kernel-fxtec-pro1x/drivers/mtd/onenand/onenand_base.c
Kyungmin Park 6a88c47bd5 mtd: onenand: add support for chips with 4KiB page size
This patch adds support for OneNAND chips that have 4KiB page size.

Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2010-05-14 01:49:21 +01:00

4074 lines
105 KiB
C

/*
* linux/drivers/mtd/onenand/onenand_base.c
*
* Copyright © 2005-2009 Samsung Electronics
* Copyright © 2007 Nokia Corporation
*
* Kyungmin Park <kyungmin.park@samsung.com>
*
* Credits:
* Adrian Hunter <ext-adrian.hunter@nokia.com>:
* auto-placement support, read-while load support, various fixes
*
* Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
* Flex-OneNAND support
* Amul Kumar Saha <amul.saha at samsung.com>
* OTP support
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
/*
* Multiblock erase if number of blocks to erase is 2 or more.
* Maximum number of blocks for simultaneous erase is 64.
*/
#define MB_ERASE_MIN_BLK_COUNT 2
#define MB_ERASE_MAX_BLK_COUNT 64
/* Default Flex-OneNAND boundary and lock respectively */
static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
module_param_array(flex_bdry, int, NULL, 0400);
MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
"DIE_BDRY: SLC boundary of the die"
"LOCK: Locking information for SLC boundary"
" : 0->Set boundary in unlocked status"
" : 1->Set boundary in locked status");
/* Default OneNAND/Flex-OneNAND OTP options*/
static int otp;
module_param(otp, int, 0400);
MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
"Syntax : otp=LOCK_TYPE"
"LOCK_TYPE : Keys issued, for specific OTP Lock type"
" : 0 -> Default (No Blocks Locked)"
" : 1 -> OTP Block lock"
" : 2 -> 1st Block lock"
" : 3 -> BOTH OTP Block and 1st Block lock");
/**
* onenand_oob_128 - oob info for Flex-Onenand with 4KB page
* For now, we expose only 64 out of 80 ecc bytes
*/
static struct nand_ecclayout onenand_oob_128 = {
.eccbytes = 64,
.eccpos = {
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
102, 103, 104, 105
},
.oobfree = {
{2, 4}, {18, 4}, {34, 4}, {50, 4},
{66, 4}, {82, 4}, {98, 4}, {114, 4}
}
};
/**
* onenand_oob_64 - oob info for large (2KB) page
*/
static struct nand_ecclayout onenand_oob_64 = {
.eccbytes = 20,
.eccpos = {
8, 9, 10, 11, 12,
24, 25, 26, 27, 28,
40, 41, 42, 43, 44,
56, 57, 58, 59, 60,
},
.oobfree = {
{2, 3}, {14, 2}, {18, 3}, {30, 2},
{34, 3}, {46, 2}, {50, 3}, {62, 2}
}
};
/**
* onenand_oob_32 - oob info for middle (1KB) page
*/
static struct nand_ecclayout onenand_oob_32 = {
.eccbytes = 10,
.eccpos = {
8, 9, 10, 11, 12,
24, 25, 26, 27, 28,
},
.oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
};
static const unsigned char ffchars[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
};
/**
* onenand_readw - [OneNAND Interface] Read OneNAND register
* @param addr address to read
*
* Read OneNAND register
*/
static unsigned short onenand_readw(void __iomem *addr)
{
return readw(addr);
}
/**
* onenand_writew - [OneNAND Interface] Write OneNAND register with value
* @param value value to write
* @param addr address to write
*
* Write OneNAND register with value
*/
static void onenand_writew(unsigned short value, void __iomem *addr)
{
writew(value, addr);
}
/**
* onenand_block_address - [DEFAULT] Get block address
* @param this onenand chip data structure
* @param block the block
* @return translated block address if DDP, otherwise same
*
* Setup Start Address 1 Register (F100h)
*/
static int onenand_block_address(struct onenand_chip *this, int block)
{
/* Device Flash Core select, NAND Flash Block Address */
if (block & this->density_mask)
return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
return block;
}
/**
* onenand_bufferram_address - [DEFAULT] Get bufferram address
* @param this onenand chip data structure
* @param block the block
* @return set DBS value if DDP, otherwise 0
*
* Setup Start Address 2 Register (F101h) for DDP
*/
static int onenand_bufferram_address(struct onenand_chip *this, int block)
{
/* Device BufferRAM Select */
if (block & this->density_mask)
return ONENAND_DDP_CHIP1;
return ONENAND_DDP_CHIP0;
}
/**
* onenand_page_address - [DEFAULT] Get page address
* @param page the page address
* @param sector the sector address
* @return combined page and sector address
*
* Setup Start Address 8 Register (F107h)
*/
static int onenand_page_address(int page, int sector)
{
/* Flash Page Address, Flash Sector Address */
int fpa, fsa;
fpa = page & ONENAND_FPA_MASK;
fsa = sector & ONENAND_FSA_MASK;
return ((fpa << ONENAND_FPA_SHIFT) | fsa);
}
/**
* onenand_buffer_address - [DEFAULT] Get buffer address
* @param dataram1 DataRAM index
* @param sectors the sector address
* @param count the number of sectors
* @return the start buffer value
*
* Setup Start Buffer Register (F200h)
*/
static int onenand_buffer_address(int dataram1, int sectors, int count)
{
int bsa, bsc;
/* BufferRAM Sector Address */
bsa = sectors & ONENAND_BSA_MASK;
if (dataram1)
bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
else
bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
/* BufferRAM Sector Count */
bsc = count & ONENAND_BSC_MASK;
return ((bsa << ONENAND_BSA_SHIFT) | bsc);
}
/**
* flexonenand_block- For given address return block number
* @param this - OneNAND device structure
* @param addr - Address for which block number is needed
*/
static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
{
unsigned boundary, blk, die = 0;
if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
die = 1;
addr -= this->diesize[0];
}
boundary = this->boundary[die];
blk = addr >> (this->erase_shift - 1);
if (blk > boundary)
blk = (blk + boundary + 1) >> 1;
blk += die ? this->density_mask : 0;
return blk;
}
inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
{
if (!FLEXONENAND(this))
return addr >> this->erase_shift;
return flexonenand_block(this, addr);
}
/**
* flexonenand_addr - Return address of the block
* @this: OneNAND device structure
* @block: Block number on Flex-OneNAND
*
* Return address of the block
*/
static loff_t flexonenand_addr(struct onenand_chip *this, int block)
{
loff_t ofs = 0;
int die = 0, boundary;
if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
block -= this->density_mask;
die = 1;
ofs = this->diesize[0];
}
boundary = this->boundary[die];
ofs += (loff_t)block << (this->erase_shift - 1);
if (block > (boundary + 1))
ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
return ofs;
}
loff_t onenand_addr(struct onenand_chip *this, int block)
{
if (!FLEXONENAND(this))
return (loff_t)block << this->erase_shift;
return flexonenand_addr(this, block);
}
EXPORT_SYMBOL(onenand_addr);
/**
* onenand_get_density - [DEFAULT] Get OneNAND density
* @param dev_id OneNAND device ID
*
* Get OneNAND density from device ID
*/
static inline int onenand_get_density(int dev_id)
{
int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
return (density & ONENAND_DEVICE_DENSITY_MASK);
}
/**
* flexonenand_region - [Flex-OneNAND] Return erase region of addr
* @param mtd MTD device structure
* @param addr address whose erase region needs to be identified
*/
int flexonenand_region(struct mtd_info *mtd, loff_t addr)
{
int i;
for (i = 0; i < mtd->numeraseregions; i++)
if (addr < mtd->eraseregions[i].offset)
break;
return i - 1;
}
EXPORT_SYMBOL(flexonenand_region);
/**
* onenand_command - [DEFAULT] Send command to OneNAND device
* @param mtd MTD device structure
* @param cmd the command to be sent
* @param addr offset to read from or write to
* @param len number of bytes to read or write
*
* Send command to OneNAND device. This function is used for middle/large page
* devices (1KB/2KB Bytes per page)
*/
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
{
struct onenand_chip *this = mtd->priv;
int value, block, page;
/* Address translation */
switch (cmd) {
case ONENAND_CMD_UNLOCK:
case ONENAND_CMD_LOCK:
case ONENAND_CMD_LOCK_TIGHT:
case ONENAND_CMD_UNLOCK_ALL:
block = -1;
page = -1;
break;
case FLEXONENAND_CMD_PI_ACCESS:
/* addr contains die index */
block = addr * this->density_mask;
page = -1;
break;
case ONENAND_CMD_ERASE:
case ONENAND_CMD_MULTIBLOCK_ERASE:
case ONENAND_CMD_ERASE_VERIFY:
case ONENAND_CMD_BUFFERRAM:
case ONENAND_CMD_OTP_ACCESS:
block = onenand_block(this, addr);
page = -1;
break;
case FLEXONENAND_CMD_READ_PI:
cmd = ONENAND_CMD_READ;
block = addr * this->density_mask;
page = 0;
break;
default:
block = onenand_block(this, addr);
page = (int) (addr - onenand_addr(this, block)) >> this->page_shift;
if (ONENAND_IS_2PLANE(this)) {
/* Make the even block number */
block &= ~1;
/* Is it the odd plane? */
if (addr & this->writesize)
block++;
page >>= 1;
}
page &= this->page_mask;
break;
}
/* NOTE: The setting order of the registers is very important! */
if (cmd == ONENAND_CMD_BUFFERRAM) {
/* Select DataRAM for DDP */
value = onenand_bufferram_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this) ||
ONENAND_IS_4KB_PAGE(this))
/* It is always BufferRAM0 */
ONENAND_SET_BUFFERRAM0(this);
else
/* Switch to the next data buffer */
ONENAND_SET_NEXT_BUFFERRAM(this);
return 0;
}
if (block != -1) {
/* Write 'DFS, FBA' of Flash */
value = onenand_block_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
/* Select DataRAM for DDP */
value = onenand_bufferram_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
}
if (page != -1) {
/* Now we use page size operation */
int sectors = 0, count = 0;
int dataram;
switch (cmd) {
case FLEXONENAND_CMD_RECOVER_LSB:
case ONENAND_CMD_READ:
case ONENAND_CMD_READOOB:
if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
/* It is always BufferRAM0 */
dataram = ONENAND_SET_BUFFERRAM0(this);
else
dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
break;
default:
if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
cmd = ONENAND_CMD_2X_PROG;
dataram = ONENAND_CURRENT_BUFFERRAM(this);
break;
}
/* Write 'FPA, FSA' of Flash */
value = onenand_page_address(page, sectors);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
/* Write 'BSA, BSC' of DataRAM */
value = onenand_buffer_address(dataram, sectors, count);
this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
}
/* Interrupt clear */
this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
/* Write command */
this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
return 0;
}
/**
* onenand_read_ecc - return ecc status
* @param this onenand chip structure
*/
static inline int onenand_read_ecc(struct onenand_chip *this)
{
int ecc, i, result = 0;
if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
for (i = 0; i < 4; i++) {
ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
if (likely(!ecc))
continue;
if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
return ONENAND_ECC_2BIT_ALL;
else
result = ONENAND_ECC_1BIT_ALL;
}
return result;
}
/**
* onenand_wait - [DEFAULT] wait until the command is done
* @param mtd MTD device structure
* @param state state to select the max. timeout value
*
* Wait for command done. This applies to all OneNAND command
* Read can take up to 30us, erase up to 2ms and program up to 350us
* according to general OneNAND specs
*/
static int onenand_wait(struct mtd_info *mtd, int state)
{
struct onenand_chip * this = mtd->priv;
unsigned long timeout;
unsigned int flags = ONENAND_INT_MASTER;
unsigned int interrupt = 0;
unsigned int ctrl;
/* The 20 msec is enough */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
if (interrupt & flags)
break;
if (state != FL_READING && state != FL_PREPARING_ERASE)
cond_resched();
}
/* To get correct interrupt status in timeout case */
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
/*
* In the Spec. it checks the controller status first
* However if you get the correct information in case of
* power off recovery (POR) test, it should read ECC status first
*/
if (interrupt & ONENAND_INT_READ) {
int ecc = onenand_read_ecc(this);
if (ecc) {
if (ecc & ONENAND_ECC_2BIT_ALL) {
printk(KERN_ERR "%s: ECC error = 0x%04x\n",
__func__, ecc);
mtd->ecc_stats.failed++;
return -EBADMSG;
} else if (ecc & ONENAND_ECC_1BIT_ALL) {
printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
__func__, ecc);
mtd->ecc_stats.corrected++;
}
}
} else if (state == FL_READING) {
printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
__func__, ctrl, interrupt);
return -EIO;
}
if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
__func__, ctrl, interrupt);
return -EIO;
}
if (!(interrupt & ONENAND_INT_MASTER)) {
printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
__func__, ctrl, interrupt);
return -EIO;
}
/* If there's controller error, it's a real error */
if (ctrl & ONENAND_CTRL_ERROR) {
printk(KERN_ERR "%s: controller error = 0x%04x\n",
__func__, ctrl);
if (ctrl & ONENAND_CTRL_LOCK)
printk(KERN_ERR "%s: it's locked error.\n", __func__);
return -EIO;
}
return 0;
}
/*
* onenand_interrupt - [DEFAULT] onenand interrupt handler
* @param irq onenand interrupt number
* @param dev_id interrupt data
*
* complete the work
*/
static irqreturn_t onenand_interrupt(int irq, void *data)
{
struct onenand_chip *this = data;
/* To handle shared interrupt */
if (!this->complete.done)
complete(&this->complete);
return IRQ_HANDLED;
}
/*
* onenand_interrupt_wait - [DEFAULT] wait until the command is done
* @param mtd MTD device structure
* @param state state to select the max. timeout value
*
* Wait for command done.
