kernel-fxtec-pro1x/block/blk-settings.c
Jens Axboe a4e7d46407 block: always assign default lock to queues
Move the assignment of a default lock below blk_init_queue() to
blk_queue_make_request(), so we also get to set the default lock
for ->make_request_fn() based drivers. This is important since the
queue flag locking requires a lock to be in place.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-07-28 09:07:29 +02:00

707 lines
22 KiB
C

/*
* Functions related to setting various queue properties from drivers
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
#include "blk.h"
unsigned long blk_max_low_pfn;
EXPORT_SYMBOL(blk_max_low_pfn);
unsigned long blk_max_pfn;
/**
* blk_queue_prep_rq - set a prepare_request function for queue
* @q: queue
* @pfn: prepare_request function
*
* It's possible for a queue to register a prepare_request callback which
* is invoked before the request is handed to the request_fn. The goal of
* the function is to prepare a request for I/O, it can be used to build a
* cdb from the request data for instance.
*
*/
void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
{
q->prep_rq_fn = pfn;
}
EXPORT_SYMBOL(blk_queue_prep_rq);
/**
* blk_queue_set_discard - set a discard_sectors function for queue
* @q: queue
* @dfn: prepare_discard function
*
* It's possible for a queue to register a discard callback which is used
* to transform a discard request into the appropriate type for the
* hardware. If none is registered, then discard requests are failed
* with %EOPNOTSUPP.
*
*/
void blk_queue_set_discard(struct request_queue *q, prepare_discard_fn *dfn)
{
q->prepare_discard_fn = dfn;
}
EXPORT_SYMBOL(blk_queue_set_discard);
/**
* blk_queue_merge_bvec - set a merge_bvec function for queue
* @q: queue
* @mbfn: merge_bvec_fn
*
* Usually queues have static limitations on the max sectors or segments that
* we can put in a request. Stacking drivers may have some settings that
* are dynamic, and thus we have to query the queue whether it is ok to
* add a new bio_vec to a bio at a given offset or not. If the block device
* has such limitations, it needs to register a merge_bvec_fn to control
* the size of bio's sent to it. Note that a block device *must* allow a
* single page to be added to an empty bio. The block device driver may want
* to use the bio_split() function to deal with these bio's. By default
* no merge_bvec_fn is defined for a queue, and only the fixed limits are
* honored.
*/
void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
{
q->merge_bvec_fn = mbfn;
}
EXPORT_SYMBOL(blk_queue_merge_bvec);
void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
{
q->softirq_done_fn = fn;
}
EXPORT_SYMBOL(blk_queue_softirq_done);
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
{
q->rq_timeout = timeout;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
{
q->rq_timed_out_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
{
q->lld_busy_fn = fn;
}
EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
/**
* blk_set_default_limits - reset limits to default values
* @lim: the queue_limits structure to reset
*
* Description:
* Returns a queue_limit struct to its default state. Can be used by
* stacking drivers like DM that stage table swaps and reuse an
* existing device queue.
*/
void blk_set_default_limits(struct queue_limits *lim)
{
lim->max_phys_segments = MAX_PHYS_SEGMENTS;
lim->max_hw_segments = MAX_HW_SEGMENTS;
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
lim->max_segment_size = MAX_SEGMENT_SIZE;
lim->max_sectors = lim->max_hw_sectors = SAFE_MAX_SECTORS;
lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
lim->alignment_offset = 0;
lim->io_opt = 0;
lim->misaligned = 0;
lim->no_cluster = 0;
}
EXPORT_SYMBOL(blk_set_default_limits);
/**
* blk_queue_make_request - define an alternate make_request function for a device
* @q: the request queue for the device to be affected
* @mfn: the alternate make_request function
*
* Description:
* The normal way for &struct bios to be passed to a device
* driver is for them to be collected into requests on a request
* queue, and then to allow the device driver to select requests
* off that queue when it is ready. This works well for many block
* devices. However some block devices (typically virtual devices
* such as md or lvm) do not benefit from the processing on the
* request queue, and are served best by having the requests passed
* directly to them. This can be achieved by providing a function
* to blk_queue_make_request().
*
* Caveat:
* The driver that does this *must* be able to deal appropriately
* with buffers in "highmemory". This can be accomplished by either calling
* __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
* blk_queue_bounce() to create a buffer in normal memory.
