kernel-fxtec-pro1x/mm/swap_state.c
Jan Kara 5e4c0d9741 lib/radix-tree.c: make radix_tree_node_alloc() work correctly within interrupt
With users of radix_tree_preload() run from interrupt (block/blk-ioc.c is
one such possible user), the following race can happen:

radix_tree_preload()
...
radix_tree_insert()
  radix_tree_node_alloc()
    if (rtp->nr) {
      ret = rtp->nodes[rtp->nr - 1];
<interrupt>
...
radix_tree_preload()
...
radix_tree_insert()
  radix_tree_node_alloc()
    if (rtp->nr) {
      ret = rtp->nodes[rtp->nr - 1];

And we give out one radix tree node twice.  That clearly results in radix
tree corruption with different results (usually OOPS) depending on which
two users of radix tree race.

We fix the problem by making radix_tree_node_alloc() always allocate fresh
radix tree nodes when in interrupt.  Using preloading when in interrupt
doesn't make sense since all the allocations have to be atomic anyway and
we cannot steal nodes from process-context users because some users rely
on radix_tree_insert() succeeding after radix_tree_preload().
in_interrupt() check is somewhat ugly but we cannot simply key off passed
gfp_mask as that is acquired from root_gfp_mask() and thus the same for
all preload users.

Another part of the fix is to avoid node preallocation in
radix_tree_preload() when passed gfp_mask doesn't allow waiting.  Again,
preallocation in such case doesn't make sense and when preallocation would
happen in interrupt we could possibly leak some allocated nodes.  However,
some users of radix_tree_preload() require following radix_tree_insert()
to succeed.  To avoid unexpected effects for these users,
radix_tree_preload() only warns if passed gfp mask doesn't allow waiting
and we provide a new function radix_tree_maybe_preload() for those users
which get different gfp mask from different call sites and which are
prepared to handle radix_tree_insert() failure.

Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <jaxboe@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:59:36 -07:00