*/
static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
{
struct onenand_chip *this = mtd->priv;
wait_for_completion(&this->complete);
return onenand_wait(mtd, state);
}
/*
* onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
* @param mtd MTD device structure
* @param state state to select the max. timeout value
*
* Try interrupt based wait (It is used one-time)
*/
static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
{
struct onenand_chip *this = mtd->priv;
unsigned long remain, timeout;
/* We use interrupt wait first */
this->wait = onenand_interrupt_wait;
timeout = msecs_to_jiffies(100);
remain = wait_for_completion_timeout(&this->complete, timeout);
if (!remain) {
printk(KERN_INFO "OneNAND: There's no interrupt. "
"We use the normal wait\n");
/* Release the irq */
free_irq(this->irq, this);
this->wait = onenand_wait;
}
return onenand_wait(mtd, state);
}
/*
* onenand_setup_wait - [OneNAND Interface] setup onenand wait method
* @param mtd MTD device structure
*
* There's two method to wait onenand work
* 1. polling - read interrupt status register
* 2. interrupt - use the kernel interrupt method
*/
static void onenand_setup_wait(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
int syscfg;
init_completion(&this->complete);
if (this->irq <= 0) {
this->wait = onenand_wait;
return;
}
if (request_irq(this->irq, &onenand_interrupt,
IRQF_SHARED, "onenand", this)) {
/* If we can't get irq, use the normal wait */
this->wait = onenand_wait;
return;
}
/* Enable interrupt */
syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
syscfg |= ONENAND_SYS_CFG1_IOBE;
this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
this->wait = onenand_try_interrupt_wait;
}
/**
* onenand_bufferram_offset - [DEFAULT] BufferRAM offset
* @param mtd MTD data structure
* @param area BufferRAM area
* @return offset given area
*
* Return BufferRAM offset given area
*/
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
struct onenand_chip *this = mtd->priv;
if (ONENAND_CURRENT_BUFFERRAM(this)) {
/* Note: the 'this->writesize' is a real page size */
if (area == ONENAND_DATARAM)
return this->writesize;
if (area == ONENAND_SPARERAM)
return mtd->oobsize;
}
return 0;
}
/**
* onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
* @param mtd MTD data structure
* @param area BufferRAM area
* @param buffer the databuffer to put/get data
* @param offset offset to read from or write to
* @param count number of bytes to read/write
*
* Read the BufferRAM area
*/
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset, size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
unsigned short word;
/* Align with word(16-bit) size */
count--;
/* Read word and save byte */
word = this->read_word(bufferram + offset + count);
buffer[count] = (word & 0xff);
}
memcpy(buffer, bufferram + offset, count);
return 0;
}
/**
* onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
* @param mtd MTD data structure
* @param area BufferRAM area
* @param buffer the databuffer to put/get data
* @param offset offset to read from or write to
* @param count number of bytes to read/write
*
* Read the BufferRAM area with Sync. Burst Mode
*/
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset, size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
unsigned short word;
/* Align with word(16-bit) size */
count--;
/* Read word and save byte */
word = this->read_word(bufferram + offset + count);
buffer[count] = (word & 0xff);
}
memcpy(buffer, bufferram + offset, count);
this->mmcontrol(mtd, 0);
return 0;
}
/**
* onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
* @param mtd MTD data structure
* @param area BufferRAM area
* @param buffer the databuffer to put/get data
* @param offset offset to read from or write to
* @param count number of bytes to read/write
*
* Write the BufferRAM area
*/
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
const unsigned char *buffer, int offset, size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
unsigned short word;
int byte_offset;
/* Align with word(16-bit) size */
count--;
/* Calculate byte access offset */
byte_offset = offset + count;
/* Read word and save byte */
word = this->read_word(bufferram + byte_offset);
word = (word & ~0xff) | buffer[count];
this->write_word(word, bufferram + byte_offset);
}
memcpy(bufferram + offset, buffer, count);
return 0;
}
/**
* onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
* @param mtd MTD data structure
* @param addr address to check
* @return blockpage address
*
* Get blockpage address at 2x program mode
*/
static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
{
struct onenand_chip *this = mtd->priv;
int blockpage, block, page;
/* Calculate the even block number */
block = (int) (addr >> this->erase_shift) & ~1;
/* Is it the odd plane? */
if (addr & this->writesize)
block++;
page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
blockpage = (block << 7) | page;
return blockpage;
}
/**
* onenand_check_bufferram - [GENERIC] Check BufferRAM information
* @param mtd MTD data structure
* @param addr address to check
* @return 1 if there are valid data, otherwise 0
*
* Check bufferram if there is data we required
*/
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
{
struct onenand_chip *this = mtd->priv;
int blockpage, found = 0;
unsigned int i;
if (ONENAND_IS_2PLANE(this))
blockpage = onenand_get_2x_blockpage(mtd, addr);
else
blockpage = (int) (addr >> this->page_shift);
/* Is there valid data? */
i = ONENAND_CURRENT_BUFFERRAM(this);
if (this->bufferram[i].blockpage == blockpage)
found = 1;
else {
/* Check another BufferRAM */
i = ONENAND_NEXT_BUFFERRAM(this);
if (this->bufferram[i].blockpage == blockpage) {
ONENAND_SET_NEXT_BUFFERRAM(this);
found = 1;
}
}
if (found && ONENAND_IS_DDP(this)) {
/* Select DataRAM for DDP */
int block = onenand_block(this, addr);
int value = onenand_bufferram_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
}
return found;
}
/**
* onenand_update_bufferram - [GENERIC] Update BufferRAM information
* @param mtd MTD data structure
* @param addr address to update
* @param valid valid flag
*
* Update BufferRAM information
*/
static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
int valid)
{
struct onenand_chip *this = mtd->priv;
int blockpage;
unsigned int i;
if (ONENAND_IS_2PLANE(this))
blockpage = onenand_get_2x_blockpage(mtd, addr);
else
blockpage = (int) (addr >> this->page_shift);
/* Invalidate another BufferRAM */
i = ONENAND_NEXT_BUFFERRAM(this);
if (this->bufferram[i].blockpage == blockpage)
this->bufferram[i].blockpage = -1;
/* Update BufferRAM */
i = ONENAND_CURRENT_BUFFERRAM(this);
if (valid)
this->bufferram[i].blockpage = blockpage;
else
this->bufferram[i].blockpage = -1;
}
/**
* onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
* @param mtd MTD data structure
* @param addr start address to invalidate
* @param len length to invalidate
*
* Invalidate BufferRAM information
*/
static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
unsigned int len)
{
struct onenand_chip *this = mtd->priv;
int i;
loff_t end_addr = addr + len;
/* Invalidate BufferRAM */
for (i = 0; i < MAX_BUFFERRAM; i++) {
loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
if (buf_addr >= addr && buf_addr < end_addr)
this->bufferram[i].blockpage = -1;
}
}
/**
* onenand_get_device - [GENERIC] Get chip for selected access
* @param mtd MTD device structure
* @param new_state the state which is requested
*
* Get the device and lock it for exclusive access
*/
static int onenand_get_device(struct mtd_info *mtd, int new_state)
{
struct onenand_chip *this = mtd->priv;
DECLARE_WAITQUEUE(wait, current);
/*
* Grab the lock and see if the device is available
*/
while (1) {
spin_lock(&this->chip_lock);
if (this->state == FL_READY) {
this->state = new_state;
spin_unlock(&this->chip_lock);
break;
}
if (new_state == FL_PM_SUSPENDED) {
spin_unlock(&this->chip_lock);
return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
}
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&this->wq, &wait);
spin_unlock(&this->chip_lock);
schedule();
remove_wait_queue(&this->wq, &wait);
}
return 0;
}
/**
* onenand_release_device - [GENERIC] release chip
* @param mtd MTD device structure
*
* Deselect, release chip lock and wake up anyone waiting on the device
*/
static void onenand_release_device(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
/* Release the chip */
spin_lock(&this->chip_lock);
this->state = FL_READY;
wake_up(&this->wq);
spin_unlock(&this->chip_lock);
}
/**
* onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
* @param mtd MTD device structure
* @param buf destination address
* @param column oob offset to read from
* @param thislen oob length to read
*/
static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
int thislen)
{
struct onenand_chip *this = mtd->priv;
struct nand_oobfree *free;
int readcol = column;
int readend = column + thislen;
int lastgap = 0;
unsigned int i;
uint8_t *oob_buf = this->oob_buf;
free = this->ecclayout->oobfree;
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
if (readcol >= lastgap)
readcol += free->offset - lastgap;
if (readend >= lastgap)
readend += free->offset - lastgap;
lastgap = free->offset + free->length;
}
this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
free = this->ecclayout->oobfree;
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
int free_end = free->offset + free->length;
if (free->offset < readend && free_end > readcol) {
int st = max_t(int,free->offset,readcol);
int ed = min_t(int,free_end,readend);
int n = ed - st;
memcpy(buf, oob_buf + st, n);
buf += n;
} else if (column == 0)
break;
}
return 0;
}
/**
* onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
* @param mtd MTD device structure
* @param addr address to recover
* @param status return value from onenand_wait / onenand_bbt_wait
*
* MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
* lower page address and MSB page has higher page address in paired pages.
