_connector_create(dev, dcbe->connector);
if (IS_ERR(connector))
continue;
if (dcbe->location != DCB_LOC_ON_CHIP) {
NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
dcbe->type, ffs(dcbe->or) - 1);
continue;
}
switch (dcbe->type) {
case OUTPUT_TMDS:
case OUTPUT_LVDS:
nvd0_sor_create(connector, dcbe);
break;
case OUTPUT_ANALOG:
nvd0_dac_create(connector, dcbe);
break;
default:
NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
dcbe->type, ffs(dcbe->or) - 1);
continue;
}
}
/* cull any connectors we created that don't have an encoder */
list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
if (connector->encoder_ids[0])
continue;
NV_WARN(dev, "%s has no encoders, removing\n",
drm_get_connector_name(connector));
connector->funcs->destroy(connector);
}
/* setup interrupt handling */
tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev);
nouveau_irq_register(dev, 26, nvd0_display_intr);
/* small shared memory area we use for notifiers and semaphores */
ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
0, 0x0000, &disp->sync);
if (!ret) {
ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
if (!ret)
ret = nouveau_bo_map(disp->sync);
if (ret)
nouveau_bo_ref(NULL, &disp->sync);
}
if (ret)
goto out;
/* hash table and dma objects for the memory areas we care about */
ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
if (ret)
goto out;
/* create evo dma channels */
for (i = 0; i < EVO_DMA_NR; i++) {
struct evo *evo = &disp->evo[i];
u64 offset = disp->sync->bo.offset;
u32 dmao = 0x1000 + (i * 0x100);
u32 hash = 0x0000 + (i * 0x040);
evo->idx = i;
evo->sem.offset = EVO_SYNC(evo->idx, 0x00);
evo->ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &evo->handle);
if (!evo->ptr) {
ret = -ENOMEM;
goto out;
}
nv_wo32(disp->mem, dmao + 0x00, 0x00000049);
nv_wo32(disp->mem, dmao + 0x04, (offset + 0x0000) >> 8);
nv_wo32(disp->mem, dmao + 0x08, (offset + 0x0fff) >> 8);
nv_wo32(disp->mem, dmao + 0x0c, 0x00000000);
nv_wo32(disp->mem, dmao + 0x10, 0x00000000);
nv_wo32(disp->mem, dmao + 0x14, 0x00000000);
nv_wo32(disp->mem, hash + 0x00, NvEvoSync);
nv_wo32(disp->mem, hash + 0x04, 0x00000001 | (i << 27) |
((dmao + 0x00) << 9));
nv_wo32(disp->mem, dmao + 0x20, 0x00000049);
nv_wo32(disp->mem, dmao + 0x24, 0x00000000);
nv_wo32(disp->mem, dmao + 0x28, (dev_priv->vram_size - 1) >> 8);
nv_wo32(disp->mem, dmao + 0x2c, 0x00000000);
nv_wo32(disp->mem, dmao + 0x30, 0x00000000);
nv_wo32(disp->mem, dmao + 0x34, 0x00000000);
nv_wo32(disp->mem, hash + 0x08, NvEvoVRAM);
nv_wo32(disp->mem, hash + 0x0c, 0x00000001 | (i << 27) |
((dmao + 0x20) << 9));
nv_wo32(disp->mem, dmao + 0x40, 0x00000009);
nv_wo32(disp->mem, dmao + 0x44, 0x00000000);
nv_wo32(disp->mem, dmao + 0x48, (dev_priv->vram_size - 1) >> 8);
nv_wo32(disp->mem, dmao + 0x4c, 0x00000000);
nv_wo32(disp->mem, dmao + 0x50, 0x00000000);
nv_wo32(disp->mem, dmao + 0x54, 0x00000000);
nv_wo32(disp->mem, hash + 0x10, NvEvoVRAM_LP);
nv_wo32(disp->mem, hash + 0x14, 0x00000001 | (i << 27) |
((dmao + 0x40) << 9));
nv_wo32(disp->mem, dmao + 0x60, 0x0fe00009);
nv_wo32(disp->mem, dmao + 0x64, 0x00000000);
nv_wo32(disp->mem, dmao + 0x68, (dev_priv->vram_size - 1) >> 8);
nv_wo32(disp->mem, dmao + 0x6c, 0x00000000);
nv_wo32(disp->mem, dmao + 0x70, 0x00000000);
nv_wo32(disp->mem, dmao + 0x74, 0x00000000);
nv_wo32(disp->mem, hash + 0x18, NvEvoFB32);
nv_wo32(disp->mem, hash + 0x1c, 0x00000001 | (i << 27) |
((dmao + 0x60) << 9));
}
pinstmem->flush(dev);
out:
if (ret)
nvd0_display_destroy(dev);
return ret;
}