**/
void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
{
/*
* set defaults
*/
q->nr_requests = BLKDEV_MAX_RQ;
q->make_request_fn = mfn;
blk_queue_dma_alignment(q, 511);
blk_queue_congestion_threshold(q);
q->nr_batching = BLK_BATCH_REQ;
q->unplug_thresh = 4; /* hmm */
q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
if (q->unplug_delay == 0)
q->unplug_delay = 1;
q->unplug_timer.function = blk_unplug_timeout;
q->unplug_timer.data = (unsigned long)q;
blk_set_default_limits(&q->limits);
/*
* If the caller didn't supply a lock, fall back to our embedded
* per-queue locks
*/
if (!q->queue_lock)
q->queue_lock = &q->__queue_lock;
/*
* by default assume old behaviour and bounce for any highmem page
*/
blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
}
EXPORT_SYMBOL(blk_queue_make_request);
/**
* blk_queue_bounce_limit - set bounce buffer limit for queue
* @q: the request queue for the device
* @dma_mask: the maximum address the device can handle
*
* Description:
* Different hardware can have different requirements as to what pages
* it can do I/O directly to. A low level driver can call
* blk_queue_bounce_limit to have lower memory pages allocated as bounce
* buffers for doing I/O to pages residing above @dma_mask.
**/
void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
{
unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
int dma = 0;
q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
/*
* Assume anything <= 4GB can be handled by IOMMU. Actually
* some IOMMUs can handle everything, but I don't know of a
* way to test this here.
*/
if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
dma = 1;
q->limits.bounce_pfn = max_low_pfn;
#else
if (b_pfn < blk_max_low_pfn)
dma = 1;
q->limits.bounce_pfn = b_pfn;
#endif
if (dma) {
init_emergency_isa_pool();
q->bounce_gfp = GFP_NOIO | GFP_DMA;
q->limits.bounce_pfn = b_pfn;
}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);
/**
* blk_queue_max_sectors - set max sectors for a request for this queue
* @q: the request queue for the device
* @max_sectors: max sectors in the usual 512b unit
*
* Description:
* Enables a low level driver to set an upper limit on the size of
* received requests.
**/
void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
{
if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_sectors);
}
if (BLK_DEF_MAX_SECTORS > max_sectors)
q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors;
else {
q->limits.max_sectors = BLK_DEF_MAX_SECTORS;
q->limits.max_hw_sectors = max_sectors;
}
}
EXPORT_SYMBOL(blk_queue_max_sectors);
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors)
{
if (BLK_DEF_MAX_SECTORS > max_sectors)
q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS;
else
q->limits.max_hw_sectors = max_sectors;
}
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
/**
* blk_queue_max_phys_segments - set max phys segments for a request for this queue
* @q: the request queue for the device
* @max_segments: max number of segments
*
* Description:
* Enables a low level driver to set an upper limit on the number of
* physical data segments in a request. This would be the largest sized
* scatter list the driver could handle.
**/
void blk_queue_max_phys_segments(struct request_queue *q,
unsigned short max_segments)
{
if (!max_segments) {
max_segments = 1;
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_segments);
}
q->limits.max_phys_segments = max_segments;
}
EXPORT_SYMBOL(blk_queue_max_phys_segments);
/**
* blk_queue_max_hw_segments - set max hw segments for a request for this queue
* @q: the request queue for the device
* @max_segments: max number of segments
*
* Description:
* Enables a low level driver to set an upper limit on the number of
* hw data segments in a request. This would be the largest number of
* address/length pairs the host adapter can actually give at once
* to the device.
**/
void blk_queue_max_hw_segments(struct request_queue *q,
unsigned short max_segments)
{
if (!max_segments) {
max_segments = 1;
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_segments);
}
q->limits.max_hw_segments = max_segments;
}
EXPORT_SYMBOL(blk_queue_max_hw_segments);
/**
* blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
* @q: the request queue for the device
* @max_size: max size of segment in bytes
*
* Description:
* Enables a low level driver to set an upper limit on the size of a
* coalesced segment
**/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
if (max_size < PAGE_CACHE_SIZE) {
max_size = PAGE_CACHE_SIZE;
printk(KERN_INFO "%s: set to minimum %d\n",
__func__, max_size);
}
q->limits.max_segment_size = max_size;
}
EXPORT_SYMBOL(blk_queue_max_segment_size);
/**
* blk_queue_logical_block_size - set logical block size for the queue
* @q: the request queue for the device
* @size: the logical block size, in bytes
*
* Description:
* This should be set to the lowest possible block size that the
* storage device can address. The default of 512 covers most
* hardware.
**/
void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
{
q->limits.logical_block_size = size;
if (q->limits.physical_block_size < size)
q->limits.physical_block_size = size;
if (q->limits.io_min < q->limits.physical_block_size)
q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_logical_block_size);
/**
* blk_queue_physical_block_size - set physical block size for the queue
* @q: the request queue for the device
* @size: the physical block size, in bytes
*
* Description:
* This should be set to the lowest possible sector size that the
* hardware can operate on without reverting to read-modify-write
* operations.