* If power off occurs during MSB page program, the paired LSB page data can
* become corrupt. LSB page recovery read is a way to read LSB page though page
* data are corrupted. When uncorrectable error occurs as a result of LSB page
* read after power up, issue LSB page recovery read.
*/
static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
{
struct onenand_chip *this = mtd->priv;
int i;
/* Recovery is only for Flex-OneNAND */
if (!FLEXONENAND(this))
return status;
/* check if we failed due to uncorrectable error */
if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
return status;
/* check if address lies in MLC region */
i = flexonenand_region(mtd, addr);
if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
return status;
/* We are attempting to reread, so decrement stats.failed
* which was incremented by onenand_wait due to read failure
*/
printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
__func__);
mtd->ecc_stats.failed--;
/* Issue the LSB page recovery command */
this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
return this->wait(mtd, FL_READING);
}
/**
* onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
* @param mtd MTD device structure
* @param from offset to read from
* @param ops: oob operation description structure
*
* MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
* So, read-while-load is not present.
*/
static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct onenand_chip *this = mtd->priv;
struct mtd_ecc_stats stats;
size_t len = ops->len;
size_t ooblen = ops->ooblen;
u_char *buf = ops->datbuf;
u_char *oobbuf = ops->oobbuf;
int read = 0, column, thislen;
int oobread = 0, oobcolumn, thisooblen, oobsize;
int ret = 0;
int writesize = this->writesize;
DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
__func__, (unsigned int) from, (int) len);
if (ops->mode == MTD_OOB_AUTO)
oobsize = this->ecclayout->oobavail;
else
oobsize = mtd->oobsize;
oobcolumn = from & (mtd->oobsize - 1);
/* Do not allow reads past end of device */
if (from + len > mtd->size) {
printk(KERN_ERR "%s: Attempt read beyond end of device\n",
__func__);
ops->retlen = 0;
ops->oobretlen = 0;
return -EINVAL;
}
stats = mtd->ecc_stats;
while (read < len) {
cond_resched();
thislen = min_t(int, writesize, len - read);
column = from & (writesize - 1);
if (column + thislen > writesize)
thislen = writesize - column;
if (!onenand_check_bufferram(mtd, from)) {
this->command(mtd, ONENAND_CMD_READ, from, writesize);
ret = this->wait(mtd, FL_READING);
if (unlikely(ret))
ret = onenand_recover_lsb(mtd, from, ret);
onenand_update_bufferram(mtd, from, !ret);
if (ret == -EBADMSG)
ret = 0;
}
this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
if (oobbuf) {
thisooblen = oobsize - oobcolumn;
thisooblen = min_t(int, thisooblen, ooblen - oobread);
if (ops->mode == MTD_OOB_AUTO)
onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
else
this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
oobread += thisooblen;
oobbuf += thisooblen;
oobcolumn = 0;
}
read += thislen;
if (read == len)
break;
from += thislen;
buf += thislen;
}
/*
* Return success, if no ECC failures, else -EBADMSG
* fs driver will take care of that, because
* retlen == desired len and result == -EBADMSG
*/
ops->retlen = read;
ops->oobretlen = oobread;
if (ret)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
}
/**
* onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
* @param mtd MTD device structure
* @param from offset to read from
* @param ops: oob operation description structure
*
* OneNAND read main and/or out-of-band data
*/
static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct onenand_chip *this = mtd->priv;
struct mtd_ecc_stats stats;
size_t len = ops->len;
size_t ooblen = ops->ooblen;
u_char *buf = ops->datbuf;
u_char *oobbuf = ops->oobbuf;
int read = 0, column, thislen;
int oobread = 0, oobcolumn, thisooblen, oobsize;
int ret = 0, boundary = 0;
int writesize = this->writesize;
DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
__func__, (unsigned int) from, (int) len);
if (ops->mode == MTD_OOB_AUTO)
oobsize = this->ecclayout->oobavail;
else
oobsize = mtd->oobsize;
oobcolumn = from & (mtd->oobsize - 1);
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
printk(KERN_ERR "%s: Attempt read beyond end of device\n",
__func__);
ops->retlen = 0;
ops->oobretlen = 0;
return -EINVAL;
}
stats = mtd->ecc_stats;
/* Read-while-load method */
/* Do first load to bufferRAM */
if (read < len) {
if (!onenand_check_bufferram(mtd, from)) {
this->command(mtd, ONENAND_CMD_READ, from, writesize);
ret = this->wait(mtd, FL_READING);
onenand_update_bufferram(mtd, from, !ret);
if (ret == -EBADMSG)
ret = 0;
}
}
thislen = min_t(int, writesize, len - read);
column = from & (writesize - 1);
if (column + thislen > writesize)
thislen = writesize - column;
while (!ret) {
/* If there is more to load then start next load */
from += thislen;
if (read + thislen < len) {
this->command(mtd, ONENAND_CMD_READ, from, writesize);
/*
* Chip boundary handling in DDP
* Now we issued chip 1 read and pointed chip 1
* bufferram so we have to point chip 0 bufferram.
*/
if (ONENAND_IS_DDP(this) &&
unlikely(from == (this->chipsize >> 1))) {
this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
boundary = 1;
} else
boundary = 0;
ONENAND_SET_PREV_BUFFERRAM(this);
}
/* While load is going, read from last bufferRAM */
this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
/* Read oob area if needed */
if (oobbuf) {
thisooblen = oobsize - oobcolumn;
thisooblen = min_t(int, thisooblen, ooblen - oobread);
if (ops->mode == MTD_OOB_AUTO)
onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
else
this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
oobread += thisooblen;
oobbuf += thisooblen;
oobcolumn = 0;
}
/* See if we are done */
read += thislen;
if (read == len)
break;
/* Set up for next read from bufferRAM */
if (unlikely(boundary))
this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
ONENAND_SET_NEXT_BUFFERRAM(this);
buf += thislen;
thislen = min_t(int, writesize, len - read);
column = 0;
cond_resched();
/* Now wait for load */
ret = this->wait(mtd, FL_READING);
onenand_update_bufferram(mtd, from, !ret);
if (ret == -EBADMSG)
ret = 0;
}
/*
* Return success, if no ECC failures, else -EBADMSG
* fs driver will take care of that, because
* retlen == desired len and result == -EBADMSG
*/
ops->retlen = read;
ops->oobretlen = oobread;
if (ret)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
}
/**
* onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
* @param mtd MTD device structure
* @param from offset to read from
* @param ops: oob operation description structure
*
* OneNAND read out-of-band data from the spare area
*/
static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct onenand_chip *this = mtd->priv;
struct mtd_ecc_stats stats;
int read = 0, thislen, column, oobsize;
size_t len = ops->ooblen;
mtd_oob_mode_t mode = ops->mode;
u_char *buf = ops->oobbuf;
int ret = 0, readcmd;
from += ops->ooboffs;
DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %i\n",
__func__, (unsigned int) from, (int) len);
/* Initialize return length value */
ops->oobretlen = 0;
if (mode == MTD_OOB_AUTO)
oobsize = this->ecclayout->oobavail;
else
oobsize = mtd->oobsize;
column = from & (mtd->oobsize - 1);
if (unlikely(column >= oobsize)) {
printk(KERN_ERR "%s: Attempted to start read outside oob\n",
__func__);
return -EINVAL;
}
/* Do not allow reads past end of device */
if (unlikely(from >= mtd->size ||
column + len > ((mtd->size >> this->page_shift) -
(from >> this->page_shift)) * oobsize)) {
printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
__func__);
return -EINVAL;
}
stats = mtd->ecc_stats;
readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
while (read < len) {
cond_resched();
thislen = oobsize - column;
thislen = min_t(int, thislen, len);
this->command(mtd, readcmd, from, mtd->oobsize);
onenand_update_bufferram(mtd, from, 0);
ret = this->wait(mtd, FL_READING);
if (unlikely(ret))
ret = onenand_recover_lsb(mtd, from, ret);
if (ret && ret != -EBADMSG) {
printk(KERN_ERR "%s: read failed = 0x%x\n",
__func__, ret);
break;
}
if (mode == MTD_OOB_AUTO)
onenand_transfer_auto_oob(mtd, buf, column, thislen);
else
this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
read += thislen;
if (read == len)
break;
buf += thislen;
/* Read more? */
if (read < len) {
/* Page size */
from += mtd->writesize;
column = 0;
}
}
ops->oobretlen = read;
if (ret)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return 0;
}
/**
* onenand_read - [MTD Interface] Read data from flash
* @param mtd MTD device structure
* @param from offset to read from
* @param len number of bytes to read
* @param retlen pointer to variable to store the number of read bytes
* @param buf the databuffer to put data
*
* Read with ecc
*/
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct onenand_chip *this = mtd->priv;
struct mtd_oob_ops ops = {
.len = len,
.ooblen = 0,
.datbuf = buf,
.oobbuf = NULL,
};
int ret;
onenand_get_device(mtd, FL_READING);
ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
onenand_mlc_read_ops_nolock(mtd, from, &ops) :
onenand_read_ops_nolock(mtd, from, &ops);
onenand_release_device(mtd);
*retlen = ops.retlen;
return ret;
}
/**
* onenand_read_oob - [MTD Interface] Read main and/or out-of-band
* @param mtd: MTD device structure
* @param from: offset to read from
* @param ops: oob operation description structure
* Read main and/or out-of-band
*/
static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct onenand_chip *this = mtd->priv;
int ret;
switch (ops->mode) {
case MTD_OOB_PLACE:
case MTD_OOB_AUTO:
break;
case MTD_OOB_RAW:
/* Not implemented yet */
default:
return -EINVAL;
}
onenand_get_device(mtd, FL_READING);
if (ops->datbuf)
ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
onenand_mlc_read_ops_nolock(mtd, from, ops) :
onenand_read_ops_nolock(mtd, from, ops);
else
ret = onenand_read_oob_nolock(mtd, from, ops);
onenand_release_device(mtd);
return ret;
}
/**
* onenand_bbt_wait - [DEFAULT] wait until the command is done
* @param mtd MTD device structure
* @param state state to select the max. timeout value
*
* Wait for command done.
