kernel-fxtec-pro1x/drivers/video/aty/aty128fb.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

2569 lines
66 KiB
C

/* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
* linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
*
* Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
* Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
*
* Ani Joshi / Jeff Garzik
* - Code cleanup
*
* Michel Danzer <michdaen@iiic.ethz.ch>
* - 15/16 bit cleanup
* - fix panning
*
* Benjamin Herrenschmidt
* - pmac-specific PM stuff
* - various fixes & cleanups
*
* Andreas Hundt <andi@convergence.de>
* - FB_ACTIVATE fixes
*
* Paul Mackerras <paulus@samba.org>
* - Convert to new framebuffer API,
* fix colormap setting at 16 bits/pixel (565)
*
* Paul Mundt
* - PCI hotplug
*
* Jon Smirl <jonsmirl@yahoo.com>
* - PCI ID update
* - replace ROM BIOS search
*
* Based off of Geert's atyfb.c and vfb.c.
*
* TODO:
* - monitor sensing (DDC)
* - virtual display
* - other platform support (only ppc/x86 supported)
* - hardware cursor support
*
* Please cc: your patches to brad@neruo.com.
*/
/*
* A special note of gratitude to ATI's devrel for providing documentation,
* example code and hardware. Thanks Nitya. -atong and brad
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/backlight.h>
#include <asm/io.h>
#ifdef CONFIG_PPC_PMAC
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include "../macmodes.h"
#endif
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
#ifdef CONFIG_BOOTX_TEXT
#include <asm/btext.h>
#endif /* CONFIG_BOOTX_TEXT */
#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif
#include <video/aty128.h>
/* Debug flag */
#undef DEBUG
#ifdef DEBUG
#define DBG(fmt, args...) printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
#else
#define DBG(fmt, args...)
#endif
#ifndef CONFIG_PPC_PMAC
/* default mode */
static struct fb_var_screeninfo default_var __devinitdata = {
/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
640, 480, 640, 480, 0, 0, 8, 0,
{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
0, FB_VMODE_NONINTERLACED
};
#else /* CONFIG_PPC_PMAC */
/* default to 1024x768 at 75Hz on PPC - this will work
* on the iMac, the usual 640x480 @ 60Hz doesn't. */
static struct fb_var_screeninfo default_var = {
/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
1024, 768, 1024, 768, 0, 0, 8, 0,
{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
FB_VMODE_NONINTERLACED
};
#endif /* CONFIG_PPC_PMAC */
/* default modedb mode */
/* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
static struct fb_videomode defaultmode __devinitdata = {
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 39722,
.left_margin = 48,
.right_margin = 16,
.upper_margin = 33,
.lower_margin = 10,
.hsync_len = 96,
.vsync_len = 2,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
};
/* Chip generations */
enum {
rage_128,
rage_128_pci,
rage_128_pro,
rage_128_pro_pci,
rage_M3,
rage_M3_pci,
rage_M4,
rage_128_ultra,
};
/* Must match above enum */
static const char *r128_family[] __devinitdata = {
"AGP",
"PCI",
"PRO AGP",
"PRO PCI",
"M3 AGP",
"M3 PCI",
"M4 AGP",
"Ultra AGP",
};
/*
* PCI driver prototypes
*/
static int aty128_probe(struct pci_dev *pdev,
const struct pci_device_id *ent);
static void aty128_remove(struct pci_dev *pdev);
static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
static int aty128_pci_resume(struct pci_dev *pdev);
static int aty128_do_resume(struct pci_dev *pdev);
/* supported Rage128 chipsets */
static struct pci_device_id aty128_pci_tbl[] = {
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
static struct pci_driver aty128fb_driver = {
.name = "aty128fb",
.id_table = aty128_pci_tbl,
.probe = aty128_probe,
.remove = __devexit_p(aty128_remove),
.suspend = aty128_pci_suspend,
.resume = aty128_pci_resume,
};
/* packed BIOS settings */
#ifndef CONFIG_PPC
typedef struct {
u8 clock_chip_type;
u8 struct_size;
u8 accelerator_entry;
u8 VGA_entry;
u16 VGA_table_offset;
u16 POST_table_offset;
u16 XCLK;
u16 MCLK;
u8 num_PLL_blocks;
u8 size_PLL_blocks;
u16 PCLK_ref_freq;
u16 PCLK_ref_divider;
u32 PCLK_min_freq;
u32 PCLK_max_freq;
u16 MCLK_ref_freq;
u16 MCLK_ref_divider;
u32 MCLK_min_freq;
u32 MCLK_max_freq;
u16 XCLK_ref_freq;
u16 XCLK_ref_divider;
u32 XCLK_min_freq;
u32 XCLK_max_freq;
} __attribute__ ((packed)) PLL_BLOCK;
#endif /* !CONFIG_PPC */
/* onboard memory information */
struct aty128_meminfo {
u8 ML;
u8 MB;
u8 Trcd;
u8 Trp;
u8 Twr;
u8 CL;
u8 Tr2w;
u8 LoopLatency;
u8 DspOn;
u8 Rloop;
const char *name;
};
/* various memory configurations */
static const struct aty128_meminfo sdr_128 =
{ 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
static const struct aty128_meminfo sdr_64 =
{ 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
static const struct aty128_meminfo sdr_sgram =
{ 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
static const struct aty128_meminfo ddr_sgram =
{ 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
static struct fb_fix_screeninfo aty128fb_fix __devinitdata = {
.id = "ATY Rage128",
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_PSEUDOCOLOR,
.xpanstep = 8,
.ypanstep = 1,
.mmio_len = 0x2000,
.accel = FB_ACCEL_ATI_RAGE128,
};
static char *mode_option __devinitdata = NULL;
#ifdef CONFIG_PPC_PMAC
static int default_vmode __devinitdata = VMODE_1024_768_60;
static int default_cmode __devinitdata = CMODE_8;
#endif
static int default_crt_on __devinitdata = 0;
static int default_lcd_on __devinitdata = 1;
#ifdef CONFIG_MTRR
static bool mtrr = true;
#endif
#ifdef CONFIG_PMAC_BACKLIGHT
static int backlight __devinitdata = 1;
#else
static int backlight __devinitdata = 0;
#endif
/* PLL constants */
struct aty128_constants {
u32 ref_clk;
u32 ppll_min;
u32 ppll_max;
u32 ref_divider;
u32 xclk;
u32 fifo_width;
u32 fifo_depth;
};
struct aty128_crtc {
u32 gen_cntl;
u32 h_total, h_sync_strt_wid;
u32 v_total, v_sync_strt_wid;
u32 pitch;
u32 offset, offset_cntl;
u32 xoffset, yoffset;
u32 vxres, vyres;
u32 depth, bpp;
};
struct aty128_pll {
u32 post_divider;
u32 feedback_divider;
u32 vclk;
};
struct aty128_ddafifo {
u32 dda_config;
u32 dda_on_off;
};
/* register values for a specific mode */
struct aty128fb_par {
struct aty128_crtc crtc;
struct aty128_pll pll;
struct aty128_ddafifo fifo_reg;
u32 accel_flags;
struct aty128_constants constants; /* PLL and others */
void __iomem *regbase; /* remapped mmio */
u32 vram_size; /* onboard video ram */
int chip_gen;
const struct aty128_meminfo *mem; /* onboard mem info */
#ifdef CONFIG_MTRR
struct { int vram; int vram_valid; } mtrr;
#endif
int blitter_may_be_busy;
int fifo_slots; /* free slots in FIFO (64 max) */
int pm_reg;
int crt_on, lcd_on;
struct pci_dev *pdev;
struct fb_info *next;
int asleep;
int lock_blank;
u8 red[32]; /* see aty128fb_setcolreg */
u8 green[64];
u8 blue[32];
u32 pseudo_palette[16]; /* used for TRUECOLOR */
};
#define round_div(n, d) ((n+(d/2))/d)
static int aty128fb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info);
static int aty128fb_set_par(struct fb_info *info);
static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info);
static int aty128fb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *fb);
static int aty128fb_blank(int blank, struct fb_info *fb);
static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
static int aty128fb_sync(struct fb_info *info);
/*
* Internal routines
*/
static int aty128_encode_var(struct fb_var_screeninfo *var,
const struct aty128fb_par *par);
static int aty128_decode_var(struct fb_var_screeninfo *var,
struct aty128fb_par *par);
#if 0
static void __devinit aty128_get_pllinfo(struct aty128fb_par *par,
void __iomem *bios);
static void __devinit __iomem *aty128_map_ROM(struct pci_dev *pdev, const struct aty128fb_par *par);
#endif
static void aty128_timings(struct aty128fb_par *par);
static void aty128_init_engine(struct aty128fb_par *par);
