kernel-fxtec-pro1x/drivers/media/common/tuners/mt20xx.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

672 lines
15 KiB
C

/*
* i2c tv tuner chip device driver
* controls microtune tuners, mt2032 + mt2050 at the moment.
*
* This "mt20xx" module was split apart from the original "tuner" module.
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include "tuner-i2c.h"
#include "mt20xx.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "enable verbose debug messages");
/* ---------------------------------------------------------------------- */
static unsigned int optimize_vco = 1;
module_param(optimize_vco, int, 0644);
static unsigned int tv_antenna = 1;
module_param(tv_antenna, int, 0644);
static unsigned int radio_antenna;
module_param(radio_antenna, int, 0644);
/* ---------------------------------------------------------------------- */
#define MT2032 0x04
#define MT2030 0x06
#define MT2040 0x07
#define MT2050 0x42
static char *microtune_part[] = {
[ MT2030 ] = "MT2030",
[ MT2032 ] = "MT2032",
[ MT2040 ] = "MT2040",
[ MT2050 ] = "MT2050",
};
struct microtune_priv {
struct tuner_i2c_props i2c_props;
unsigned int xogc;
//unsigned int radio_if2;
u32 frequency;
};
static int microtune_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int microtune_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct microtune_priv *priv = fe->tuner_priv;
*frequency = priv->frequency;
return 0;
}
// IsSpurInBand()?
static int mt2032_spurcheck(struct dvb_frontend *fe,
int f1, int f2, int spectrum_from,int spectrum_to)
{
struct microtune_priv *priv = fe->tuner_priv;
int n1=1,n2,f;
f1=f1/1000; //scale to kHz to avoid 32bit overflows
f2=f2/1000;
spectrum_from/=1000;
spectrum_to/=1000;
tuner_dbg("spurcheck f1=%d f2=%d from=%d to=%d\n",
f1,f2,spectrum_from,spectrum_to);
do {
n2=-n1;
f=n1*(f1-f2);
do {
n2--;
f=f-f2;
tuner_dbg("spurtest n1=%d n2=%d ftest=%d\n",n1,n2,f);
if( (f>spectrum_from) && (f<spectrum_to))
tuner_dbg("mt2032 spurcheck triggered: %d\n",n1);
} while ( (f>(f2-spectrum_to)) || (n2>-5));
n1++;
} while (n1<5);
return 1;
}
static int mt2032_compute_freq(struct dvb_frontend *fe,
unsigned int rfin,
unsigned int if1, unsigned int if2,
unsigned int spectrum_from,
unsigned int spectrum_to,
unsigned char *buf,
int *ret_sel,
unsigned int xogc) //all in Hz
{
struct microtune_priv *priv = fe->tuner_priv;
unsigned int fref,lo1,lo1n,lo1a,s,sel,lo1freq, desired_lo1,
desired_lo2,lo2,lo2n,lo2a,lo2num,lo2freq;
fref= 5250 *1000; //5.25MHz
desired_lo1=rfin+if1;
lo1=(2*(desired_lo1/1000)+(fref/1000)) / (2*fref/1000);
lo1n=lo1/8;
lo1a=lo1-(lo1n*8);
s=rfin/1000/1000+1090;
if(optimize_vco) {
if(s>1890) sel=0;
else if(s>1720) sel=1;
else if(s>1530) sel=2;
else if(s>1370) sel=3;
else sel=4; // >1090
}
else {
if(s>1790) sel=0; // <1958
else if(s>1617) sel=1;
else if(s>1449) sel=2;
else if(s>1291) sel=3;
else sel=4; // >1090
}
*ret_sel=sel;
lo1freq=(lo1a+8*lo1n)*fref;
tuner_dbg("mt2032: rfin=%d lo1=%d lo1n=%d lo1a=%d sel=%d, lo1freq=%d\n",
rfin,lo1,lo1n,lo1a,sel,lo1freq);
desired_lo2=lo1freq-rfin-if2;