*/
static int onenand_bbt_wait(struct mtd_info *mtd, int state)
{
struct onenand_chip *this = mtd->priv;
unsigned long timeout;
unsigned int interrupt;
unsigned int ctrl;
/* The 20 msec is enough */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
if (interrupt & ONENAND_INT_MASTER)
break;
}
/* To get correct interrupt status in timeout case */
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
if (interrupt & ONENAND_INT_READ) {
int ecc = onenand_read_ecc(this);
if (ecc & ONENAND_ECC_2BIT_ALL) {
printk(KERN_WARNING "%s: ecc error = 0x%04x, "
"controller error 0x%04x\n",
__func__, ecc, ctrl);
return ONENAND_BBT_READ_ECC_ERROR;
}
} else {
printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
__func__, ctrl, interrupt);
return ONENAND_BBT_READ_FATAL_ERROR;
}
/* Initial bad block case: 0x2400 or 0x0400 */
if (ctrl & ONENAND_CTRL_ERROR) {
printk(KERN_DEBUG "%s: controller error = 0x%04x\n",
__func__, ctrl);
return ONENAND_BBT_READ_ERROR;
}
return 0;
}
/**
* onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
* @param mtd MTD device structure
* @param from offset to read from
* @param ops oob operation description structure
*
* OneNAND read out-of-band data from the spare area for bbt scan
*/
int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct onenand_chip *this = mtd->priv;
int read = 0, thislen, column;
int ret = 0, readcmd;
size_t len = ops->ooblen;
u_char *buf = ops->oobbuf;
DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08x, len = %zi\n",
__func__, (unsigned int) from, len);
/* Initialize return value */
ops->oobretlen = 0;
/* Do not allow reads past end of device */
if (unlikely((from + len) > mtd->size)) {
printk(KERN_ERR "%s: Attempt read beyond end of device\n",
__func__);
return ONENAND_BBT_READ_FATAL_ERROR;
}
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_READING);
column = from & (mtd->oobsize - 1);
readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
while (read < len) {
cond_resched();
thislen = mtd->oobsize - column;
thislen = min_t(int, thislen, len);
this->command(mtd, readcmd, from, mtd->oobsize);
onenand_update_bufferram(mtd, from, 0);
ret = this->bbt_wait(mtd, FL_READING);
if (unlikely(ret))
ret = onenand_recover_lsb(mtd, from, ret);
if (ret)
break;
this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
read += thislen;
if (read == len)
break;
buf += thislen;
/* Read more? */
if (read < len) {
/* Update Page size */
from += this->writesize;
column = 0;
}
}
/* Deselect and wake up anyone waiting on the device */
onenand_release_device(mtd);
ops->oobretlen = read;
return ret;
}
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
/**
* onenand_verify_oob - [GENERIC] verify the oob contents after a write
* @param mtd MTD device structure
* @param buf the databuffer to verify
* @param to offset to read from
*/
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
{
struct onenand_chip *this = mtd->priv;
u_char *oob_buf = this->oob_buf;
int status, i, readcmd;
readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
this->command(mtd, readcmd, to, mtd->oobsize);
onenand_update_bufferram(mtd, to, 0);
status = this->wait(mtd, FL_READING);
if (status)
return status;
this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
for (i = 0; i < mtd->oobsize; i++)
if (buf[i] != 0xFF && buf[i] != oob_buf[i])
return -EBADMSG;
return 0;
}
/**
* onenand_verify - [GENERIC] verify the chip contents after a write
* @param mtd MTD device structure
* @param buf the databuffer to verify
* @param addr offset to read from
* @param len number of bytes to read and compare
*/
static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
{
struct onenand_chip *this = mtd->priv;
void __iomem *dataram;
int ret = 0;
int thislen, column;
while (len != 0) {
thislen = min_t(int, this->writesize, len);
column = addr & (this->writesize - 1);
if (column + thislen > this->writesize)
thislen = this->writesize - column;
this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
onenand_update_bufferram(mtd, addr, 0);
ret = this->wait(mtd, FL_READING);
if (ret)
return ret;
onenand_update_bufferram(mtd, addr, 1);
dataram = this->base + ONENAND_DATARAM;
dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
if (memcmp(buf, dataram + column, thislen))
return -EBADMSG;
len -= thislen;
buf += thislen;
addr += thislen;
}
return 0;
}
#else
#define onenand_verify(...) (0)
#define onenand_verify_oob(...) (0)
#endif
#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
static void onenand_panic_wait(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
unsigned int interrupt;
int i;
for (i = 0; i < 2000; i++) {
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
if (interrupt & ONENAND_INT_MASTER)
break;
udelay(10);
}
}
/**
* onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
* @param mtd MTD device structure
* @param to offset to write to
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of written bytes
* @param buf the data to write
*
* Write with ECC
*/
static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct onenand_chip *this = mtd->priv;
int column, subpage;
int written = 0;
int ret = 0;
if (this->state == FL_PM_SUSPENDED)
return -EBUSY;
/* Wait for any existing operation to clear */
onenand_panic_wait(mtd);
DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
__func__, (unsigned int) to, (int) len);
/* Initialize retlen, in case of early exit */
*retlen = 0;
/* Do not allow writes past end of device */
if (unlikely((to + len) > mtd->size)) {
printk(KERN_ERR "%s: Attempt write to past end of device\n",
__func__);
return -EINVAL;
}
/* Reject writes, which are not page aligned */
if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
__func__);
return -EINVAL;
}
column = to & (mtd->writesize - 1);
/* Loop until all data write */
while (written < len) {
int thislen = min_t(int, mtd->writesize - column, len - written);
u_char *wbuf = (u_char *) buf;
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
/* Partial page write */
subpage = thislen < mtd->writesize;
if (subpage) {
memset(this->page_buf, 0xff, mtd->writesize);
memcpy(this->page_buf + column, buf, thislen);
wbuf = this->page_buf;
}
this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
onenand_panic_wait(mtd);
/* In partial page write we don't update bufferram */
onenand_update_bufferram(mtd, to, !ret && !subpage);
if (ONENAND_IS_2PLANE(this)) {
ONENAND_SET_BUFFERRAM1(this);
onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
}
if (ret) {
printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
break;
}
written += thislen;
if (written == len)
break;
column = 0;
to += thislen;
buf += thislen;
}
*retlen = written;
return ret;
}
/**
* onenand_fill_auto_oob - [Internal] oob auto-placement transfer
* @param mtd MTD device structure
* @param oob_buf oob buffer
* @param buf source address
* @param column oob offset to write to
* @param thislen oob length to write
*/
static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
const u_char *buf, int column, int thislen)
{
struct onenand_chip *this = mtd->priv;
struct nand_oobfree *free;
int writecol = column;
int writeend = column + thislen;
int lastgap = 0;
unsigned int i;
free = this->ecclayout->oobfree;
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
if (writecol >= lastgap)
writecol += free->offset - lastgap;
if (writeend >= lastgap)
writeend += free->offset - lastgap;
lastgap = free->offset + free->length;
}
free = this->ecclayout->oobfree;
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
int free_end = free->offset + free->length;
if (free->offset < writeend && free_end > writecol) {
int st = max_t(int,free->offset,writecol);
int ed = min_t(int,free_end,writeend);
int n = ed - st;
memcpy(oob_buf + st, buf, n);
buf += n;
} else if (column == 0)
break;
}
return 0;
}
/**
* onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
* @param mtd MTD device structure
* @param to offset to write to
* @param ops oob operation description structure
*
* Write main and/or oob with ECC
*/
static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct onenand_chip *this = mtd->priv;
int written = 0, column, thislen = 0, subpage = 0;
int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
int oobwritten = 0, oobcolumn, thisooblen, oobsize;
size_t len = ops->len;
size_t ooblen = ops->ooblen;
const u_char *buf = ops->datbuf;
const u_char *oob = ops->oobbuf;
u_char *oobbuf;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
__func__, (unsigned int) to, (int) len);
/* Initialize retlen, in case of early exit */
ops->retlen = 0;
ops->oobretlen = 0;
/* Do not allow writes past end of device */
if (unlikely((to + len) > mtd->size)) {
printk(KERN_ERR "%s: Attempt write to past end of device\n",
__func__);
return -EINVAL;
}
/* Reject writes, which are not page aligned */
if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
__func__);
return -EINVAL;
}
/* Check zero length */
if (!len)
return 0;
if (ops->mode == MTD_OOB_AUTO)
oobsize = this->ecclayout->oobavail;
else
oobsize = mtd->oobsize;
oobcolumn = to & (mtd->oobsize - 1);
column = to & (mtd->writesize - 1);
/* Loop until all data write */
while (1) {
if (written < len) {
u_char *wbuf = (u_char *) buf;
thislen = min_t(int, mtd->writesize - column, len - written);
thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
cond_resched();
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
/* Partial page write */
subpage = thislen < mtd->writesize;
if (subpage) {
memset(this->page_buf, 0xff, mtd->writesize);
memcpy(this->page_buf + column, buf, thislen);
wbuf = this->page_buf;
}
this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
if (oob) {
oobbuf = this->oob_buf;
/* We send data to spare ram with oobsize
* to prevent byte access */
memset(oobbuf, 0xff, mtd->oobsize);
if (ops->mode == MTD_OOB_AUTO)
onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
else
memcpy(oobbuf + oobcolumn, oob, thisooblen);
oobwritten += thisooblen;
oob += thisooblen;
oobcolumn = 0;
} else
oobbuf = (u_char *) ffchars;
this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
} else
ONENAND_SET_NEXT_BUFFERRAM(this);
/*
* 2 PLANE, MLC, and Flex-OneNAND do not support
* write-while-program feature.
*/
if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
ONENAND_SET_PREV_BUFFERRAM(this);
ret = this->wait(mtd, FL_WRITING);
/* In partial page write we don't update bufferram */
onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
if (ret) {
written -= prevlen;
printk(KERN_ERR "%s: write failed %d\n",
__func__, ret);
break;
}
if (written == len) {
/* Only check verify write turn on */
ret = onenand_verify(mtd, buf - len, to - len, len);
if (ret)
printk(KERN_ERR "%s: verify failed %d\n",
__func__, ret);
break;
}
ONENAND_SET_NEXT_BUFFERRAM(this);
}
this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
/*
* 2 PLANE, MLC, and Flex-OneNAND wait here
*/
if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
ret = this->wait(mtd, FL_WRITING);
/* In partial page write we don't update bufferram */
onenand_update_bufferram(mtd, to, !ret && !subpage);
if (ret) {
printk(KERN_ERR "%s: write failed %d\n",
__func__, ret);
break;
}
/* Only check verify write turn on */
ret = onenand_verify(mtd, buf, to, thislen);
if (ret) {
printk(KERN_ERR "%s: verify failed %d\n",
__func__, ret);
break;
}
written += thislen;
if (written == len)
break;
} else
written += thislen;
column = 0;
prev_subpage = subpage;
prev = to;
prevlen = thislen;
to += thislen;
buf += thislen;
first = 0;
}
/* In error case, clear all bufferrams */
if (written != len)
onenand_invalidate_bufferram(mtd, 0, -1);
ops->retlen = written;
ops->oobretlen = oobwritten;
return ret;
}
/**
* onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
* @param mtd MTD device structure
* @param to offset to write to
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of written bytes
* @param buf the data to write
* @param mode operation mode
*
* OneNAND write out-of-band
*/
static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct onenand_chip *this = mtd->priv;
int column, ret = 0, oobsize;
int written = 0, oobcmd;
u_char *oobbuf;
size_t len = ops->ooblen;
const u_char *buf = ops->oobbuf;
mtd_oob_mode_t mode = ops->mode;
to += ops->ooboffs;
DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