static void aty128_reset_engine(const struct aty128fb_par *par);
static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
static void wait_for_idle(struct aty128fb_par *par);
static u32 depth_to_dst(u32 depth);
#ifdef CONFIG_FB_ATY128_BACKLIGHT
static void aty128_bl_set_power(struct fb_info *info, int power);
#endif
#define BIOS_IN8(v) (readb(bios + (v)))
#define BIOS_IN16(v) (readb(bios + (v)) | \
(readb(bios + (v) + 1) << 8))
#define BIOS_IN32(v) (readb(bios + (v)) | \
(readb(bios + (v) + 1) << 8) | \
(readb(bios + (v) + 2) << 16) | \
(readb(bios + (v) + 3) << 24))
static struct fb_ops aty128fb_ops = {
.owner = THIS_MODULE,
.fb_check_var = aty128fb_check_var,
.fb_set_par = aty128fb_set_par,
.fb_setcolreg = aty128fb_setcolreg,
.fb_pan_display = aty128fb_pan_display,
.fb_blank = aty128fb_blank,
.fb_ioctl = aty128fb_ioctl,
.fb_sync = aty128fb_sync,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/*
* Functions to read from/write to the mmio registers
* - endian conversions may possibly be avoided by
* using the other register aperture. TODO.
*/
static inline u32 _aty_ld_le32(volatile unsigned int regindex,
const struct aty128fb_par *par)
{
return readl (par->regbase + regindex);
}
static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
const struct aty128fb_par *par)
{
writel (val, par->regbase + regindex);
}
static inline u8 _aty_ld_8(unsigned int regindex,
const struct aty128fb_par *par)
{
return readb (par->regbase + regindex);
}
static inline void _aty_st_8(unsigned int regindex, u8 val,
const struct aty128fb_par *par)
{
writeb (val, par->regbase + regindex);
}
#define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
#define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
#define aty_ld_8(regindex) _aty_ld_8(regindex, par)
#define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
/*
* Functions to read from/write to the pll registers
*/
#define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
#define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
static u32 _aty_ld_pll(unsigned int pll_index,
const struct aty128fb_par *par)
{
aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
return aty_ld_le32(CLOCK_CNTL_DATA);
}
static void _aty_st_pll(unsigned int pll_index, u32 val,
const struct aty128fb_par *par)
{
aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
aty_st_le32(CLOCK_CNTL_DATA, val);
}
/* return true when the PLL has completed an atomic update */
static int aty_pll_readupdate(const struct aty128fb_par *par)
{
return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
}
static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
{
unsigned long timeout = jiffies + HZ/100; // should be more than enough
int reset = 1;
while (time_before(jiffies, timeout))
if (aty_pll_readupdate(par)) {
reset = 0;
break;
}
if (reset) /* reset engine?? */
printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
}
/* tell PLL to update */
static void aty_pll_writeupdate(const struct aty128fb_par *par)
{
aty_pll_wait_readupdate(par);
aty_st_pll(PPLL_REF_DIV,
aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
}
/* write to the scratch register to test r/w functionality */
static int __devinit register_test(const struct aty128fb_par *par)
{
u32 val;
int flag = 0;
val = aty_ld_le32(BIOS_0_SCRATCH);
aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
flag = 1;
}
aty_st_le32(BIOS_0_SCRATCH, val); // restore value
return flag;
}
/*
* Accelerator engine functions
*/
static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
{
int i;
for (;;) {
for (i = 0; i < 2000000; i++) {
par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
if (par->fifo_slots >= entries)
return;
}
aty128_reset_engine(par);
}
}
static void wait_for_idle(struct aty128fb_par *par)
{
int i;
do_wait_for_fifo(64, par);
for (;;) {
for (i = 0; i < 2000000; i++) {
if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
aty128_flush_pixel_cache(par);
par->blitter_may_be_busy = 0;
return;
}
}
aty128_reset_engine(par);
}
}
static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
{
if (par->fifo_slots < entries)
do_wait_for_fifo(64, par);
par->fifo_slots -= entries;
}
static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
{
int i;
u32 tmp;
tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
tmp &= ~(0x00ff);
tmp |= 0x00ff;
aty_st_le32(PC_NGUI_CTLSTAT, tmp);
for (i = 0; i < 2000000; i++)
if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
break;
}
static void aty128_reset_engine(const struct aty128fb_par *par)
{
u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
aty128_flush_pixel_cache(par);
clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
mclk_cntl = aty_ld_pll(MCLK_CNTL);
aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
aty_ld_le32(GEN_RESET_CNTL);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
aty_ld_le32(GEN_RESET_CNTL);
aty_st_pll(MCLK_CNTL, mclk_cntl);
aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
/* use old pio mode */
aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
DBG("engine reset");
}
static void aty128_init_engine(struct aty128fb_par *par)
{
u32 pitch_value;
wait_for_idle(par);
/* 3D scaler not spoken here */
wait_for_fifo(1, par);
aty_st_le32(SCALE_3D_CNTL, 0x00000000);
aty128_reset_engine(par);
pitch_value = par->crtc.pitch;
if (par->crtc.bpp == 24) {
pitch_value = pitch_value * 3;
}
wait_for_fifo(4, par);
/* setup engine offset registers */
aty_st_le32(DEFAULT_OFFSET, 0x00000000);
/* setup engine pitch registers */
aty_st_le32(DEFAULT_PITCH, pitch_value);
/* set the default scissor register to max dimensions */
aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
/* set the drawing controls registers */
aty_st_le32(DP_GUI_MASTER_CNTL,
GMC_SRC_PITCH_OFFSET_DEFAULT |
GMC_DST_PITCH_OFFSET_DEFAULT |
GMC_SRC_CLIP_DEFAULT |
GMC_DST_CLIP_DEFAULT |
GMC_BRUSH_SOLIDCOLOR |
(depth_to_dst(par->crtc.depth) << 8) |
GMC_SRC_DSTCOLOR |
GMC_BYTE_ORDER_MSB_TO_LSB |
GMC_DP_CONVERSION_TEMP_6500 |
ROP3_PATCOPY |
GMC_DP_SRC_RECT |
GMC_3D_FCN_EN_CLR |
GMC_DST_CLR_CMP_FCN_CLEAR |
GMC_AUX_CLIP_CLEAR |
GMC_WRITE_MASK_SET);
wait_for_fifo(8, par);
/* clear the line drawing registers */
aty_st_le32(DST_BRES_ERR, 0);
aty_st_le32(DST_BRES_INC, 0);
aty_st_le32(DST_BRES_DEC, 0);
/* set brush color registers */
aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
/* set source color registers */
aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
/* default write mask */
aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
/* Wait for all the writes to be completed before returning */
wait_for_idle(par);
}
/* convert depth values to their register representation */
static u32 depth_to_dst(u32 depth)
{
if (depth <= 8)
return DST_8BPP;
else if (depth <= 15)
return DST_15BPP;
else if (depth == 16)
return DST_16BPP;
else if (depth <= 24)
return DST_24BPP;
else if (depth <= 32)
return DST_32BPP;
return -EINVAL;
}
/*
* PLL informations retreival
*/
#ifndef __sparc__
static void __iomem * __devinit aty128_map_ROM(const struct aty128fb_par *par, struct pci_dev *dev)
{
u16 dptr;
u8 rom_type;
void __iomem *bios;
size_t rom_size;
/* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
unsigned int temp;
temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
temp &= 0x00ffffffu;
temp |= 0x04 << 24;
aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
bios = pci_map_rom(dev, &rom_size);
if (!bios) {
printk(KERN_ERR "aty128fb: ROM failed to map\n");
return NULL;
}
/* Very simple test to make sure it appeared */
if (BIOS_IN16(0) != 0xaa55) {
printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
" be 0xaa55\n", BIOS_IN16(0));
goto failed;
}
/* Look for the PCI data to check the ROM type */
dptr = BIOS_IN16(0x18);
/* Check the PCI data signature. If it's wrong, we still assume a normal x86 ROM
* for now, until I've verified this works everywhere. The goal here is more
* to phase out Open Firmware images.