*/
void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
{
q->limits.physical_block_size = size;
if (q->limits.physical_block_size < q->limits.logical_block_size)
q->limits.physical_block_size = q->limits.logical_block_size;
if (q->limits.io_min < q->limits.physical_block_size)
q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_physical_block_size);
/**
* blk_queue_alignment_offset - set physical block alignment offset
* @q: the request queue for the device
* @offset: alignment offset in bytes
*
* Description:
* Some devices are naturally misaligned to compensate for things like
* the legacy DOS partition table 63-sector offset. Low-level drivers
* should call this function for devices whose first sector is not
* naturally aligned.
*/
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
{
q->limits.alignment_offset =
offset & (q->limits.physical_block_size - 1);
q->limits.misaligned = 0;
}
EXPORT_SYMBOL(blk_queue_alignment_offset);
/**
* blk_queue_io_min - set minimum request size for the queue
* @q: the request queue for the device
* @min: smallest I/O size in bytes
*
* Description:
* Some devices have an internal block size bigger than the reported
* hardware sector size. This function can be used to signal the
* smallest I/O the device can perform without incurring a performance
* penalty.
*/
void blk_queue_io_min(struct request_queue *q, unsigned int min)
{
q->limits.io_min = min;
if (q->limits.io_min < q->limits.logical_block_size)
q->limits.io_min = q->limits.logical_block_size;
if (q->limits.io_min < q->limits.physical_block_size)
q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_io_min);
/**
* blk_queue_io_opt - set optimal request size for the queue
* @q: the request queue for the device
* @opt: optimal request size in bytes
*
* Description:
* Drivers can call this function to set the preferred I/O request
* size for devices that report such a value.
*/
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
{
q->limits.io_opt = opt;
}
EXPORT_SYMBOL(blk_queue_io_opt);
/*
* Returns the minimum that is _not_ zero, unless both are zero.
*/
#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
/**
* blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
* @t: the stacking driver (top)
* @b: the underlying device (bottom)
**/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
/* zero is "infinity" */
t->limits.max_sectors = min_not_zero(queue_max_sectors(t),
queue_max_sectors(b));
t->limits.max_hw_sectors = min_not_zero(queue_max_hw_sectors(t),
queue_max_hw_sectors(b));
t->limits.seg_boundary_mask = min_not_zero(queue_segment_boundary(t),
queue_segment_boundary(b));
t->limits.max_phys_segments = min_not_zero(queue_max_phys_segments(t),
queue_max_phys_segments(b));
t->limits.max_hw_segments = min_not_zero(queue_max_hw_segments(t),
queue_max_hw_segments(b));
t->limits.max_segment_size = min_not_zero(queue_max_segment_size(t),
queue_max_segment_size(b));
t->limits.logical_block_size = max(queue_logical_block_size(t),
queue_logical_block_size(b));
if (!t->queue_lock)
WARN_ON_ONCE(1);
else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
unsigned long flags;
spin_lock_irqsave(t->queue_lock, flags);
queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
spin_unlock_irqrestore(t->queue_lock, flags);
}
}
EXPORT_SYMBOL(blk_queue_stack_limits);
/**
* blk_stack_limits - adjust queue_limits for stacked devices
* @t: the stacking driver limits (top)
* @b: the underlying queue limits (bottom)
* @offset: offset to beginning of data within component device
*
* Description:
* Merges two queue_limit structs. Returns 0 if alignment didn't
* change. Returns -1 if adding the bottom device caused
* misalignment.
*/
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
sector_t offset)
{
t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
b->seg_boundary_mask);
t->max_phys_segments = min_not_zero(t->max_phys_segments,
b->max_phys_segments);
t->max_hw_segments = min_not_zero(t->max_hw_segments,
b->max_hw_segments);
t->max_segment_size = min_not_zero(t->max_segment_size,
b->max_segment_size);
t->logical_block_size = max(t->logical_block_size,
b->logical_block_size);
t->physical_block_size = max(t->physical_block_size,
b->physical_block_size);
t->io_min = max(t->io_min, b->io_min);
t->no_cluster |= b->no_cluster;
/* Bottom device offset aligned? */
if (offset &&
(offset & (b->physical_block_size - 1)) != b->alignment_offset) {
t->misaligned = 1;
return -1;
}
/* If top has no alignment offset, inherit from bottom */
if (!t->alignment_offset)
t->alignment_offset =
b->alignment_offset & (b->physical_block_size - 1);
/* Top device aligned on logical block boundary? */
if (t->alignment_offset & (t->logical_block_size - 1)) {
t->misaligned = 1;
return -1;
}
return 0;
}
EXPORT_SYMBOL(blk_stack_limits);
/**
* disk_stack_limits - adjust queue limits for stacked drivers
* @disk: MD/DM gendisk (top)
* @bdev: the underlying block device (bottom)
* @offset: offset to beginning of data within component device
*
* Description:
* Merges the limits for two queues. Returns 0 if alignment
* didn't change. Returns -1 if adding the bottom device caused
* misalignment.