__func__, (unsigned int) to, (int) len);
/* Initialize retlen, in case of early exit */
ops->oobretlen = 0;
if (mode == MTD_OOB_AUTO)
oobsize = this->ecclayout->oobavail;
else
oobsize = mtd->oobsize;
column = to & (mtd->oobsize - 1);
if (unlikely(column >= oobsize)) {
printk(KERN_ERR "%s: Attempted to start write outside oob\n",
__func__);
return -EINVAL;
}
/* For compatibility with NAND: Do not allow write past end of page */
if (unlikely(column + len > oobsize)) {
printk(KERN_ERR "%s: Attempt to write past end of page\n",
__func__);
return -EINVAL;
}
/* Do not allow reads past end of device */
if (unlikely(to >= mtd->size ||
column + len > ((mtd->size >> this->page_shift) -
(to >> this->page_shift)) * oobsize)) {
printk(KERN_ERR "%s: Attempted to write past end of device\n",
__func__);
return -EINVAL;
}
oobbuf = this->oob_buf;
oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
/* Loop until all data write */
while (written < len) {
int thislen = min_t(int, oobsize, len - written);
cond_resched();
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
/* We send data to spare ram with oobsize
* to prevent byte access */
memset(oobbuf, 0xff, mtd->oobsize);
if (mode == MTD_OOB_AUTO)
onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
else
memcpy(oobbuf + column, buf, thislen);
this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this)) {
/* Set main area of DataRAM to 0xff*/
memset(this->page_buf, 0xff, mtd->writesize);
this->write_bufferram(mtd, ONENAND_DATARAM,
this->page_buf, 0, mtd->writesize);
}
this->command(mtd, oobcmd, to, mtd->oobsize);
onenand_update_bufferram(mtd, to, 0);
if (ONENAND_IS_2PLANE(this)) {
ONENAND_SET_BUFFERRAM1(this);
onenand_update_bufferram(mtd, to + this->writesize, 0);
}
ret = this->wait(mtd, FL_WRITING);
if (ret) {
printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
break;
}
ret = onenand_verify_oob(mtd, oobbuf, to);
if (ret) {
printk(KERN_ERR "%s: verify failed %d\n",
__func__, ret);
break;
}
written += thislen;
if (written == len)
break;
to += mtd->writesize;
buf += thislen;
column = 0;
}
ops->oobretlen = written;
return ret;
}
/**
* onenand_write - [MTD Interface] write buffer to FLASH
* @param mtd MTD device structure
* @param to offset to write to
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of written bytes
* @param buf the data to write
*
* Write with ECC
*/
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct mtd_oob_ops ops = {
.len = len,
.ooblen = 0,
.datbuf = (u_char *) buf,
.oobbuf = NULL,
};
int ret;
onenand_get_device(mtd, FL_WRITING);
ret = onenand_write_ops_nolock(mtd, to, &ops);
onenand_release_device(mtd);
*retlen = ops.retlen;
return ret;
}
/**
* onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
* @param mtd: MTD device structure
* @param to: offset to write
* @param ops: oob operation description structure
*/
static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int ret;
switch (ops->mode) {
case MTD_OOB_PLACE:
case MTD_OOB_AUTO:
break;
case MTD_OOB_RAW:
/* Not implemented yet */
default:
return -EINVAL;
}
onenand_get_device(mtd, FL_WRITING);
if (ops->datbuf)
ret = onenand_write_ops_nolock(mtd, to, ops);
else
ret = onenand_write_oob_nolock(mtd, to, ops);
onenand_release_device(mtd);
return ret;
}
/**
* onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
* @param mtd MTD device structure
* @param ofs offset from device start
* @param allowbbt 1, if its allowed to access the bbt area
*
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
{
struct onenand_chip *this = mtd->priv;
struct bbm_info *bbm = this->bbm;
/* Return info from the table */
return bbm->isbad_bbt(mtd, ofs, allowbbt);
}
static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
struct erase_info *instr)
{
struct onenand_chip *this = mtd->priv;
loff_t addr = instr->addr;
int len = instr->len;
unsigned int block_size = (1 << this->erase_shift);
int ret = 0;
while (len) {
this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
ret = this->wait(mtd, FL_VERIFYING_ERASE);
if (ret) {
printk(KERN_ERR "%s: Failed verify, block %d\n",
__func__, onenand_block(this, addr));
instr->state = MTD_ERASE_FAILED;
instr->fail_addr = addr;
return -1;
}
len -= block_size;
addr += block_size;
}
return 0;
}
/**
* onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
* @param mtd MTD device structure
* @param instr erase instruction
* @param region erase region
*
* Erase one or more blocks up to 64 block at a time
*/
static int onenand_multiblock_erase(struct mtd_info *mtd,
struct erase_info *instr,
unsigned int block_size)
{
struct onenand_chip *this = mtd->priv;
loff_t addr = instr->addr;
int len = instr->len;
int eb_count = 0;
int ret = 0;
int bdry_block = 0;
instr->state = MTD_ERASING;
if (ONENAND_IS_DDP(this)) {
loff_t bdry_addr = this->chipsize >> 1;
if (addr < bdry_addr && (addr + len) > bdry_addr)
bdry_block = bdry_addr >> this->erase_shift;
}
/* Pre-check bbs */
while (len) {
/* Check if we have a bad block, we do not erase bad blocks */
if (onenand_block_isbad_nolock(mtd, addr, 0)) {
printk(KERN_WARNING "%s: attempt to erase a bad block "
"at addr 0x%012llx\n",
__func__, (unsigned long long) addr);
instr->state = MTD_ERASE_FAILED;
return -EIO;
}
len -= block_size;
addr += block_size;
}
len = instr->len;
addr = instr->addr;
/* loop over 64 eb batches */
while (len) {
struct erase_info verify_instr = *instr;
int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
verify_instr.addr = addr;
verify_instr.len = 0;
/* do not cross chip boundary */
if (bdry_block) {
int this_block = (addr >> this->erase_shift);
if (this_block < bdry_block) {
max_eb_count = min(max_eb_count,
(bdry_block - this_block));
}
}
eb_count = 0;
while (len > block_size && eb_count < (max_eb_count - 1)) {
this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
addr, block_size);
onenand_invalidate_bufferram(mtd, addr, block_size);
ret = this->wait(mtd, FL_PREPARING_ERASE);
if (ret) {
printk(KERN_ERR "%s: Failed multiblock erase, "
"block %d\n", __func__,
onenand_block(this, addr));
instr->state = MTD_ERASE_FAILED;
instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
return -EIO;
}
len -= block_size;
addr += block_size;
eb_count++;
}
/* last block of 64-eb series */
cond_resched();
this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
onenand_invalidate_bufferram(mtd, addr, block_size);
ret = this->wait(mtd, FL_ERASING);
/* Check if it is write protected */
if (ret) {
printk(KERN_ERR "%s: Failed erase, block %d\n",
__func__, onenand_block(this, addr));
instr->state = MTD_ERASE_FAILED;
instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
return -EIO;
}
len -= block_size;
addr += block_size;
eb_count++;
/* verify */
verify_instr.len = eb_count * block_size;
if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
instr->state = verify_instr.state;
instr->fail_addr = verify_instr.fail_addr;
return -EIO;
}
}
return 0;
}
/**
* onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
* @param mtd MTD device structure
* @param instr erase instruction
* @param region erase region
* @param block_size erase block size
*
* Erase one or more blocks one block at a time
*/
static int onenand_block_by_block_erase(struct mtd_info *mtd,
struct erase_info *instr,
struct mtd_erase_region_info *region,
unsigned int block_size)
{
struct onenand_chip *this = mtd->priv;
loff_t addr = instr->addr;
int len = instr->len;
loff_t region_end = 0;
int ret = 0;
if (region) {
/* region is set for Flex-OneNAND */
region_end = region->offset + region->erasesize * region->numblocks;
}
instr->state = MTD_ERASING;
/* Loop through the blocks */
while (len) {
cond_resched();
/* Check if we have a bad block, we do not erase bad blocks */
if (onenand_block_isbad_nolock(mtd, addr, 0)) {
printk(KERN_WARNING "%s: attempt to erase a bad block "
"at addr 0x%012llx\n",
__func__, (unsigned long long) addr);
instr->state = MTD_ERASE_FAILED;
return -EIO;
}
this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
onenand_invalidate_bufferram(mtd, addr, block_size);
ret = this->wait(mtd, FL_ERASING);
/* Check, if it is write protected */
if (ret) {
printk(KERN_ERR "%s: Failed erase, block %d\n",
__func__, onenand_block(this, addr));
instr->state = MTD_ERASE_FAILED;
instr->fail_addr = addr;
return -EIO;
}
len -= block_size;
addr += block_size;
if (addr == region_end) {
if (!len)
break;
region++;
block_size = region->erasesize;
region_end = region->offset + region->erasesize * region->numblocks;
if (len & (block_size - 1)) {
/* FIXME: This should be handled at MTD partitioning level. */
printk(KERN_ERR "%s: Unaligned address\n",
__func__);
return -EIO;
}
}
}
return 0;
}
/**
* onenand_erase - [MTD Interface] erase block(s)
* @param mtd MTD device structure
* @param instr erase instruction
*
* Erase one or more blocks
*/
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct onenand_chip *this = mtd->priv;
unsigned int block_size;
loff_t addr = instr->addr;
loff_t len = instr->len;
int ret = 0;
struct mtd_erase_region_info *region = NULL;
loff_t region_offset = 0;
DEBUG(MTD_DEBUG_LEVEL3, "%s: start=0x%012llx, len=%llu\n", __func__,
(unsigned long long) instr->addr, (unsigned long long) instr->len);
/* Do not allow erase past end of device */
if (unlikely((len + addr) > mtd->size)) {
printk(KERN_ERR "%s: Erase past end of device\n", __func__);
return -EINVAL;
}
if (FLEXONENAND(this)) {
/* Find the eraseregion of this address */
int i = flexonenand_region(mtd, addr);
region = &mtd->eraseregions[i];
block_size = region->erasesize;
/* Start address within region must align on block boundary.
* Erase region's start offset is always block start address.
*/
region_offset = region->offset;
} else
block_size = 1 << this->erase_shift;
/* Start address must align on block boundary */
if (unlikely((addr - region_offset) & (block_size - 1))) {
printk(KERN_ERR "%s: Unaligned address\n", __func__);
return -EINVAL;
}
/* Length must align on block boundary */
if (unlikely(len & (block_size - 1))) {
printk(KERN_ERR "%s: Length not block aligned\n", __func__);
return -EINVAL;
}
instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_ERASING);
if (region || instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
/* region is set for Flex-OneNAND (no mb erase) */
ret = onenand_block_by_block_erase(mtd, instr,
region, block_size);
} else {
ret = onenand_multiblock_erase(mtd, instr, block_size);
}
/* Deselect and wake up anyone waiting on the device */
onenand_release_device(mtd);
/* Do call back function */
if (!ret) {
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
}
return ret;
}
/**
* onenand_sync - [MTD Interface] sync
* @param mtd MTD device structure
*
* Sync is actually a wait for chip ready function
*/
static void onenand_sync(struct mtd_info *mtd)
{
DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_SYNCING);
/* Release it and go back */
onenand_release_device(mtd);
}
/**
* onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
* @param mtd MTD device structure
* @param ofs offset relative to mtd start
*
* Check whether the block is bad
*/
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
int ret;
/* Check for invalid offset */
if (ofs > mtd->size)
return -EINVAL;
onenand_get_device(mtd, FL_READING);
ret = onenand_block_isbad_nolock(mtd, ofs, 0);
onenand_release_device(mtd);
return ret;
}
/**
* onenand_default_block_markbad - [DEFAULT] mark a block bad
* @param mtd MTD device structure
* @param ofs offset from device start
*
* This is the default implementation, which can be overridden by
* a hardware specific driver.
*/
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct onenand_chip *this = mtd->priv;
struct bbm_info *bbm = this->bbm;
u_char buf[2] = {0, 0};
struct mtd_oob_ops ops = {
.mode = MTD_OOB_PLACE,
.ooblen = 2,
.oobbuf = buf,
.ooboffs = 0,
};
int block;
/* Get block number */
block = onenand_block(this, ofs);
if (bbm->bbt)
bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/* We write two bytes, so we don't have to mess with 16-bit access */
ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
/* FIXME : What to do when marking SLC block in partition
* with MLC erasesize? For now, it is not advisable to
* create partitions containing both SLC and MLC regions.