*
* Currently, we only look at the first PCI data, we could iteratre and deal with
* them all, and we should use fb_bios_start relative to start of image and not
* relative start of ROM, but so far, I never found a dual-image ATI card
*
* typedef struct {
* u32 signature; + 0x00
* u16 vendor; + 0x04
* u16 device; + 0x06
* u16 reserved_1; + 0x08
* u16 dlen; + 0x0a
* u8 drevision; + 0x0c
* u8 class_hi; + 0x0d
* u16 class_lo; + 0x0e
* u16 ilen; + 0x10
* u16 irevision; + 0x12
* u8 type; + 0x14
* u8 indicator; + 0x15
* u16 reserved_2; + 0x16
* } pci_data_t;
*/
if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
BIOS_IN32(dptr));
goto anyway;
}
rom_type = BIOS_IN8(dptr + 0x14);
switch(rom_type) {
case 0:
printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
break;
case 1:
printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
goto failed;
case 2:
printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
goto failed;
default:
printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", rom_type);
goto failed;
}
anyway:
return bios;
failed:
pci_unmap_rom(dev, bios);
return NULL;
}
static void __devinit aty128_get_pllinfo(struct aty128fb_par *par, unsigned char __iomem *bios)
{
unsigned int bios_hdr;
unsigned int bios_pll;
bios_hdr = BIOS_IN16(0x48);
bios_pll = BIOS_IN16(bios_hdr + 0x30);
par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
par->constants.ppll_max, par->constants.ppll_min,
par->constants.xclk, par->constants.ref_divider,
par->constants.ref_clk);
}
#ifdef CONFIG_X86
static void __iomem * __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
{
/* I simplified this code as we used to miss the signatures in
* a lot of case. It's now closer to XFree, we just don't check
* for signatures at all... Something better will have to be done
* if we end up having conflicts
*/
u32 segstart;
unsigned char __iomem *rom_base = NULL;
for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
rom_base = ioremap(segstart, 0x10000);
if (rom_base == NULL)
return NULL;
if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
break;
iounmap(rom_base);
rom_base = NULL;
}
return rom_base;
}
#endif
#endif /* ndef(__sparc__) */
/* fill in known card constants if pll_block is not available */
static void __devinit aty128_timings(struct aty128fb_par *par)
{
#ifdef CONFIG_PPC_OF
/* instead of a table lookup, assume OF has properly
* setup the PLL registers and use their values
* to set the XCLK values and reference divider values */
u32 x_mpll_ref_fb_div;
u32 xclk_cntl;
u32 Nx, M;
unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
#endif
if (!par->constants.ref_clk)
par->constants.ref_clk = 2950;
#ifdef CONFIG_PPC_OF
x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
M = x_mpll_ref_fb_div & 0x0000ff;
par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
(M * PostDivSet[xclk_cntl]));
par->constants.ref_divider =
aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
#endif
if (!par->constants.ref_divider) {
par->constants.ref_divider = 0x3b;
aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
aty_pll_writeupdate(par);
}
aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
aty_pll_writeupdate(par);
/* from documentation */
if (!par->constants.ppll_min)
par->constants.ppll_min = 12500;
if (!par->constants.ppll_max)
par->constants.ppll_max = 25000; /* 23000 on some cards? */
if (!par->constants.xclk)
par->constants.xclk = 0x1d4d; /* same as mclk */
par->constants.fifo_width = 128;
par->constants.fifo_depth = 32;
switch (aty_ld_le32(MEM_CNTL) & 0x3) {
case 0:
par->mem = &sdr_128;
break;
case 1:
par->mem = &sdr_sgram;
break;
case 2:
par->mem = &ddr_sgram;
break;
default:
par->mem = &sdr_sgram;
}
}
/*
* CRTC programming
*/
/* Program the CRTC registers */
static void aty128_set_crtc(const struct aty128_crtc *crtc,
const struct aty128fb_par *par)
{
aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
aty_st_le32(CRTC_PITCH, crtc->pitch);
aty_st_le32(CRTC_OFFSET, crtc->offset);
aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
/* Disable ATOMIC updating. Is this the right place? */
aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
}
static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
struct aty128_crtc *crtc,
const struct aty128fb_par *par)
{
u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
u32 left, right, upper, lower, hslen, vslen, sync, vmode;
u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
u32 depth, bytpp;
u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
/* input */
xres = var->xres;
yres = var->yres;
vxres = var->xres_virtual;
vyres = var->yres_virtual;
xoffset = var->xoffset;
yoffset = var->yoffset;
bpp = var->bits_per_pixel;
left = var->left_margin;
right = var->right_margin;
upper = var->upper_margin;
lower = var->lower_margin;
hslen = var->hsync_len;
vslen = var->vsync_len;
sync = var->sync;
vmode = var->vmode;
if (bpp != 16)
depth = bpp;
else
depth = (var->green.length == 6) ? 16 : 15;
/* check for mode eligibility
* accept only non interlaced modes */
if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
return -EINVAL;
/* convert (and round up) and validate */
xres = (xres + 7) & ~7;
xoffset = (xoffset + 7) & ~7;
if (vxres < xres + xoffset)
vxres = xres + xoffset;
if (vyres < yres + yoffset)
vyres = yres + yoffset;
/* convert depth into ATI register depth */
dst = depth_to_dst(depth);
if (dst == -EINVAL) {
printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
return -EINVAL;
}
/* convert register depth to bytes per pixel */
bytpp = mode_bytpp[dst];
/* make sure there is enough video ram for the mode */
if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
return -EINVAL;
}
h_disp = (xres >> 3) - 1;
h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
v_disp = yres - 1;
v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
/* check to make sure h_total and v_total are in range */
if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
printk(KERN_ERR "aty128fb: invalid width ranges\n");
return -EINVAL;
}
h_sync_wid = (hslen + 7) >> 3;
if (h_sync_wid == 0)
h_sync_wid = 1;
else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
h_sync_wid = 0x3f;
h_sync_strt = (h_disp << 3) + right;
v_sync_wid = vslen;
if (v_sync_wid == 0)
v_sync_wid = 1;
else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
v_sync_wid = 0x1f;
v_sync_strt = v_disp + lower;
h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
crtc->h_total = h_total | (h_disp << 16);
crtc->v_total = v_total | (v_disp << 16);
crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
(h_sync_pol << 23);
crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
(v_sync_pol << 23);
crtc->pitch = vxres >> 3;
crtc->offset = 0;
if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
crtc->offset_cntl = 0x00010000;
else
crtc->offset_cntl = 0;
crtc->vxres = vxres;
crtc->vyres = vyres;