lo2=(desired_lo2)/fref;
lo2n=lo2/8;
lo2a=lo2-(lo2n*8);
lo2num=((desired_lo2/1000)%(fref/1000))* 3780/(fref/1000); //scale to fit in 32bit arith
lo2freq=(lo2a+8*lo2n)*fref + lo2num*(fref/1000)/3780*1000;
tuner_dbg("mt2032: rfin=%d lo2=%d lo2n=%d lo2a=%d num=%d lo2freq=%d\n",
rfin,lo2,lo2n,lo2a,lo2num,lo2freq);
if (lo1a > 7 || lo1n < 17 || lo1n > 48 || lo2a > 7 || lo2n < 17 ||
lo2n > 30) {
tuner_info("mt2032: frequency parameters out of range: %d %d %d %d\n",
lo1a, lo1n, lo2a,lo2n);
return(-1);
}
mt2032_spurcheck(fe, lo1freq, desired_lo2, spectrum_from, spectrum_to);
// should recalculate lo1 (one step up/down)
// set up MT2032 register map for transfer over i2c
buf[0]=lo1n-1;
buf[1]=lo1a | (sel<<4);
buf[2]=0x86; // LOGC
buf[3]=0x0f; //reserved
buf[4]=0x1f;
buf[5]=(lo2n-1) | (lo2a<<5);
if(rfin >400*1000*1000)
buf[6]=0xe4;
else
buf[6]=0xf4; // set PKEN per rev 1.2
buf[7]=8+xogc;
buf[8]=0xc3; //reserved
buf[9]=0x4e; //reserved
buf[10]=0xec; //reserved
buf[11]=(lo2num&0xff);
buf[12]=(lo2num>>8) |0x80; // Lo2RST
return 0;
}
static int mt2032_check_lo_lock(struct dvb_frontend *fe)
{
struct microtune_priv *priv = fe->tuner_priv;
int try,lock=0;
unsigned char buf[2];
for(try=0;try<10;try++) {
buf[0]=0x0e;
tuner_i2c_xfer_send(&priv->i2c_props,buf,1);
tuner_i2c_xfer_recv(&priv->i2c_props,buf,1);
tuner_dbg("mt2032 Reg.E=0x%02x\n",buf[0]);
lock=buf[0] &0x06;
if (lock==6)
break;
tuner_dbg("mt2032: pll wait 1ms for lock (0x%2x)\n",buf[0]);
udelay(1000);
}
return lock;
}
static int mt2032_optimize_vco(struct dvb_frontend *fe,int sel,int lock)
{
struct microtune_priv *priv = fe->tuner_priv;
unsigned char buf[2];
int tad1;
buf[0]=0x0f;
tuner_i2c_xfer_send(&priv->i2c_props,buf,1);
tuner_i2c_xfer_recv(&priv->i2c_props,buf,1);
tuner_dbg("mt2032 Reg.F=0x%02x\n",buf[0]);
tad1=buf[0]&0x07;
if(tad1 ==0) return lock;
if(tad1 ==1) return lock;
if(tad1==2) {
if(sel==0)
return lock;
else sel--;
}
else {
if(sel<4)
sel++;
else
return lock;
}
tuner_dbg("mt2032 optimize_vco: sel=%d\n",sel);
buf[0]=0x0f;
buf[1]=sel;
tuner_i2c_xfer_send(&priv->i2c_props,buf,2);
lock=mt2032_check_lo_lock(fe);
return lock;
}
static void mt2032_set_if_freq(struct dvb_frontend *fe, unsigned int rfin,
unsigned int if1, unsigned int if2,
unsigned int from, unsigned int to)
{
unsigned char buf[21];
int lint_try,ret,sel,lock=0;
struct microtune_priv *priv = fe->tuner_priv;
tuner_dbg("mt2032_set_if_freq rfin=%d if1=%d if2=%d from=%d to=%d\n",
rfin,if1,if2,from,to);
buf[0]=0;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,1);
tuner_i2c_xfer_recv(&priv->i2c_props,buf,21);
buf[0]=0;
ret=mt2032_compute_freq(fe,rfin,if1,if2,from,to,&buf[1],&sel,priv->xogc);
if (ret<0)
return;
// send only the relevant registers per Rev. 1.2
buf[0]=0;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,4);
buf[5]=5;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf+5,4);
buf[11]=11;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf+11,3);
if(ret!=3)
tuner_warn("i2c i/o error: rc == %d (should be 3)\n",ret);
// wait for PLLs to lock (per manual), retry LINT if not.