439 lines
11 KiB
C

/*
* linux/mm/swap_state.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
*
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
*/
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/pagevec.h>
#include <linux/migrate.h>
#include <linux/page_cgroup.h>
#include <asm/pgtable.h>
/*
* swapper_space is a fiction, retained to simplify the path through
* vmscan's shrink_page_list.
*/
static const struct address_space_operations swap_aops = {
.writepage = swap_writepage,
.set_page_dirty = swap_set_page_dirty,
.migratepage = migrate_page,
};
static struct backing_dev_info swap_backing_dev_info = {
.name = "swap",
.capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
};
struct address_space swapper_spaces[MAX_SWAPFILES] = {
[0 ... MAX_SWAPFILES - 1] = {
.page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
.a_ops = &swap_aops,
.backing_dev_info = &swap_backing_dev_info,
}
};
#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
static struct {
unsigned long add_total;
unsigned long del_total;
unsigned long find_success;
unsigned long find_total;
} swap_cache_info;
unsigned long total_swapcache_pages(void)
{
int i;
unsigned long ret = 0;
for (i = 0; i < MAX_SWAPFILES; i++)
ret += swapper_spaces[i].nrpages;
return ret;
}
void show_swap_cache_info(void)
{
printk("%lu pages in swap cache\n", total_swapcache_pages());
printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
swap_cache_info.add_total, swap_cache_info.del_total,
swap_cache_info.find_success, swap_cache_info.find_total);
printk("Free swap = %ldkB\n",
get_nr_swap_pages() << (PAGE_SHIFT - 10));
printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}
/*
* __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
* but sets SwapCache flag and private instead of mapping and index.
*/
int __add_to_swap_cache(struct page *page, swp_entry_t entry)
{
int error;
struct address_space *address_space;
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(PageSwapCache(page));
VM_BUG_ON(!PageSwapBacked(page));
page_cache_get(page);
SetPageSwapCache(page);
set_page_private(page, entry.val);
address_space = swap_address_space(entry);
spin_lock_irq(&address_space->tree_lock);
error = radix_tree_insert(&address_space->page_tree,
entry.val, page);
if (likely(!error)) {
address_space->nrpages++;
__inc_zone_page_state(page, NR_FILE_PAGES);
INC_CACHE_INFO(add_total);
}
spin_unlock_irq(&address_space->tree_lock);
if (unlikely(error)) {
/*
* Only the context which have set SWAP_HAS_CACHE flag
* would call add_to_swap_cache().
* So add_to_swap_cache() doesn't returns -EEXIST.
*/
VM_BUG_ON(error == -EEXIST);
set_page_private(page, 0UL);
ClearPageSwapCache(page);
page_cache_release(page);
}
return error;
}
int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
{
int error;
error = radix_tree_maybe_preload(gfp_mask);
if (!error) {
error = __add_to_swap_cache(page, entry);
radix_tree_preload_end();
}
return error;
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache.
*/
void __delete_from_swap_cache(struct page *page)
{
swp_entry_t entry;
struct address_space *address_space;
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(!PageSwapCache(page));
VM_BUG_ON(PageWriteback(page));
entry.val = page_private(page);
address_space = swap_address_space(entry);
radix_tree_delete(&address_space->page_tree, page_private(page));
set_page_private(page, 0);
ClearPageSwapCache(page);
address_space->nrpages--;
__dec_zone_page_state(page, NR_FILE_PAGES);
INC_CACHE_INFO(del_total);
}
/**
* add_to_swap - allocate swap space for a page
* @page: page we want to move to swap
*
* Allocate swap space for the page and add the page to the
* swap cache. Caller needs to hold the page lock.
*/
int add_to_swap(struct page *page, struct list_head *list)
{
swp_entry_t entry;
int err;
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(!PageUptodate(page));
entry = get_swap_page();
if (!entry.val)
return 0;
if (unlikely(PageTransHuge(page)))
if (unlikely(split_huge_page_to_list(page, list))) {
swapcache_free(entry, NULL);
return 0;
}
/*
* Radix-tree node allocations from PF_MEMALLOC contexts could
* completely exhaust the page allocator. __GFP_NOMEMALLOC
* stops emergency reserves from being allocated.
*
* TODO: this could cause a theoretical memory reclaim
* deadlock in the swap out path.
*/
/*
* Add it to the swap cache and mark it dirty
*/
err = add_to_swap_cache(page, entry,
__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
if (!err) { /* Success */
SetPageDirty(page);
return 1;
} else { /* -ENOMEM radix-tree allocation failure */
/*
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
*/
swapcache_free(entry, NULL);
return 0;
}
}
/*
* This must be called only on pages that have
* been verified to be in the swap cache and locked.
* It will never put the page into the free list,
* the caller has a reference on the page.
*/
void delete_from_swap_cache(struct page *page)
{
swp_entry_t entry;
struct address_space *address_space;
entry.val = page_private(page);
address_space = swap_address_space(entry);
spin_lock_irq(&address_space->tree_lock);
__delete_from_swap_cache(page);
spin_unlock_irq(&address_space->tree_lock);
swapcache_free(entry, page);
page_cache_release(page);
}
/*
* If we are the only user, then try to free up the swap cache.
*