crtc->xoffset = xoffset;
crtc->yoffset = yoffset;
crtc->depth = depth;
crtc->bpp = bpp;
return 0;
}
static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
{
/* fill in pixel info */
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.offset = 0;
var->blue.msb_right = 0;
var->transp.offset = 0;
var->transp.length = 0;
var->transp.msb_right = 0;
switch (pix_width) {
case CRTC_PIX_WIDTH_8BPP:
var->bits_per_pixel = 8;
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.length = 8;
break;
case CRTC_PIX_WIDTH_15BPP:
var->bits_per_pixel = 16;
var->red.offset = 10;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->blue.length = 5;
break;
case CRTC_PIX_WIDTH_16BPP:
var->bits_per_pixel = 16;
var->red.offset = 11;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 6;
var->blue.length = 5;
break;
case CRTC_PIX_WIDTH_24BPP:
var->bits_per_pixel = 24;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.length = 8;
break;
case CRTC_PIX_WIDTH_32BPP:
var->bits_per_pixel = 32;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 8;
break;
default:
printk(KERN_ERR "aty128fb: Invalid pixel width\n");
return -EINVAL;
}
return 0;
}
static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
struct fb_var_screeninfo *var)
{
u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
u32 pix_width;
/* fun with masking */
h_total = crtc->h_total & 0x1ff;
h_disp = (crtc->h_total >> 16) & 0xff;
h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
h_sync_dly = crtc->h_sync_strt_wid & 0x7;
h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
v_total = crtc->v_total & 0x7ff;
v_disp = (crtc->v_total >> 16) & 0x7ff;
v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
/* do conversions */
xres = (h_disp + 1) << 3;
yres = v_disp + 1;
left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
hslen = h_sync_wid << 3;
upper = v_total - v_sync_strt - v_sync_wid;
lower = v_sync_strt - v_disp;
vslen = v_sync_wid;
sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
aty128_pix_width_to_var(pix_width, var);
var->xres = xres;
var->yres = yres;
var->xres_virtual = crtc->vxres;
var->yres_virtual = crtc->vyres;
var->xoffset = crtc->xoffset;
var->yoffset = crtc->yoffset;
var->left_margin = left;
var->right_margin = right;
var->upper_margin = upper;
var->lower_margin = lower;
var->hsync_len = hslen;
var->vsync_len = vslen;
var->sync = sync;
var->vmode = FB_VMODE_NONINTERLACED;
return 0;
}
static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
{
if (on) {
aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | CRT_CRTC_ON);
aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | DAC_PALETTE2_SNOOP_EN));
} else
aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & ~CRT_CRTC_ON);
}
static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
{
u32 reg;
#ifdef CONFIG_FB_ATY128_BACKLIGHT
struct fb_info *info = pci_get_drvdata(par->pdev);
#endif
if (on) {
reg = aty_ld_le32(LVDS_GEN_CNTL);
reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
reg &= ~LVDS_DISPLAY_DIS;
aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef CONFIG_FB_ATY128_BACKLIGHT
aty128_bl_set_power(info, FB_BLANK_UNBLANK);
#endif
} else {
#ifdef CONFIG_FB_ATY128_BACKLIGHT
aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
#endif
reg = aty_ld_le32(LVDS_GEN_CNTL);
reg |= LVDS_DISPLAY_DIS;
aty_st_le32(LVDS_GEN_CNTL, reg);
mdelay(100);
reg &= ~(LVDS_ON /*| LVDS_EN*/);
aty_st_le32(LVDS_GEN_CNTL, reg);
}
}
static void aty128_set_pll(struct aty128_pll *pll, const struct aty128fb_par *par)
{
u32 div3;
unsigned char post_conv[] = /* register values for post dividers */
{ 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
/* select PPLL_DIV_3 */
aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
/* reset PLL */
aty_st_pll(PPLL_CNTL,
aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
/* write the reference divider */
aty_pll_wait_readupdate(par);
aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
aty_pll_writeupdate(par);
div3 = aty_ld_pll(PPLL_DIV_3);
div3 &= ~PPLL_FB3_DIV_MASK;
div3 |= pll->feedback_divider;
div3 &= ~PPLL_POST3_DIV_MASK;
div3 |= post_conv[pll->post_divider] << 16;
/* write feedback and post dividers */
aty_pll_wait_readupdate(par);
aty_st_pll(PPLL_DIV_3, div3);
aty_pll_writeupdate(par);
aty_pll_wait_readupdate(par);
aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
aty_pll_writeupdate(par);
/* clear the reset, just in case */
aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
}
static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
const struct aty128fb_par *par)
{
const struct aty128_constants c = par->constants;
unsigned char post_dividers[] = {1,2,4,8,3,6,12};
u32 output_freq;
u32 vclk; /* in .01 MHz */
int i = 0;
u32 n, d;
vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
/* adjust pixel clock if necessary */
if (vclk > c.ppll_max)
vclk = c.ppll_max;
if (vclk * 12 < c.ppll_min)
vclk = c.ppll_min/12;
/* now, find an acceptable divider */
for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
output_freq = post_dividers[i] * vclk;
if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
pll->post_divider = post_dividers[i];
break;
}
}
if (i == ARRAY_SIZE(post_dividers))
return -EINVAL;
/* calculate feedback divider */
n = c.ref_divider * output_freq;
d = c.ref_clk;
pll->feedback_divider = round_div(n, d);
pll->vclk = vclk;
DBG("post %d feedback %d vlck %d output %d ref_divider %d "
"vclk_per: %d\n", pll->post_divider,
pll->feedback_divider, vclk, output_freq,
c.ref_divider, period_in_ps);
return 0;
}
static int aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var)
{
var->pixclock = 100000000 / pll->vclk;
return 0;
}
static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
const struct aty128fb_par *par)
{
aty_st_le32(DDA_CONFIG, dsp->dda_config);
aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
}
static int aty128_ddafifo(struct aty128_ddafifo *dsp,
const struct aty128_pll *pll,
u32 depth,
const struct aty128fb_par *par)
{
const struct aty128_meminfo *m = par->mem;
u32 xclk = par->constants.xclk;
u32 fifo_width = par->constants.fifo_width;
u32 fifo_depth = par->constants.fifo_depth;
s32 x, b, p, ron, roff;
u32 n, d, bpp;
/* round up to multiple of 8 */
bpp = (depth+7) & ~7;
n = xclk * fifo_width;
d = pll->vclk * bpp;
x = round_div(n, d);
ron = 4 * m->MB +
3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
2 * m->Trp +
m->Twr +
m->CL +
m->Tr2w +
x;
DBG("x %x\n", x);
b = 0;
while (x) {
x >>= 1;
b++;
}
p = b + 1;
ron <<= (11 - p);
n <<= (11 - p);
x = round_div(n, d);
roff = x * (fifo_depth - 4);
if ((ron + m->Rloop) >= roff) {
printk(KERN_ERR "aty128fb: Mode out of range!\n");
return -EINVAL;
}
DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
p, m->Rloop, x, ron, roff);
dsp->dda_config = p << 16 | m->Rloop << 20 | x;
dsp->dda_on_off = ron << 16 | roff;
return 0;
}
/*
* This actually sets the video mode.