*/
return onenand_write_oob_nolock(mtd, ofs, &ops);
}
/**
* onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
* @param mtd MTD device structure
* @param ofs offset relative to mtd start
*
* Mark the block as bad
*/
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct onenand_chip *this = mtd->priv;
int ret;
ret = onenand_block_isbad(mtd, ofs);
if (ret) {
/* If it was bad already, return success and do nothing */
if (ret > 0)
return 0;
return ret;
}
onenand_get_device(mtd, FL_WRITING);
ret = this->block_markbad(mtd, ofs);
onenand_release_device(mtd);
return ret;
}
/**
* onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
* @param mtd MTD device structure
* @param ofs offset relative to mtd start
* @param len number of bytes to lock or unlock
* @param cmd lock or unlock command
*
* Lock or unlock one or more blocks
*/
static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
{
struct onenand_chip *this = mtd->priv;
int start, end, block, value, status;
int wp_status_mask;
start = onenand_block(this, ofs);
end = onenand_block(this, ofs + len) - 1;
if (cmd == ONENAND_CMD_LOCK)
wp_status_mask = ONENAND_WP_LS;
else
wp_status_mask = ONENAND_WP_US;
/* Continuous lock scheme */
if (this->options & ONENAND_HAS_CONT_LOCK) {
/* Set start block address */
this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
/* Set end block address */
this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
/* Write lock command */
this->command(mtd, cmd, 0, 0);
/* There's no return value */
this->wait(mtd, FL_LOCKING);
/* Sanity check */
while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
& ONENAND_CTRL_ONGO)
continue;
/* Check lock status */
status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
if (!(status & wp_status_mask))
printk(KERN_ERR "%s: wp status = 0x%x\n",
__func__, status);
return 0;
}
/* Block lock scheme */
for (block = start; block < end + 1; block++) {
/* Set block address */
value = onenand_block_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
/* Select DataRAM for DDP */
value = onenand_bufferram_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
/* Set start block address */
this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
/* Write lock command */
this->command(mtd, cmd, 0, 0);
/* There's no return value */
this->wait(mtd, FL_LOCKING);
/* Sanity check */
while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
& ONENAND_CTRL_ONGO)
continue;
/* Check lock status */
status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
if (!(status & wp_status_mask))
printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
__func__, block, status);
}
return 0;
}
/**
* onenand_lock - [MTD Interface] Lock block(s)
* @param mtd MTD device structure
* @param ofs offset relative to mtd start
* @param len number of bytes to unlock
*
* Lock one or more blocks
*/
static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
int ret;
onenand_get_device(mtd, FL_LOCKING);
ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
onenand_release_device(mtd);
return ret;
}
/**
* onenand_unlock - [MTD Interface] Unlock block(s)
* @param mtd MTD device structure
* @param ofs offset relative to mtd start
* @param len number of bytes to unlock
*
* Unlock one or more blocks
*/
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
int ret;
onenand_get_device(mtd, FL_LOCKING);
ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
onenand_release_device(mtd);
return ret;
}
/**
* onenand_check_lock_status - [OneNAND Interface] Check lock status
* @param this onenand chip data structure
*
* Check lock status
*/
static int onenand_check_lock_status(struct onenand_chip *this)
{
unsigned int value, block, status;
unsigned int end;
end = this->chipsize >> this->erase_shift;
for (block = 0; block < end; block++) {
/* Set block address */
value = onenand_block_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
/* Select DataRAM for DDP */
value = onenand_bufferram_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
/* Set start block address */
this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
/* Check lock status */
status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
if (!(status & ONENAND_WP_US)) {
printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
__func__, block, status);
return 0;
}
}
return 1;
}
/**
* onenand_unlock_all - [OneNAND Interface] unlock all blocks
* @param mtd MTD device structure
*
* Unlock all blocks
*/
static void onenand_unlock_all(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
loff_t ofs = 0;
loff_t len = mtd->size;
if (this->options & ONENAND_HAS_UNLOCK_ALL) {
/* Set start block address */
this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
/* Write unlock command */
this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
/* There's no return value */
this->wait(mtd, FL_LOCKING);
/* Sanity check */
while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
& ONENAND_CTRL_ONGO)
continue;
/* Don't check lock status */
if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
return;
/* Check lock status */
if (onenand_check_lock_status(this))
return;
/* Workaround for all block unlock in DDP */
if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
/* All blocks on another chip */
ofs = this->chipsize >> 1;
len = this->chipsize >> 1;
}
}
onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
}
#ifdef CONFIG_MTD_ONENAND_OTP
/**
* onenand_otp_command - Send OTP specific command to OneNAND device
* @param mtd MTD device structure
* @param cmd the command to be sent
* @param addr offset to read from or write to
* @param len number of bytes to read or write
*/
static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
size_t len)
{
struct onenand_chip *this = mtd->priv;
int value, block, page;
/* Address translation */
switch (cmd) {
case ONENAND_CMD_OTP_ACCESS:
block = (int) (addr >> this->erase_shift);
page = -1;
break;
default:
block = (int) (addr >> this->erase_shift);
page = (int) (addr >> this->page_shift);
if (ONENAND_IS_2PLANE(this)) {
/* Make the even block number */
block &= ~1;
/* Is it the odd plane? */
if (addr & this->writesize)
block++;
page >>= 1;
}
page &= this->page_mask;
break;
}
if (block != -1) {
/* Write 'DFS, FBA' of Flash */
value = onenand_block_address(this, block);
this->write_word(value, this->base +
ONENAND_REG_START_ADDRESS1);
}
if (page != -1) {
/* Now we use page size operation */
int sectors = 4, count = 4;
int dataram;
switch (cmd) {
default:
if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
cmd = ONENAND_CMD_2X_PROG;
dataram = ONENAND_CURRENT_BUFFERRAM(this);
break;
}
/* Write 'FPA, FSA' of Flash */
value = onenand_page_address(page, sectors);
this->write_word(value, this->base +
ONENAND_REG_START_ADDRESS8);
/* Write 'BSA, BSC' of DataRAM */
value = onenand_buffer_address(dataram, sectors, count);
this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
}
/* Interrupt clear */
this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
/* Write command */
this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
return 0;
}
/**
* onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
* @param mtd MTD device structure
* @param to offset to write to
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of written bytes
* @param buf the data to write
*
* OneNAND write out-of-band only for OTP
*/
static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct onenand_chip *this = mtd->priv;
int column, ret = 0, oobsize;
int written = 0;
u_char *oobbuf;
size_t len = ops->ooblen;
const u_char *buf = ops->oobbuf;
int block, value, status;
to += ops->ooboffs;
/* Initialize retlen, in case of early exit */
ops->oobretlen = 0;
oobsize = mtd->oobsize;
column = to & (mtd->oobsize - 1);
oobbuf = this->oob_buf;
/* Loop until all data write */
while (written < len) {
int thislen = min_t(int, oobsize, len - written);
cond_resched();
block = (int) (to >> this->erase_shift);
/*
* Write 'DFS, FBA' of Flash
* Add: F100h DQ=DFS, FBA
*/
value = onenand_block_address(this, block);
this->write_word(value, this->base +
ONENAND_REG_START_ADDRESS1);
/*
* Select DataRAM for DDP
* Add: F101h DQ=DBS
*/
value = onenand_bufferram_address(this, block);
this->write_word(value, this->base +
ONENAND_REG_START_ADDRESS2);
ONENAND_SET_NEXT_BUFFERRAM(this);
/*
* Enter OTP access mode
*/
this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
this->wait(mtd, FL_OTPING);
/* We send data to spare ram with oobsize
* to prevent byte access */
memcpy(oobbuf + column, buf, thislen);
/*
* Write Data into DataRAM
* Add: 8th Word
* in sector0/spare/page0
* DQ=XXFCh
*/
this->write_bufferram(mtd, ONENAND_SPARERAM,
oobbuf, 0, mtd->oobsize);
onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
onenand_update_bufferram(mtd, to, 0);
if (ONENAND_IS_2PLANE(this)) {
ONENAND_SET_BUFFERRAM1(this);
onenand_update_bufferram(mtd, to + this->writesize, 0);
}
ret = this->wait(mtd, FL_WRITING);
if (ret) {
printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
break;
}
/* Exit OTP access mode */
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
this->wait(mtd, FL_RESETING);
status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
status &= 0x60;
if (status == 0x60) {
printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
printk(KERN_DEBUG "1st Block\tLOCKED\n");
printk(KERN_DEBUG "OTP Block\tLOCKED\n");
} else if (status == 0x20) {
printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
printk(KERN_DEBUG "1st Block\tLOCKED\n");
printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
} else if (status == 0x40) {
printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
printk(KERN_DEBUG "OTP Block\tLOCKED\n");
} else {
printk(KERN_DEBUG "Reboot to check\n");
}
written += thislen;
if (written == len)
break;
to += mtd->writesize;
buf += thislen;
column = 0;
}
ops->oobretlen = written;
return ret;
}
/* Internal OTP operation */
typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
size_t *retlen, u_char *buf);
/**
* do_otp_read - [DEFAULT] Read OTP block area
* @param mtd MTD device structure
* @param from The offset to read
* @param len number of bytes to read
* @param retlen pointer to variable to store the number of readbytes
* @param buf the databuffer to put/get data
*
* Read OTP block area.
*/
static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct onenand_chip *this = mtd->priv;
struct mtd_oob_ops ops = {
.len = len,
.ooblen = 0,
.datbuf = buf,
.oobbuf = NULL,
};
int ret;
/* Enter OTP access mode */
this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
this->wait(mtd, FL_OTPING);
ret = ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
onenand_mlc_read_ops_nolock(mtd, from, &ops) :
onenand_read_ops_nolock(mtd, from, &ops);
/* Exit OTP access mode */
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
this->wait(mtd, FL_RESETING);
return ret;
}
/**
* do_otp_write - [DEFAULT] Write OTP block area
* @param mtd MTD device structure
* @param to The offset to write
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of write bytes
* @param buf the databuffer to put/get data
*
* Write OTP block area.
*/
static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, u_char *buf)
{
struct onenand_chip *this = mtd->priv;
unsigned char *pbuf = buf;
int ret;
struct mtd_oob_ops ops;
/* Force buffer page aligned */
if (len < mtd->writesize) {
memcpy(this->page_buf, buf, len);
memset(this->page_buf + len, 0xff, mtd->writesize - len);
pbuf = this->page_buf;
len = mtd->writesize;
}
/* Enter OTP access mode */
this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
this->wait(mtd, FL_OTPING);
ops.len = len;
ops.ooblen = 0;
ops.datbuf = pbuf;
ops.oobbuf = NULL;
ret = onenand_write_ops_nolock(mtd, to, &ops);
*retlen = ops.retlen;
/* Exit OTP access mode */
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
this->wait(mtd, FL_RESETING);
return ret;
}
/**
* do_otp_lock - [DEFAULT] Lock OTP block area
* @param mtd MTD device structure
* @param from The offset to lock
* @param len number of bytes to lock
* @param retlen pointer to variable to store the number of lock bytes
* @param buf the databuffer to put/get data
*
* Lock OTP block area.
*/
static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct onenand_chip *this = mtd->priv;
struct mtd_oob_ops ops;
int ret;
if (FLEXONENAND(this)) {
/* Enter OTP access mode */
this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
this->wait(mtd, FL_OTPING);
/*
* For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
* main area of page 49.
*/
ops.len = mtd->writesize;
ops.ooblen = 0;
ops.datbuf = buf;
ops.oobbuf = NULL;
ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
*retlen = ops.retlen;
/* Exit OTP access mode */
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
this->wait(mtd, FL_RESETING);
} else {
ops.mode = MTD_OOB_PLACE;
ops.ooblen = len;
ops.oobbuf = buf;
ops.ooboffs = 0;
ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
*retlen = ops.oobretlen;
}
return ret;
}
/**
* onenand_otp_walk - [DEFAULT] Handle OTP operation
* @param mtd MTD device structure
* @param from The offset to read/write
* @param len number of bytes to read/write
* @param retlen pointer to variable to store the number of read bytes
* @param buf the databuffer to put/get data
* @param action do given action
* @param mode specify user and factory
*
* Handle OTP operation.