for(lint_try=0; lint_try<2; lint_try++) {
lock=mt2032_check_lo_lock(fe);
if(optimize_vco)
lock=mt2032_optimize_vco(fe,sel,lock);
if(lock==6) break;
tuner_dbg("mt2032: re-init PLLs by LINT\n");
buf[0]=7;
buf[1]=0x80 +8+priv->xogc; // set LINT to re-init PLLs
tuner_i2c_xfer_send(&priv->i2c_props,buf,2);
mdelay(10);
buf[1]=8+priv->xogc;
tuner_i2c_xfer_send(&priv->i2c_props,buf,2);
}
if (lock!=6)
tuner_warn("MT2032 Fatal Error: PLLs didn't lock.\n");
buf[0]=2;
buf[1]=0x20; // LOGC for optimal phase noise
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,2);
if (ret!=2)
tuner_warn("i2c i/o error: rc == %d (should be 2)\n",ret);
}
static int mt2032_set_tv_freq(struct dvb_frontend *fe,
struct analog_parameters *params)
{
int if2,from,to;
// signal bandwidth and picture carrier
if (params->std & V4L2_STD_525_60) {
// NTSC
from = 40750*1000;
to = 46750*1000;
if2 = 45750*1000;
} else {
// PAL
from = 32900*1000;
to = 39900*1000;
if2 = 38900*1000;
}
mt2032_set_if_freq(fe, params->frequency*62500,
1090*1000*1000, if2, from, to);
return 0;
}
static int mt2032_set_radio_freq(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct microtune_priv *priv = fe->tuner_priv;
int if2;
if (params->std & V4L2_STD_525_60) {
tuner_dbg("pinnacle ntsc\n");
if2 = 41300 * 1000;
} else {
tuner_dbg("pinnacle pal\n");
if2 = 33300 * 1000;
}
// per Manual for FM tuning: first if center freq. 1085 MHz
mt2032_set_if_freq(fe, params->frequency * 125 / 2,
1085*1000*1000,if2,if2,if2);
return 0;
}
static int mt2032_set_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct microtune_priv *priv = fe->tuner_priv;
int ret = -EINVAL;
switch (params->mode) {
case V4L2_TUNER_RADIO:
ret = mt2032_set_radio_freq(fe, params);
priv->frequency = params->frequency * 125 / 2;
break;
case V4L2_TUNER_ANALOG_TV:
case V4L2_TUNER_DIGITAL_TV:
ret = mt2032_set_tv_freq(fe, params);
priv->frequency = params->frequency * 62500;
break;
}
return ret;
}
static struct dvb_tuner_ops mt2032_tuner_ops = {
.set_analog_params = mt2032_set_params,
.release = microtune_release,
.get_frequency = microtune_get_frequency,
};
// Initialization as described in "MT203x Programming Procedures", Rev 1.2, Feb.2001
static int mt2032_init(struct dvb_frontend *fe)
{
struct microtune_priv *priv = fe->tuner_priv;
unsigned char buf[21];
int ret,xogc,xok=0;
// Initialize Registers per spec.