*/
static int aty128fb_set_par(struct fb_info *info)
{
struct aty128fb_par *par = info->par;
u32 config;
int err;
if ((err = aty128_decode_var(&info->var, par)) != 0)
return err;
if (par->blitter_may_be_busy)
wait_for_idle(par);
/* clear all registers that may interfere with mode setting */
aty_st_le32(OVR_CLR, 0);
aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
aty_st_le32(OV0_SCALE_CNTL, 0);
aty_st_le32(MPP_TB_CONFIG, 0);
aty_st_le32(MPP_GP_CONFIG, 0);
aty_st_le32(SUBPIC_CNTL, 0);
aty_st_le32(VIPH_CONTROL, 0);
aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
aty_st_le32(CAP0_TRIG_CNTL, 0);
aty_st_le32(CAP1_TRIG_CNTL, 0);
aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
aty128_set_crtc(&par->crtc, par);
aty128_set_pll(&par->pll, par);
aty128_set_fifo(&par->fifo_reg, par);
config = aty_ld_le32(CNFG_CNTL) & ~3;
#if defined(__BIG_ENDIAN)
if (par->crtc.bpp == 32)
config |= 2; /* make aperture do 32 bit swapping */
else if (par->crtc.bpp == 16)
config |= 1; /* make aperture do 16 bit swapping */
#endif
aty_st_le32(CNFG_CNTL, config);
aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
: FB_VISUAL_DIRECTCOLOR;
if (par->chip_gen == rage_M3) {
aty128_set_crt_enable(par, par->crt_on);
aty128_set_lcd_enable(par, par->lcd_on);
}
if (par->accel_flags & FB_ACCELF_TEXT)
aty128_init_engine(par);
#ifdef CONFIG_BOOTX_TEXT
btext_update_display(info->fix.smem_start,
(((par->crtc.h_total>>16) & 0xff)+1)*8,
((par->crtc.v_total>>16) & 0x7ff)+1,
par->crtc.bpp,
par->crtc.vxres*par->crtc.bpp/8);
#endif /* CONFIG_BOOTX_TEXT */
return 0;
}
/*
* encode/decode the User Defined Part of the Display
*/
static int aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par)
{
int err;
struct aty128_crtc crtc;
struct aty128_pll pll;
struct aty128_ddafifo fifo_reg;
if ((err = aty128_var_to_crtc(var, &crtc, par)))
return err;
if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
return err;
if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
return err;
par->crtc = crtc;
par->pll = pll;
par->fifo_reg = fifo_reg;
par->accel_flags = var->accel_flags;
return 0;
}
static int aty128_encode_var(struct fb_var_screeninfo *var,
const struct aty128fb_par *par)
{
int err;
if ((err = aty128_crtc_to_var(&par->crtc, var)))
return err;
if ((err = aty128_pll_to_var(&par->pll, var)))
return err;
var->nonstd = 0;
var->activate = 0;
var->height = -1;
var->width = -1;
var->accel_flags = par->accel_flags;
return 0;
}
static int aty128fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct aty128fb_par par;
int err;
par = *(struct aty128fb_par *)info->par;
if ((err = aty128_decode_var(var, &par)) != 0)
return err;
aty128_encode_var(var, &par);
return 0;
}
/*
* Pan or Wrap the Display
*/
static int aty128fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb)
{
struct aty128fb_par *par = fb->par;
u32 xoffset, yoffset;
u32 offset;
u32 xres, yres;
xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
xoffset = (var->xoffset +7) & ~7;
yoffset = var->yoffset;
if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
return -EINVAL;
par->crtc.xoffset = xoffset;
par->crtc.yoffset = yoffset;
offset = ((yoffset * par->crtc.vxres + xoffset)*(par->crtc.bpp >> 3)) & ~7;
if (par->crtc.bpp == 24)
offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
aty_st_le32(CRTC_OFFSET, offset);
return 0;
}
/*
* Helper function to store a single palette register
*/
static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
struct aty128fb_par *par)
{
if (par->chip_gen == rage_M3) {
#if 0
/* Note: For now, on M3, we set palette on both heads, which may
* be useless. Can someone with a M3 check this ?
*
* This code would still be useful if using the second CRTC to
* do mirroring
*/
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
aty_st_8(PALETTE_INDEX, regno);
aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
#endif
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
}
aty_st_8(PALETTE_INDEX, regno);
aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
}
static int aty128fb_sync(struct fb_info *info)
{
struct aty128fb_par *par = info->par;
if (par->blitter_may_be_busy)
wait_for_idle(par);
return 0;
}
#ifndef MODULE
static int __devinit aty128fb_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "lcd:", 4)) {
default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
continue;
} else if (!strncmp(this_opt, "crt:", 4)) {
default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
continue;
} else if (!strncmp(this_opt, "backlight:", 10)) {
backlight = simple_strtoul(this_opt+10, NULL, 0);
continue;
}
#ifdef CONFIG_MTRR
if(!strncmp(this_opt, "nomtrr", 6)) {
mtrr = 0;
continue;
}
#endif
#ifdef CONFIG_PPC_PMAC
/* vmode and cmode deprecated */
if (!strncmp(this_opt, "vmode:", 6)) {
unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
if (vmode > 0 && vmode <= VMODE_MAX)
default_vmode = vmode;
continue;
} else if (!strncmp(this_opt, "cmode:", 6)) {
unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
switch (cmode) {
case 0:
case 8:
default_cmode = CMODE_8;
break;
case 15:
case 16:
default_cmode = CMODE_16;
break;
case 24:
case 32:
default_cmode = CMODE_32;
break;
}
continue;
}
#endif /* CONFIG_PPC_PMAC */
mode_option = this_opt;
}
return 0;
}
#endif /* MODULE */
/* Backlight */
#ifdef CONFIG_FB_ATY128_BACKLIGHT
#define MAX_LEVEL 0xFF
static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
int level)
{
struct fb_info *info = pci_get_drvdata(par->pdev);
int atylevel;
/* Get and convert the value */
/* No locking of bl_curve since we read a single value */
atylevel = MAX_LEVEL -
(info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
if (atylevel < 0)
atylevel = 0;
else if (atylevel > MAX_LEVEL)
atylevel = MAX_LEVEL;
return atylevel;
}
/* We turn off the LCD completely instead of just dimming the backlight.