* Its ok to check for PageSwapCache without the page lock
* here because we are going to recheck again inside
* try_to_free_swap() _with_ the lock.
* - Marcelo
*/
static inline void free_swap_cache(struct page *page)
{
if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
try_to_free_swap(page);
unlock_page(page);
}
}
/*
* Perform a free_page(), also freeing any swap cache associated with
* this page if it is the last user of the page.
*/
void free_page_and_swap_cache(struct page *page)
{
free_swap_cache(page);
page_cache_release(page);
}
/*
* Passed an array of pages, drop them all from swapcache and then release
* them. They are removed from the LRU and freed if this is their last use.
*/
void free_pages_and_swap_cache(struct page **pages, int nr)
{
struct page **pagep = pages;
lru_add_drain();
while (nr) {
int todo = min(nr, PAGEVEC_SIZE);
int i;
for (i = 0; i < todo; i++)
free_swap_cache(pagep[i]);
release_pages(pagep, todo, 0);
pagep += todo;
nr -= todo;
}
}
/*
* Lookup a swap entry in the swap cache. A found page will be returned
* unlocked and with its refcount incremented - we rely on the kernel
* lock getting page table operations atomic even if we drop the page
* lock before returning.
*/
struct page * lookup_swap_cache(swp_entry_t entry)
{
struct page *page;
page = find_get_page(swap_address_space(entry), entry.val);
if (page)
INC_CACHE_INFO(find_success);
INC_CACHE_INFO(find_total);
return page;
}
/*
* Locate a page of swap in physical memory, reserving swap cache space
* and reading the disk if it is not already cached.
* A failure return means that either the page allocation failed or that
* the swap entry is no longer in use.
*/
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr)
{
struct page *found_page, *new_page = NULL;
int err;
do {
/*
* First check the swap cache. Since this is normally
* called after lookup_swap_cache() failed, re-calling
* that would confuse statistics.
*/
found_page = find_get_page(swap_address_space(entry),
entry.val);
if (found_page)
break;
/*
* Get a new page to read into from swap.
*/
if (!new_page) {
new_page = alloc_page_vma(gfp_mask, vma, addr);
if (!new_page)
break; /* Out of memory */
}
/*
* call radix_tree_preload() while we can wait.
*/
err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
if (err)
break;
/*
* Swap entry may have been freed since our caller observed it.
*/
err = swapcache_prepare(entry);
if (err == -EEXIST) {
radix_tree_preload_end();
/*
* We might race against get_swap_page() and stumble
* across a SWAP_HAS_CACHE swap_map entry whose page
* has not been brought into the swapcache yet, while
* the other end is scheduled away waiting on discard
* I/O completion at scan_swap_map().
*
* In order to avoid turning this transitory state
* into a permanent loop around this -EEXIST case
* if !CONFIG_PREEMPT and the I/O completion happens
* to be waiting on the CPU waitqueue where we are now
* busy looping, we just conditionally invoke the
* scheduler here, if there are some more important
* tasks to run.
*/
cond_resched();
continue;
}
if (err) { /* swp entry is obsolete ? */
radix_tree_preload_end();
break;
}
/* May fail (-ENOMEM) if radix-tree node allocation failed. */
__set_page_locked(new_page);
SetPageSwapBacked(new_page);
err = __add_to_swap_cache(new_page, entry);
if (likely(!err)) {
radix_tree_preload_end();
/*
* Initiate read into locked page and return.
*/
lru_cache_add_anon(new_page);
swap_readpage(new_page);
return new_page;
}
radix_tree_preload_end();
ClearPageSwapBacked(new_page);
__clear_page_locked(new_page);
/*
* add_to_swap_cache() doesn't return -EEXIST, so we can safely
* clear SWAP_HAS_CACHE flag.
*/
swapcache_free(entry, NULL);
} while (err != -ENOMEM);
if (new_page)
page_cache_release(new_page);
return found_page;
}
/**
* swapin_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @gfp_mask: memory allocation flags
* @vma: user vma this address belongs to
* @addr: target address for mempolicy
*
* Returns the struct page for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read an aligned block of
* (1 << page_cluster) entries in the swap area. This method is chosen
* because it doesn't cost us any seek time. We also make sure to queue
* the 'original' request together with the readahead ones...
*
* This has been extended to use the NUMA policies from the mm triggering
* the readahead.
*
* Caller must hold down_read on the vma->vm_mm if vma is not NULL.
*/
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
struct vm_area_struct *vma, unsigned long addr)
{
struct page *page;
unsigned long offset = swp_offset(entry);
unsigned long start_offset, end_offset;
unsigned long mask = (1UL << page_cluster) - 1;
struct blk_plug plug;
/* Read a page_cluster sized and aligned cluster around offset. */
start_offset = offset & ~mask;
end_offset = offset | mask;
if (!start_offset) /* First page is swap header. */
start_offset++;
blk_start_plug(&plug);
for (offset = start_offset; offset <= end_offset ; offset++) {
/* Ok, do the async read-ahead now */
page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
gfp_mask, vma, addr);
if (!page)
continue;
page_cache_release(page);
}
blk_finish_plug(&plug);
lru_add_drain(); /* Push any new pages onto the LRU now */
return read_swap_cache_async(entry, gfp_mask, vma, addr);
}