*/
static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf,
otp_op_t action, int mode)
{
struct onenand_chip *this = mtd->priv;
int otp_pages;
int density;
int ret = 0;
*retlen = 0;
density = onenand_get_density(this->device_id);
if (density < ONENAND_DEVICE_DENSITY_512Mb)
otp_pages = 20;
else
otp_pages = 50;
if (mode == MTD_OTP_FACTORY) {
from += mtd->writesize * otp_pages;
otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
}
/* Check User/Factory boundary */
if (mode == MTD_OTP_USER) {
if (mtd->writesize * otp_pages < from + len)
return 0;
} else {
if (mtd->writesize * otp_pages < len)
return 0;
}
onenand_get_device(mtd, FL_OTPING);
while (len > 0 && otp_pages > 0) {
if (!action) { /* OTP Info functions */
struct otp_info *otpinfo;
len -= sizeof(struct otp_info);
if (len <= 0) {
ret = -ENOSPC;
break;
}
otpinfo = (struct otp_info *) buf;
otpinfo->start = from;
otpinfo->length = mtd->writesize;
otpinfo->locked = 0;
from += mtd->writesize;
buf += sizeof(struct otp_info);
*retlen += sizeof(struct otp_info);
} else {
size_t tmp_retlen;
ret = action(mtd, from, len, &tmp_retlen, buf);
buf += tmp_retlen;
len -= tmp_retlen;
*retlen += tmp_retlen;
if (ret)
break;
}
otp_pages--;
}
onenand_release_device(mtd);
return ret;
}
/**
* onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
* @param mtd MTD device structure
* @param buf the databuffer to put/get data
* @param len number of bytes to read
*
* Read factory OTP info.
*/
static int onenand_get_fact_prot_info(struct mtd_info *mtd,
struct otp_info *buf, size_t len)
{
size_t retlen;
int ret;
ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
return ret ? : retlen;
}
/**
* onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
* @param mtd MTD device structure
* @param from The offset to read
* @param len number of bytes to read
* @param retlen pointer to variable to store the number of read bytes
* @param buf the databuffer to put/get data
*
* Read factory OTP area.
*/
static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
}
/**
* onenand_get_user_prot_info - [MTD Interface] Read user OTP info
* @param mtd MTD device structure
* @param buf the databuffer to put/get data
* @param len number of bytes to read
*
* Read user OTP info.
*/
static int onenand_get_user_prot_info(struct mtd_info *mtd,
struct otp_info *buf, size_t len)
{
size_t retlen;
int ret;
ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
return ret ? : retlen;
}
/**
* onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
* @param mtd MTD device structure
* @param from The offset to read
* @param len number of bytes to read
* @param retlen pointer to variable to store the number of read bytes
* @param buf the databuffer to put/get data
*
* Read user OTP area.
*/
static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
}
/**
* onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
* @param mtd MTD device structure
* @param from The offset to write
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of write bytes
* @param buf the databuffer to put/get data
*
* Write user OTP area.
*/
static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
}
/**
* onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
* @param mtd MTD device structure
* @param from The offset to lock
* @param len number of bytes to unlock
*
* Write lock mark on spare area in page 0 in OTP block
*/
static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len)
{
struct onenand_chip *this = mtd->priv;
u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
size_t retlen;
int ret;
unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
: mtd->oobsize);
/*
* Write lock mark to 8th word of sector0 of page0 of the spare0.
* We write 16 bytes spare area instead of 2 bytes.
* For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
* main area of page 49.
*/
from = 0;
len = FLEXONENAND(this) ? mtd->writesize : 16;
/*
* Note: OTP lock operation
* OTP block : 0xXXFC XX 1111 1100
* 1st block : 0xXXF3 (If chip support) XX 1111 0011
* Both : 0xXXF0 (If chip support) XX 1111 0000
*/
if (FLEXONENAND(this))
otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
if (otp == 1)
buf[otp_lock_offset] = 0xFC;
else if (otp == 2)
buf[otp_lock_offset] = 0xF3;
else if (otp == 3)
buf[otp_lock_offset] = 0xF0;
else if (otp != 0)
printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
return ret ? : retlen;
}
#endif /* CONFIG_MTD_ONENAND_OTP */
/**
* onenand_check_features - Check and set OneNAND features
* @param mtd MTD data structure
*
* Check and set OneNAND features
* - lock scheme
* - two plane
*/
static void onenand_check_features(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
unsigned int density, process;
/* Lock scheme depends on density and process */
density = onenand_get_density(this->device_id);
process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
/* Lock scheme */
switch (density) {
case ONENAND_DEVICE_DENSITY_4Gb:
if (ONENAND_IS_DDP(this))
this->options |= ONENAND_HAS_2PLANE;
else
this->options |= ONENAND_HAS_4KB_PAGE;
case ONENAND_DEVICE_DENSITY_2Gb:
/* 2Gb DDP does not have 2 plane */
if (!ONENAND_IS_DDP(this))
this->options |= ONENAND_HAS_2PLANE;
this->options |= ONENAND_HAS_UNLOCK_ALL;
case ONENAND_DEVICE_DENSITY_1Gb:
/* A-Die has all block unlock */
if (process)
this->options |= ONENAND_HAS_UNLOCK_ALL;
break;
default:
/* Some OneNAND has continuous lock scheme */
if (!process)
this->options |= ONENAND_HAS_CONT_LOCK;
break;
}
if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
this->options &= ~ONENAND_HAS_2PLANE;
if (FLEXONENAND(this)) {
this->options &= ~ONENAND_HAS_CONT_LOCK;
this->options |= ONENAND_HAS_UNLOCK_ALL;
}
if (this->options & ONENAND_HAS_CONT_LOCK)
printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
if (this->options & ONENAND_HAS_UNLOCK_ALL)
printk(KERN_DEBUG "Chip support all block unlock\n");
if (this->options & ONENAND_HAS_2PLANE)
printk(KERN_DEBUG "Chip has 2 plane\n");
if (this->options & ONENAND_HAS_4KB_PAGE)
printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
}
/**
* onenand_print_device_info - Print device & version ID
* @param device device ID
* @param version version ID
*
* Print device & version ID
*/
static void onenand_print_device_info(int device, int version)
{
int vcc, demuxed, ddp, density, flexonenand;
vcc = device & ONENAND_DEVICE_VCC_MASK;
demuxed = device & ONENAND_DEVICE_IS_DEMUX;
ddp = device & ONENAND_DEVICE_IS_DDP;
density = onenand_get_density(device);
flexonenand = device & DEVICE_IS_FLEXONENAND;
printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
demuxed ? "" : "Muxed ",
flexonenand ? "Flex-" : "",
ddp ? "(DDP)" : "",
(16 << density),
vcc ? "2.65/3.3" : "1.8",
device);
printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
}
static const struct onenand_manufacturers onenand_manuf_ids[] = {
{ONENAND_MFR_SAMSUNG, "Samsung"},
{ONENAND_MFR_NUMONYX, "Numonyx"},
};
/**
* onenand_check_maf - Check manufacturer ID
* @param manuf manufacturer ID
*
* Check manufacturer ID
*/
static int onenand_check_maf(int manuf)
{
int size = ARRAY_SIZE(onenand_manuf_ids);
char *name;
int i;
for (i = 0; i < size; i++)
if (manuf == onenand_manuf_ids[i].id)
break;
if (i < size)
name = onenand_manuf_ids[i].name;
else
name = "Unknown";
printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
return (i == size);
}
/**
* flexonenand_get_boundary - Reads the SLC boundary
* @param onenand_info - onenand info structure
**/
static int flexonenand_get_boundary(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
unsigned die, bdry;
int ret, syscfg, locked;
/* Disable ECC */
syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
for (die = 0; die < this->dies; die++) {
this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
this->wait(mtd, FL_SYNCING);
this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
ret = this->wait(mtd, FL_READING);
bdry = this->read_word(this->base + ONENAND_DATARAM);
if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
locked = 0;
else
locked = 1;
this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
this->command(mtd, ONENAND_CMD_RESET, 0, 0);
ret = this->wait(mtd, FL_RESETING);
printk(KERN_INFO "Die %d boundary: %d%s\n", die,
this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
}
/* Enable ECC */
this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
return 0;
}
/**
* flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
* boundary[], diesize[], mtd->size, mtd->erasesize
* @param mtd - MTD device structure
*/
static void flexonenand_get_size(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
int die, i, eraseshift, density;
int blksperdie, maxbdry;
loff_t ofs;
density = onenand_get_density(this->device_id);
blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
maxbdry = blksperdie - 1;
eraseshift = this->erase_shift - 1;
mtd->numeraseregions = this->dies << 1;
/* This fills up the device boundary */
flexonenand_get_boundary(mtd);
die = ofs = 0;
i = -1;
for (; die < this->dies; die++) {
if (!die || this->boundary[die-1] != maxbdry) {
i++;
mtd->eraseregions[i].offset = ofs;
mtd->eraseregions[i].erasesize = 1 << eraseshift;
mtd->eraseregions[i].numblocks =
this->boundary[die] + 1;
ofs += mtd->eraseregions[i].numblocks << eraseshift;
eraseshift++;
} else {
mtd->numeraseregions -= 1;
mtd->eraseregions[i].numblocks +=
this->boundary[die] + 1;
ofs += (this->boundary[die] + 1) << (eraseshift - 1);
}
if (this->boundary[die] != maxbdry) {
i++;
mtd->eraseregions[i].offset = ofs;
mtd->eraseregions[i].erasesize = 1 << eraseshift;
mtd->eraseregions[i].numblocks = maxbdry ^
this->boundary[die];
ofs += mtd->eraseregions[i].numblocks << eraseshift;
eraseshift--;
} else
mtd->numeraseregions -= 1;
}
/* Expose MLC erase size except when all blocks are SLC */
mtd->erasesize = 1 << this->erase_shift;
if (mtd->numeraseregions == 1)
mtd->erasesize >>= 1;
printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
for (i = 0; i < mtd->numeraseregions; i++)
printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
" numblocks: %04u]\n",
(unsigned int) mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].numblocks);
for (die = 0, mtd->size = 0; die < this->dies; die++) {
this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
<< (this->erase_shift - 1);
mtd->size += this->diesize[die];
}
}
/**
* flexonenand_check_blocks_erased - Check if blocks are erased
* @param mtd_info - mtd info structure
* @param start - first erase block to check
* @param end - last erase block to check
*
* Converting an unerased block from MLC to SLC
* causes byte values to change. Since both data and its ECC
* have changed, reads on the block give uncorrectable error.
* This might lead to the block being detected as bad.
*
* Avoid this by ensuring that the block to be converted is
* erased.
*/
static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
{
struct onenand_chip *this = mtd->priv;
int i, ret;
int block;
struct mtd_oob_ops ops = {
.mode = MTD_OOB_PLACE,
.ooboffs = 0,
.ooblen = mtd->oobsize,
.datbuf = NULL,
.oobbuf = this->oob_buf,
};
loff_t addr;
printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
for (block = start; block <= end; block++) {
addr = flexonenand_addr(this, block);
if (onenand_block_isbad_nolock(mtd, addr, 0))
continue;
/*
* Since main area write results in ECC write to spare,
* it is sufficient to check only ECC bytes for change.