* This provides greater power saving and the display is useless without
* backlight anyway
*/
#define BACKLIGHT_LVDS_OFF
/* That one prevents proper CRT output with LCD off */
#undef BACKLIGHT_DAC_OFF
static int aty128_bl_update_status(struct backlight_device *bd)
{
struct aty128fb_par *par = bl_get_data(bd);
unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
int level;
if (bd->props.power != FB_BLANK_UNBLANK ||
bd->props.fb_blank != FB_BLANK_UNBLANK ||
!par->lcd_on)
level = 0;
else
level = bd->props.brightness;
reg |= LVDS_BL_MOD_EN | LVDS_BLON;
if (level > 0) {
reg |= LVDS_DIGION;
if (!(reg & LVDS_ON)) {
reg &= ~LVDS_BLON;
aty_st_le32(LVDS_GEN_CNTL, reg);
aty_ld_le32(LVDS_GEN_CNTL);
mdelay(10);
reg |= LVDS_BLON;
aty_st_le32(LVDS_GEN_CNTL, reg);
}
reg &= ~LVDS_BL_MOD_LEVEL_MASK;
reg |= (aty128_bl_get_level_brightness(par, level) << LVDS_BL_MOD_LEVEL_SHIFT);
#ifdef BACKLIGHT_LVDS_OFF
reg |= LVDS_ON | LVDS_EN;
reg &= ~LVDS_DISPLAY_DIS;
#endif
aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef BACKLIGHT_DAC_OFF
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
#endif
} else {
reg &= ~LVDS_BL_MOD_LEVEL_MASK;
reg |= (aty128_bl_get_level_brightness(par, 0) << LVDS_BL_MOD_LEVEL_SHIFT);
#ifdef BACKLIGHT_LVDS_OFF
reg |= LVDS_DISPLAY_DIS;
aty_st_le32(LVDS_GEN_CNTL, reg);
aty_ld_le32(LVDS_GEN_CNTL);
udelay(10);
reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
#endif
aty_st_le32(LVDS_GEN_CNTL, reg);
#ifdef BACKLIGHT_DAC_OFF
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
#endif
}
return 0;
}
static int aty128_bl_get_brightness(struct backlight_device *bd)
{
return bd->props.brightness;
}
static struct backlight_ops aty128_bl_data = {
.get_brightness = aty128_bl_get_brightness,
.update_status = aty128_bl_update_status,
};
static void aty128_bl_set_power(struct fb_info *info, int power)
{
if (info->bl_dev) {
info->bl_dev->props.power = power;
backlight_update_status(info->bl_dev);
}
}
static void aty128_bl_init(struct aty128fb_par *par)
{
struct backlight_properties props;
struct fb_info *info = pci_get_drvdata(par->pdev);
struct backlight_device *bd;
char name[12];
/* Could be extended to Rage128Pro LVDS output too */
if (par->chip_gen != rage_M3)
return;
#ifdef CONFIG_PMAC_BACKLIGHT
if (!pmac_has_backlight_type("ati"))
return;
#endif
snprintf(name, sizeof(name), "aty128bl%d", info->node);
memset(&props, 0, sizeof(struct backlight_properties));
props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
&props);
if (IS_ERR(bd)) {
info->bl_dev = NULL;
printk(KERN_WARNING "aty128: Backlight registration failed\n");
goto error;
}
info->bl_dev = bd;
fb_bl_default_curve(info, 0,
63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
bd->props.brightness = bd->props.max_brightness;
bd->props.power = FB_BLANK_UNBLANK;
backlight_update_status(bd);
printk("aty128: Backlight initialized (%s)\n", name);
return;
error:
return;
}
static void aty128_bl_exit(struct backlight_device *bd)
{
backlight_device_unregister(bd);
printk("aty128: Backlight unloaded\n");
}
#endif /* CONFIG_FB_ATY128_BACKLIGHT */
/*
* Initialisation
*/
#ifdef CONFIG_PPC_PMAC__disabled
static void aty128_early_resume(void *data)
{
struct aty128fb_par *par = data;
if (try_acquire_console_sem())
return;
pci_restore_state(par->pdev);
aty128_do_resume(par->pdev);
release_console_sem();
}
#endif /* CONFIG_PPC_PMAC */
static int __devinit aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct aty128fb_par *par = info->par;
struct fb_var_screeninfo var;
char video_card[50];
u8 chip_rev;
u32 dac;
/* Get the chip revision */
chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
strcpy(video_card, "Rage128 XX ");
video_card[8] = ent->device >> 8;
video_card[9] = ent->device & 0xFF;
/* range check to make sure */
if (ent->driver_data < ARRAY_SIZE(r128_family))
strlcat(video_card, r128_family[ent->driver_data], sizeof(video_card));
printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
if (par->vram_size % (1024 * 1024) == 0)
printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
else
printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
par->chip_gen = ent->driver_data;
/* fill in info */
info->fbops = &aty128fb_ops;
info->flags = FBINFO_FLAG_DEFAULT;
par->lcd_on = default_lcd_on;
par->crt_on = default_crt_on;
var = default_var;
#ifdef CONFIG_PPC_PMAC
if (machine_is(powermac)) {
/* Indicate sleep capability */
if (par->chip_gen == rage_M3) {
pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
#if 0 /* Disable the early video resume hack for now as it's causing problems, among
* others we now rely on the PCI core restoring the config space for us, which
* isn't the case with that hack, and that code path causes various things to
* be called with interrupts off while they shouldn't. I'm leaving the code in
* as it can be useful for debugging purposes
*/
pmac_set_early_video_resume(aty128_early_resume, par);
#endif
}
/* Find default mode */
if (mode_option) {
if (!mac_find_mode(&var, info, mode_option, 8))
var = default_var;
} else {
if (default_vmode <= 0 || default_vmode > VMODE_MAX)
default_vmode = VMODE_1024_768_60;
/* iMacs need that resolution
* PowerMac2,1 first r128 iMacs
* PowerMac2,2 summer 2000 iMacs
* PowerMac4,1 january 2001 iMacs "flower power"
*/
if (of_machine_is_compatible("PowerMac2,1") ||
of_machine_is_compatible("PowerMac2,2") ||
of_machine_is_compatible("PowerMac4,1"))
default_vmode = VMODE_1024_768_75;
/* iBook SE */
if (of_machine_is_compatible("PowerBook2,2"))
default_vmode = VMODE_800_600_60;
/* PowerBook Firewire (Pismo), iBook Dual USB */
if (of_machine_is_compatible("PowerBook3,1") ||
of_machine_is_compatible("PowerBook4,1"))
default_vmode = VMODE_1024_768_60;
/* PowerBook Titanium */
if (of_machine_is_compatible("PowerBook3,2"))
default_vmode = VMODE_1152_768_60;
if (default_cmode > 16)
default_cmode = CMODE_32;
else if (default_cmode > 8)
default_cmode = CMODE_16;
else
default_cmode = CMODE_8;
if (mac_vmode_to_var(default_vmode, default_cmode, &var))
var = default_var;
}
} else
#endif /* CONFIG_PPC_PMAC */
{
if (mode_option)
if (fb_find_mode(&var, info, mode_option, NULL,
0, &defaultmode, 8) == 0)
var = default_var;
}
var.accel_flags &= ~FB_ACCELF_TEXT;