*/
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
sector_t offset)
{
struct request_queue *t = disk->queue;
struct request_queue *b = bdev_get_queue(bdev);
offset += get_start_sect(bdev) << 9;
if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) {
char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
disk_name(disk, 0, top);
bdevname(bdev, bottom);
printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
top, bottom);
}
if (!t->queue_lock)
WARN_ON_ONCE(1);
else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
unsigned long flags;
spin_lock_irqsave(t->queue_lock, flags);
if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
spin_unlock_irqrestore(t->queue_lock, flags);
}
}
EXPORT_SYMBOL(disk_stack_limits);
/**
* blk_queue_dma_pad - set pad mask
* @q: the request queue for the device
* @mask: pad mask
*
* Set dma pad mask.
*
* Appending pad buffer to a request modifies the last entry of a
* scatter list such that it includes the pad buffer.
**/
void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
{
q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_dma_pad);
/**
* blk_queue_update_dma_pad - update pad mask
* @q: the request queue for the device
* @mask: pad mask
*
* Update dma pad mask.
*
* Appending pad buffer to a request modifies the last entry of a
* scatter list such that it includes the pad buffer.
**/
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
{
if (mask > q->dma_pad_mask)
q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_pad);
/**
* blk_queue_dma_drain - Set up a drain buffer for excess dma.
* @q: the request queue for the device
* @dma_drain_needed: fn which returns non-zero if drain is necessary
* @buf: physically contiguous buffer
* @size: size of the buffer in bytes
*
* Some devices have excess DMA problems and can't simply discard (or
* zero fill) the unwanted piece of the transfer. They have to have a
* real area of memory to transfer it into. The use case for this is
* ATAPI devices in DMA mode. If the packet command causes a transfer
* bigger than the transfer size some HBAs will lock up if there
* aren't DMA elements to contain the excess transfer. What this API
* does is adjust the queue so that the buf is always appended
* silently to the scatterlist.
*
* Note: This routine adjusts max_hw_segments to make room for
* appending the drain buffer. If you call
* blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
* calling this routine, you must set the limit to one fewer than your
* device can support otherwise there won't be room for the drain
* buffer.
*/
int blk_queue_dma_drain(struct request_queue *q,
dma_drain_needed_fn *dma_drain_needed,
void *buf, unsigned int size)
{
if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2)
return -EINVAL;
/* make room for appending the drain */
blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1);
blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1);
q->dma_drain_needed = dma_drain_needed;
q->dma_drain_buffer = buf;
q->dma_drain_size = size;
return 0;
}
EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
/**
* blk_queue_segment_boundary - set boundary rules for segment merging
* @q: the request queue for the device
* @mask: the memory boundary mask
**/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
if (mask < PAGE_CACHE_SIZE - 1) {
mask = PAGE_CACHE_SIZE - 1;
printk(KERN_INFO "%s: set to minimum %lx\n",
__func__, mask);
}
q->limits.seg_boundary_mask = mask;
}
EXPORT_SYMBOL(blk_queue_segment_boundary);
/**
* blk_queue_dma_alignment - set dma length and memory alignment
* @q: the request queue for the device
* @mask: alignment mask
*
* description:
* set required memory and length alignment for direct dma transactions.
* this is used when building direct io requests for the queue.
*
**/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);
/**
* blk_queue_update_dma_alignment - update dma length and memory alignment
* @q: the request queue for the device
* @mask: alignment mask
*
* description:
* update required memory and length alignment for direct dma transactions.
* If the requested alignment is larger than the current alignment, then
* the current queue alignment is updated to the new value, otherwise it
* is left alone. The design of this is to allow multiple objects
* (driver, device, transport etc) to set their respective
* alignments without having them interfere.
*
**/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
BUG_ON(mask > PAGE_SIZE);
if (mask > q->dma_alignment)
q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);
static int __init blk_settings_init(void)
{
blk_max_low_pfn = max_low_pfn - 1;
blk_max_pfn = max_pfn - 1;
return 0;
}
subsys_initcall(blk_settings_init);