buf[1]=2; // Index to register 2
buf[2]=0xff;
buf[3]=0x0f;
buf[4]=0x1f;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf+1,4);
buf[5]=6; // Index register 6
buf[6]=0xe4;
buf[7]=0x8f;
buf[8]=0xc3;
buf[9]=0x4e;
buf[10]=0xec;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf+5,6);
buf[12]=13; // Index register 13
buf[13]=0x32;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf+12,2);
// Adjust XOGC (register 7), wait for XOK
xogc=7;
do {
tuner_dbg("mt2032: xogc = 0x%02x\n",xogc&0x07);
mdelay(10);
buf[0]=0x0e;
tuner_i2c_xfer_send(&priv->i2c_props,buf,1);
tuner_i2c_xfer_recv(&priv->i2c_props,buf,1);
xok=buf[0]&0x01;
tuner_dbg("mt2032: xok = 0x%02x\n",xok);
if (xok == 1) break;
xogc--;
tuner_dbg("mt2032: xogc = 0x%02x\n",xogc&0x07);
if (xogc == 3) {
xogc=4; // min. 4 per spec
break;
}
buf[0]=0x07;
buf[1]=0x88 + xogc;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,2);
if (ret!=2)
tuner_warn("i2c i/o error: rc == %d (should be 2)\n",ret);
} while (xok != 1 );
priv->xogc=xogc;
memcpy(&fe->ops.tuner_ops, &mt2032_tuner_ops, sizeof(struct dvb_tuner_ops));
return(1);
}
static void mt2050_set_antenna(struct dvb_frontend *fe, unsigned char antenna)
{
struct microtune_priv *priv = fe->tuner_priv;
unsigned char buf[2];
int ret;
buf[0] = 6;
buf[1] = antenna ? 0x11 : 0x10;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,2);
tuner_dbg("mt2050: enabled antenna connector %d\n", antenna);
}
static void mt2050_set_if_freq(struct dvb_frontend *fe,unsigned int freq, unsigned int if2)
{
struct microtune_priv *priv = fe->tuner_priv;
unsigned int if1=1218*1000*1000;
unsigned int f_lo1,f_lo2,lo1,lo2,f_lo1_modulo,f_lo2_modulo,num1,num2,div1a,div1b,div2a,div2b;
int ret;
unsigned char buf[6];
tuner_dbg("mt2050_set_if_freq freq=%d if1=%d if2=%d\n",
freq,if1,if2);
f_lo1=freq+if1;
f_lo1=(f_lo1/1000000)*1000000;
f_lo2=f_lo1-freq-if2;
f_lo2=(f_lo2/50000)*50000;
lo1=f_lo1/4000000;
lo2=f_lo2/4000000;
f_lo1_modulo= f_lo1-(lo1*4000000);
f_lo2_modulo= f_lo2-(lo2*4000000);
num1=4*f_lo1_modulo/4000000;
num2=4096*(f_lo2_modulo/1000)/4000;
// todo spurchecks
div1a=(lo1/12)-1;
div1b=lo1-(div1a+1)*12;
div2a=(lo2/8)-1;
div2b=lo2-(div2a+1)*8;
if (debug > 1) {
tuner_dbg("lo1 lo2 = %d %d\n", lo1, lo2);
tuner_dbg("num1 num2 div1a div1b div2a div2b= %x %x %x %x %x %x\n",
num1,num2,div1a,div1b,div2a,div2b);
}
buf[0]=1;
buf[1]= 4*div1b + num1;
if(freq<275*1000*1000) buf[1] = buf[1]|0x80;
buf[2]=div1a;
buf[3]=32*div2b + num2/256;
buf[4]=num2-(num2/256)*256;
buf[5]=div2a;
if(num2!=0) buf[5]=buf[5]|0x40;
if (debug > 1) {
int i;
tuner_dbg("bufs is: ");
for(i=0;i<6;i++)
printk("%x ",buf[i]);
printk("\n");
}
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,6);
if (ret!=6)
tuner_warn("i2c i/o error: rc == %d (should be 6)\n",ret);
}
static int mt2050_set_tv_freq(struct dvb_frontend *fe,
struct analog_parameters *params)
{
unsigned int if2;
if (params->std & V4L2_STD_525_60) {
// NTSC
if2 = 45750*1000;
} else {
// PAL
if2 = 38900*1000;
}
if (V4L2_TUNER_DIGITAL_TV == params->mode) {
// DVB (pinnacle 300i)
if2 = 36150*1000;
}
mt2050_set_if_freq(fe, params->frequency*62500, if2);
mt2050_set_antenna(fe, tv_antenna);
return 0;
}