// var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
if (aty128fb_check_var(&var, info)) {
printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
return 0;
}
/* setup the DAC the way we like it */
dac = aty_ld_le32(DAC_CNTL);
dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
dac |= DAC_MASK;
if (par->chip_gen == rage_M3)
dac |= DAC_PALETTE2_SNOOP_EN;
aty_st_le32(DAC_CNTL, dac);
/* turn off bus mastering, just in case */
aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
info->var = var;
fb_alloc_cmap(&info->cmap, 256, 0);
var.activate = FB_ACTIVATE_NOW;
aty128_init_engine(par);
par->pm_reg = pci_find_capability(pdev, PCI_CAP_ID_PM);
par->pdev = pdev;
par->asleep = 0;
par->lock_blank = 0;
#ifdef CONFIG_FB_ATY128_BACKLIGHT
if (backlight)
aty128_bl_init(par);
#endif
if (register_framebuffer(info) < 0)
return 0;
printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
info->node, info->fix.id, video_card);
return 1; /* success! */
}
#ifdef CONFIG_PCI
/* register a card ++ajoshi */
static int __devinit aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
unsigned long fb_addr, reg_addr;
struct aty128fb_par *par;
struct fb_info *info;
int err;
#ifndef __sparc__
void __iomem *bios = NULL;
#endif
/* Enable device in PCI config */
if ((err = pci_enable_device(pdev))) {
printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
err);
return -ENODEV;
}
fb_addr = pci_resource_start(pdev, 0);
if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
"aty128fb FB")) {
printk(KERN_ERR "aty128fb: cannot reserve frame "
"buffer memory\n");
return -ENODEV;
}
reg_addr = pci_resource_start(pdev, 2);
if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
"aty128fb MMIO")) {
printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
goto err_free_fb;
}
/* We have the resources. Now virtualize them */
info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
if (info == NULL) {
printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
goto err_free_mmio;
}
par = info->par;
info->pseudo_palette = par->pseudo_palette;
/* Virtualize mmio region */
info->fix.mmio_start = reg_addr;
par->regbase = pci_ioremap_bar(pdev, 2);
if (!par->regbase)
goto err_free_info;
/* Grab memory size from the card */
// How does this relate to the resource length from the PCI hardware?
par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
/* Virtualize the framebuffer */
info->screen_base = ioremap(fb_addr, par->vram_size);
if (!info->screen_base)
goto err_unmap_out;
/* Set up info->fix */
info->fix = aty128fb_fix;
info->fix.smem_start = fb_addr;
info->fix.smem_len = par->vram_size;
info->fix.mmio_start = reg_addr;
/* If we can't test scratch registers, something is seriously wrong */
if (!register_test(par)) {
printk(KERN_ERR "aty128fb: Can't write to video register!\n");
goto err_out;
}
#ifndef __sparc__
bios = aty128_map_ROM(par, pdev);
#ifdef CONFIG_X86
if (bios == NULL)
bios = aty128_find_mem_vbios(par);
#endif
if (bios == NULL)
printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
else {
printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
aty128_get_pllinfo(par, bios);
pci_unmap_rom(pdev, bios);
}
#endif /* __sparc__ */
aty128_timings(par);
pci_set_drvdata(pdev, info);
if (!aty128_init(pdev, ent))
goto err_out;
#ifdef CONFIG_MTRR
if (mtrr) {
par->mtrr.vram = mtrr_add(info->fix.smem_start,
par->vram_size, MTRR_TYPE_WRCOMB, 1);
par->mtrr.vram_valid = 1;
/* let there be speed */
printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
}
#endif /* CONFIG_MTRR */
return 0;
err_out:
iounmap(info->screen_base);
err_unmap_out:
iounmap(par->regbase);
err_free_info:
framebuffer_release(info);
err_free_mmio:
release_mem_region(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
err_free_fb:
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
return -ENODEV;
}
static void __devexit aty128_remove(struct pci_dev *pdev)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct aty128fb_par *par;
if (!info)
return;
par = info->par;
unregister_framebuffer(info);
#ifdef CONFIG_FB_ATY128_BACKLIGHT
aty128_bl_exit(info->bl_dev);
#endif
#ifdef CONFIG_MTRR
if (par->mtrr.vram_valid)
mtrr_del(par->mtrr.vram, info->fix.smem_start,
par->vram_size);
#endif /* CONFIG_MTRR */
iounmap(par->regbase);
iounmap(info->screen_base);
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
release_mem_region(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
framebuffer_release(info);
}
#endif /* CONFIG_PCI */
/*
* Blank the display.
*/
static int aty128fb_blank(int blank, struct fb_info *fb)
{
struct aty128fb_par *par = fb->par;
u8 state;
if (par->lock_blank || par->asleep)
return 0;
switch (blank) {
case FB_BLANK_NORMAL:
state = 4;
break;
case FB_BLANK_VSYNC_SUSPEND:
state = 6;
break;
case FB_BLANK_HSYNC_SUSPEND:
state = 5;
break;
case FB_BLANK_POWERDOWN:
state = 7;
break;
case FB_BLANK_UNBLANK:
default:
state = 0;
break;
}
aty_st_8(CRTC_EXT_CNTL+1, state);
if (par->chip_gen == rage_M3) {
aty128_set_crt_enable(par, par->crt_on && !blank);
aty128_set_lcd_enable(par, par->lcd_on && !blank);
}
return 0;
}
/*
* Set a single color register. The values supplied are already
* rounded down to the hardware's capabilities (according to the
* entries in the var structure). Return != 0 for invalid regno.
*/
static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
struct aty128fb_par *par = info->par;
if (regno > 255
|| (par->crtc.depth == 16 && regno > 63)
|| (par->crtc.depth == 15 && regno > 31))
return 1;
red >>= 8;
green >>= 8;
blue >>= 8;
if (regno < 16) {
int i;
u32 *pal = info->pseudo_palette;
switch (par->crtc.depth) {
case 15:
pal[regno] = (regno << 10) | (regno << 5) | regno;
break;
case 16:
pal[regno] = (regno << 11) | (regno << 6) | regno;
break;
case 24:
pal[regno] = (regno << 16) | (regno << 8) | regno;
break;
case 32:
i = (regno << 8) | regno;
pal[regno] = (i << 16) | i;
break;
}
}
if (par->crtc.depth == 16 && regno > 0) {
/*
* With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
* have 32 slots for R and B values but 64 slots for G values.
* Thus the R and B values go in one slot but the G value
* goes in a different slot, and we have to avoid disturbing
* the other fields in the slots we touch.