*/
ret = onenand_read_oob_nolock(mtd, addr, &ops);
if (ret)
return ret;
for (i = 0; i < mtd->oobsize; i++)
if (this->oob_buf[i] != 0xff)
break;
if (i != mtd->oobsize) {
printk(KERN_WARNING "%s: Block %d not erased.\n",
__func__, block);
return 1;
}
}
return 0;
}
/**
* flexonenand_set_boundary - Writes the SLC boundary
* @param mtd - mtd info structure
*/
int flexonenand_set_boundary(struct mtd_info *mtd, int die,
int boundary, int lock)
{
struct onenand_chip *this = mtd->priv;
int ret, density, blksperdie, old, new, thisboundary;
loff_t addr;
/* Change only once for SDP Flex-OneNAND */
if (die && (!ONENAND_IS_DDP(this)))
return 0;
/* boundary value of -1 indicates no required change */
if (boundary < 0 || boundary == this->boundary[die])
return 0;
density = onenand_get_density(this->device_id);
blksperdie = ((16 << density) << 20) >> this->erase_shift;
blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
if (boundary >= blksperdie) {
printk(KERN_ERR "%s: Invalid boundary value. "
"Boundary not changed.\n", __func__);
return -EINVAL;
}
/* Check if converting blocks are erased */
old = this->boundary[die] + (die * this->density_mask);
new = boundary + (die * this->density_mask);
ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
if (ret) {
printk(KERN_ERR "%s: Please erase blocks "
"before boundary change\n", __func__);
return ret;
}
this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
this->wait(mtd, FL_SYNCING);
/* Check is boundary is locked */
this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
ret = this->wait(mtd, FL_READING);
thisboundary = this->read_word(this->base + ONENAND_DATARAM);
if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
printk(KERN_ERR "%s: boundary locked\n", __func__);
ret = 1;
goto out;
}
printk(KERN_INFO "Changing die %d boundary: %d%s\n",
die, boundary, lock ? "(Locked)" : "(Unlocked)");
addr = die ? this->diesize[0] : 0;
boundary &= FLEXONENAND_PI_MASK;
boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
ret = this->wait(mtd, FL_ERASING);
if (ret) {
printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
__func__, die);
goto out;
}
this->write_word(boundary, this->base + ONENAND_DATARAM);
this->command(mtd, ONENAND_CMD_PROG, addr, 0);
ret = this->wait(mtd, FL_WRITING);
if (ret) {
printk(KERN_ERR "%s: Failed PI write for Die %d\n",
__func__, die);
goto out;
}
this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
ret = this->wait(mtd, FL_WRITING);
out:
this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
this->wait(mtd, FL_RESETING);
if (!ret)
/* Recalculate device size on boundary change*/
flexonenand_get_size(mtd);
return ret;
}
/**
* onenand_probe - [OneNAND Interface] Probe the OneNAND device
* @param mtd MTD device structure
*
* OneNAND detection method:
* Compare the values from command with ones from register
*/
static int onenand_probe(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
int density;
int syscfg;
/* Save system configuration 1 */
syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
/* Clear Sync. Burst Read mode to read BootRAM */
this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
/* Send the command for reading device ID from BootRAM */
this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
/* Read manufacturer and device IDs from BootRAM */
bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
/* Reset OneNAND to read default register values */
this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
/* Wait reset */
this->wait(mtd, FL_RESETING);
/* Restore system configuration 1 */
this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
/* Check manufacturer ID */
if (onenand_check_maf(bram_maf_id))
return -ENXIO;
/* Read manufacturer and device IDs from Register */
maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
/* Check OneNAND device */
if (maf_id != bram_maf_id || dev_id != bram_dev_id)
return -ENXIO;
/* Flash device information */
onenand_print_device_info(dev_id, ver_id);
this->device_id = dev_id;
this->version_id = ver_id;
density = onenand_get_density(dev_id);
if (FLEXONENAND(this)) {
this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
/* Maximum possible erase regions */
mtd->numeraseregions = this->dies << 1;
mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
* (this->dies << 1), GFP_KERNEL);
if (!mtd->eraseregions)
return -ENOMEM;
}
/*
* For Flex-OneNAND, chipsize represents maximum possible device size.
* mtd->size represents the actual device size.
*/
this->chipsize = (16 << density) << 20;
/* OneNAND page size & block size */
/* The data buffer size is equal to page size */
mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
/* We use the full BufferRAM */
if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
mtd->writesize <<= 1;
mtd->oobsize = mtd->writesize >> 5;
/* Pages per a block are always 64 in OneNAND */
mtd->erasesize = mtd->writesize << 6;
/*
* Flex-OneNAND SLC area has 64 pages per block.
* Flex-OneNAND MLC area has 128 pages per block.
* Expose MLC erase size to find erase_shift and page_mask.
*/
if (FLEXONENAND(this))
mtd->erasesize <<= 1;
this->erase_shift = ffs(mtd->erasesize) - 1;
this->page_shift = ffs(mtd->writesize) - 1;
this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
/* Set density mask. it is used for DDP */
if (ONENAND_IS_DDP(this))
this->density_mask = this->chipsize >> (this->erase_shift + 1);
/* It's real page size */
this->writesize = mtd->writesize;
/* REVISIT: Multichip handling */
if (FLEXONENAND(this))
flexonenand_get_size(mtd);
else
mtd->size = this->chipsize;
/* Check OneNAND features */
onenand_check_features(mtd);
/*
* We emulate the 4KiB page and 256KiB erase block size
* But oobsize is still 64 bytes.
* It is only valid if you turn on 2X program support,
* Otherwise it will be ignored by compiler.
*/
if (ONENAND_IS_2PLANE(this)) {
mtd->writesize <<= 1;
mtd->erasesize <<= 1;
}
return 0;
}
/**
* onenand_suspend - [MTD Interface] Suspend the OneNAND flash
* @param mtd MTD device structure
*/
static int onenand_suspend(struct mtd_info *mtd)
{
return onenand_get_device(mtd, FL_PM_SUSPENDED);
}
/**
* onenand_resume - [MTD Interface] Resume the OneNAND flash
* @param mtd MTD device structure
*/
static void onenand_resume(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
if (this->state == FL_PM_SUSPENDED)
onenand_release_device(mtd);
else
printk(KERN_ERR "%s: resume() called for the chip which is not "
"in suspended state\n", __func__);
}
/**
* onenand_scan - [OneNAND Interface] Scan for the OneNAND device
* @param mtd MTD device structure
* @param maxchips Number of chips to scan for
*
* This fills out all the not initialized function pointers
* with the defaults.
* The flash ID is read and the mtd/chip structures are
* filled with the appropriate values.
*/
int onenand_scan(struct mtd_info *mtd, int maxchips)
{
int i, ret;
struct onenand_chip *this = mtd->priv;
if (!this->read_word)
this->read_word = onenand_readw;
if (!this->write_word)
this->write_word = onenand_writew;
if (!this->command)
this->command = onenand_command;
if (!this->wait)
onenand_setup_wait(mtd);
if (!this->bbt_wait)
this->bbt_wait = onenand_bbt_wait;
if (!this->unlock_all)
this->unlock_all = onenand_unlock_all;
if (!this->read_bufferram)
this->read_bufferram = onenand_read_bufferram;
if (!this->write_bufferram)
this->write_bufferram = onenand_write_bufferram;
if (!this->block_markbad)
this->block_markbad = onenand_default_block_markbad;
if (!this->scan_bbt)
this->scan_bbt = onenand_default_bbt;
if (onenand_probe(mtd))
return -ENXIO;
/* Set Sync. Burst Read after probing */
if (this->mmcontrol) {
printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
this->read_bufferram = onenand_sync_read_bufferram;
}
/* Allocate buffers, if necessary */
if (!this->page_buf) {
this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
if (!this->page_buf) {
printk(KERN_ERR "%s: Can't allocate page_buf\n",
__func__);
return -ENOMEM;
}
this->options |= ONENAND_PAGEBUF_ALLOC;
}
if (!this->oob_buf) {
this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
if (!this->oob_buf) {
printk(KERN_ERR "%s: Can't allocate oob_buf\n",
__func__);
if (this->options & ONENAND_PAGEBUF_ALLOC) {
this->options &= ~ONENAND_PAGEBUF_ALLOC;
kfree(this->page_buf);
}
return -ENOMEM;
}
this->options |= ONENAND_OOBBUF_ALLOC;
}
this->state = FL_READY;
init_waitqueue_head(&this->wq);
spin_lock_init(&this->chip_lock);
/*
* Allow subpage writes up to oobsize.
*/
switch (mtd->oobsize) {
case 128:
this->ecclayout = &onenand_oob_128;
mtd->subpage_sft = 0;
break;
case 64:
this->ecclayout = &onenand_oob_64;
mtd->subpage_sft = 2;
break;
case 32:
this->ecclayout = &onenand_oob_32;
mtd->subpage_sft = 1;
break;
default:
printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
__func__, mtd->oobsize);
mtd->subpage_sft = 0;
/* To prevent kernel oops */
this->ecclayout = &onenand_oob_32;
break;
}
this->subpagesize = mtd->writesize >> mtd->subpage_sft;
/*
* The number of bytes available for a client to place data into
* the out of band area
*/
this->ecclayout->oobavail = 0;
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
this->ecclayout->oobfree[i].length; i++)
this->ecclayout->oobavail +=
this->ecclayout->oobfree[i].length;
mtd->oobavail = this->ecclayout->oobavail;
mtd->ecclayout = this->ecclayout;
/* Fill in remaining MTD driver data */
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH;
mtd->erase = onenand_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = onenand_read;
mtd->write = onenand_write;
mtd->read_oob = onenand_read_oob;
mtd->write_oob = onenand_write_oob;
mtd->panic_write = onenand_panic_write;
#ifdef CONFIG_MTD_ONENAND_OTP
mtd->get_fact_prot_info = onenand_get_fact_prot_info;
mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
mtd->get_user_prot_info = onenand_get_user_prot_info;
mtd->read_user_prot_reg = onenand_read_user_prot_reg;
mtd->write_user_prot_reg = onenand_write_user_prot_reg;
mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
#endif
mtd->sync = onenand_sync;
mtd->lock = onenand_lock;
mtd->unlock = onenand_unlock;
mtd->suspend = onenand_suspend;
mtd->resume = onenand_resume;
mtd->block_isbad = onenand_block_isbad;
mtd->block_markbad = onenand_block_markbad;
mtd->owner = THIS_MODULE;
/* Unlock whole block */
this->unlock_all(mtd);
ret = this->scan_bbt(mtd);
if ((!FLEXONENAND(this)) || ret)
return ret;
/* Change Flex-OneNAND boundaries if required */
for (i = 0; i < MAX_DIES; i++)
flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
flex_bdry[(2 * i) + 1]);
return 0;
}
/**
* onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
* @param mtd MTD device structure
*/
void onenand_release(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
#ifdef CONFIG_MTD_PARTITIONS
/* Deregister partitions */
del_mtd_partitions (mtd);
#endif
/* Deregister the device */
del_mtd_device (mtd);
/* Free bad block table memory, if allocated */
if (this->bbm) {
struct bbm_info *bbm = this->bbm;
kfree(bbm->bbt);
kfree(this->bbm);
}
/* Buffers allocated by onenand_scan */
if (this->options & ONENAND_PAGEBUF_ALLOC)
kfree(this->page_buf);
if (this->options & ONENAND_OOBBUF_ALLOC)
kfree(this->oob_buf);
kfree(mtd->eraseregions);
}
EXPORT_SYMBOL_GPL(onenand_scan);
EXPORT_SYMBOL_GPL(onenand_release);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Generic OneNAND flash driver code");