static int mt2050_set_radio_freq(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct microtune_priv *priv = fe->tuner_priv;
int if2;
if (params->std & V4L2_STD_525_60) {
tuner_dbg("pinnacle ntsc\n");
if2 = 41300 * 1000;
} else {
tuner_dbg("pinnacle pal\n");
if2 = 33300 * 1000;
}
mt2050_set_if_freq(fe, params->frequency * 125 / 2, if2);
mt2050_set_antenna(fe, radio_antenna);
return 0;
}
static int mt2050_set_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct microtune_priv *priv = fe->tuner_priv;
int ret = -EINVAL;
switch (params->mode) {
case V4L2_TUNER_RADIO:
ret = mt2050_set_radio_freq(fe, params);
priv->frequency = params->frequency * 125 / 2;
break;
case V4L2_TUNER_ANALOG_TV:
case V4L2_TUNER_DIGITAL_TV:
ret = mt2050_set_tv_freq(fe, params);
priv->frequency = params->frequency * 62500;
break;
}
return ret;
}
static struct dvb_tuner_ops mt2050_tuner_ops = {
.set_analog_params = mt2050_set_params,
.release = microtune_release,
.get_frequency = microtune_get_frequency,
};
static int mt2050_init(struct dvb_frontend *fe)
{
struct microtune_priv *priv = fe->tuner_priv;
unsigned char buf[2];
int ret;
buf[0]=6;
buf[1]=0x10;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,2); // power
buf[0]=0x0f;
buf[1]=0x0f;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,2); // m1lo
buf[0]=0x0d;
ret=tuner_i2c_xfer_send(&priv->i2c_props,buf,1);
tuner_i2c_xfer_recv(&priv->i2c_props,buf,1);
tuner_dbg("mt2050: sro is %x\n",buf[0]);
memcpy(&fe->ops.tuner_ops, &mt2050_tuner_ops, sizeof(struct dvb_tuner_ops));
return 0;
}
struct dvb_frontend *microtune_attach(struct dvb_frontend *fe,
struct i2c_adapter* i2c_adap,
u8 i2c_addr)
{
struct microtune_priv *priv = NULL;
char *name;
unsigned char buf[21];
int company_code;
priv = kzalloc(sizeof(struct microtune_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
fe->tuner_priv = priv;
priv->i2c_props.addr = i2c_addr;
priv->i2c_props.adap = i2c_adap;
priv->i2c_props.name = "mt20xx";
//priv->radio_if2 = 10700 * 1000; /* 10.7MHz - FM radio */
memset(buf,0,sizeof(buf));
name = "unknown";
tuner_i2c_xfer_send(&priv->i2c_props,buf,1);
tuner_i2c_xfer_recv(&priv->i2c_props,buf,21);
if (debug) {
int i;
tuner_dbg("MT20xx hexdump:");
for(i=0;i<21;i++) {
printk(" %02x",buf[i]);
if(((i+1)%8)==0) printk(" ");
}
printk("\n");
}
company_code = buf[0x11] << 8 | buf[0x12];
tuner_info("microtune: companycode=%04x part=%02x rev=%02x\n",
company_code,buf[0x13],buf[0x14]);
if (buf[0x13] < ARRAY_SIZE(microtune_part) &&
NULL != microtune_part[buf[0x13]])
name = microtune_part[buf[0x13]];
switch (buf[0x13]) {
case MT2032:
mt2032_init(fe);
break;
case MT2050:
mt2050_init(fe);
break;
default:
tuner_info("microtune %s found, not (yet?) supported, sorry :-/\n",
name);
return NULL;
}
strlcpy(fe->ops.tuner_ops.info.name, name,
sizeof(fe->ops.tuner_ops.info.name));
tuner_info("microtune %s found, OK\n",name);
return fe;
}
EXPORT_SYMBOL_GPL(microtune_attach);
MODULE_DESCRIPTION("Microtune tuner driver");
MODULE_AUTHOR("Ralph Metzler, Gerd Knorr, Gunther Mayer");
MODULE_LICENSE("GPL");
/*
* Overrides for Emacs so that we follow Linus's tabbing style.
* ---------------------------------------------------------------------------
* Local variables:
* c-basic-offset: 8
* End:
*/