*/
par->green[regno] = green;
if (regno < 32) {
par->red[regno] = red;
par->blue[regno] = blue;
aty128_st_pal(regno * 8, red, par->green[regno*2],
blue, par);
}
red = par->red[regno/2];
blue = par->blue[regno/2];
regno <<= 2;
} else if (par->crtc.bpp == 16)
regno <<= 3;
aty128_st_pal(regno, red, green, blue, par);
return 0;
}
#define ATY_MIRROR_LCD_ON 0x00000001
#define ATY_MIRROR_CRT_ON 0x00000002
/* out param: u32* backlight value: 0 to 15 */
#define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
/* in param: u32* backlight value: 0 to 15 */
#define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
{
struct aty128fb_par *par = info->par;
u32 value;
int rc;
switch (cmd) {
case FBIO_ATY128_SET_MIRROR:
if (par->chip_gen != rage_M3)
return -EINVAL;
rc = get_user(value, (__u32 __user *)arg);
if (rc)
return rc;
par->lcd_on = (value & 0x01) != 0;
par->crt_on = (value & 0x02) != 0;
if (!par->crt_on && !par->lcd_on)
par->lcd_on = 1;
aty128_set_crt_enable(par, par->crt_on);
aty128_set_lcd_enable(par, par->lcd_on);
return 0;
case FBIO_ATY128_GET_MIRROR:
if (par->chip_gen != rage_M3)
return -EINVAL;
value = (par->crt_on << 1) | par->lcd_on;
return put_user(value, (__u32 __user *)arg);
}
return -EINVAL;
}
#if 0
/*
* Accelerated functions
*/
static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
u_int width, u_int height,
struct fb_info_aty128 *par)
{
u32 save_dp_datatype, save_dp_cntl, dstval;
if (!width || !height)
return;
dstval = depth_to_dst(par->current_par.crtc.depth);
if (dstval == DST_24BPP) {
srcx *= 3;
dstx *= 3;
width *= 3;
} else if (dstval == -EINVAL) {
printk("aty128fb: invalid depth or RGBA\n");
return;
}
wait_for_fifo(2, par);
save_dp_datatype = aty_ld_le32(DP_DATATYPE);
save_dp_cntl = aty_ld_le32(DP_CNTL);
wait_for_fifo(6, par);
aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
par->blitter_may_be_busy = 1;
wait_for_fifo(2, par);
aty_st_le32(DP_DATATYPE, save_dp_datatype);
aty_st_le32(DP_CNTL, save_dp_cntl);
}
/*
* Text mode accelerated functions
*/
static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
int height, int width)
{
sx *= fontwidth(p);
sy *= fontheight(p);
dx *= fontwidth(p);
dy *= fontheight(p);
width *= fontwidth(p);
height *= fontheight(p);
aty128_rectcopy(sx, sy, dx, dy, width, height,
(struct fb_info_aty128 *)p->fb_info);
}
#endif /* 0 */
static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
{
u32 pmgt;
struct pci_dev *pdev = par->pdev;
if (!par->pm_reg)
return;
/* Set the chip into the appropriate suspend mode (we use D2,
* D3 would require a complete re-initialisation of the chip,
* including PCI config registers, clocks, AGP configuration, ...)
*
* For resume, the core will have already brought us back to D0
*/
if (suspend) {
/* Make sure CRTC2 is reset. Remove that the day we decide to
* actually use CRTC2 and replace it with real code for disabling
* the CRTC2 output during sleep
*/
aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
~(CRTC2_EN));
/* Set the power management mode to be PCI based */
/* Use this magic value for now */
pmgt = 0x0c005407;
aty_st_pll(POWER_MANAGEMENT, pmgt);
(void)aty_ld_pll(POWER_MANAGEMENT);
aty_st_le32(BUS_CNTL1, 0x00000010);
aty_st_le32(MEM_POWER_MISC, 0x0c830000);
mdelay(100);
/* Switch PCI power management to D2 */
pci_set_power_state(pdev, PCI_D2);
}
}
static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct aty128fb_par *par = info->par;
/* Because we may change PCI D state ourselves, we need to
* first save the config space content so the core can
* restore it properly on resume.
*/
pci_save_state(pdev);
/* We don't do anything but D2, for now we return 0, but
* we may want to change that. How do we know if the BIOS
* can properly take care of D3 ? Also, with swsusp, we
* know we'll be rebooted, ...
*/
#ifndef CONFIG_PPC_PMAC
/* HACK ALERT ! Once I find a proper way to say to each driver
* individually what will happen with it's PCI slot, I'll change
* that. On laptops, the AGP slot is just unclocked, so D2 is
* expected, while on desktops, the card is powered off
*/
return 0;
#endif /* CONFIG_PPC_PMAC */
if (state.event == pdev->dev.power.power_state.event)
return 0;
printk(KERN_DEBUG "aty128fb: suspending...\n");
acquire_console_sem();
fb_set_suspend(info, 1);
/* Make sure engine is reset */
wait_for_idle(par);
aty128_reset_engine(par);
wait_for_idle(par);
/* Blank display and LCD */
aty128fb_blank(FB_BLANK_POWERDOWN, info);
/* Sleep */
par->asleep = 1;
par->lock_blank = 1;
#ifdef CONFIG_PPC_PMAC
/* On powermac, we have hooks to properly suspend/resume AGP now,
* use them here. We'll ultimately need some generic support here,
* but the generic code isn't quite ready for that yet
*/
pmac_suspend_agp_for_card(pdev);
#endif /* CONFIG_PPC_PMAC */
/* We need a way to make sure the fbdev layer will _not_ touch the
* framebuffer before we put the chip to suspend state. On 2.4, I
* used dummy fb ops, 2.5 need proper support for this at the
* fbdev level
*/
if (state.event != PM_EVENT_ON)
aty128_set_suspend(par, 1);
release_console_sem();
pdev->dev.power.power_state = state;
return 0;
}
static int aty128_do_resume(struct pci_dev *pdev)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct aty128fb_par *par = info->par;
if (pdev->dev.power.power_state.event == PM_EVENT_ON)
return 0;
/* PCI state will have been restored by the core, so
* we should be in D0 now with our config space fully
* restored
*/
/* Wakeup chip */
aty128_set_suspend(par, 0);
par->asleep = 0;
/* Restore display & engine */
aty128_reset_engine(par);
wait_for_idle(par);
aty128fb_set_par(info);
fb_pan_display(info, &info->var);
fb_set_cmap(&info->cmap, info);
/* Refresh */
fb_set_suspend(info, 0);
/* Unblank */
par->lock_blank = 0;
aty128fb_blank(0, info);
#ifdef CONFIG_PPC_PMAC
/* On powermac, we have hooks to properly suspend/resume AGP now,
* use them here. We'll ultimately need some generic support here,
* but the generic code isn't quite ready for that yet
*/
pmac_resume_agp_for_card(pdev);
#endif /* CONFIG_PPC_PMAC */
pdev->dev.power.power_state = PMSG_ON;
printk(KERN_DEBUG "aty128fb: resumed !\n");
return 0;
}
static int aty128_pci_resume(struct pci_dev *pdev)
{
int rc;
acquire_console_sem();
rc = aty128_do_resume(pdev);
release_console_sem();
return rc;
}
static int __devinit aty128fb_init(void)
{
#ifndef MODULE
char *option = NULL;
if (fb_get_options("aty128fb", &option))
return -ENODEV;
aty128fb_setup(option);
#endif
return pci_register_driver(&aty128fb_driver);
}
static void __exit aty128fb_exit(void)
{
pci_unregister_driver(&aty128fb_driver);
}
module_init(aty128fb_init);
module_exit(aty128fb_exit);
MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
MODULE_LICENSE("GPL");
module_param(mode_option, charp, 0);
MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
#ifdef CONFIG_MTRR
module_param_named(nomtrr, mtrr, invbool, 0);
MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
#endif