6ab3d5624e
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
945 lines
25 KiB
C
945 lines
25 KiB
C
/*
|
|
* Driver for 802.11b cards using RAM-loadable Symbol firmware, such as
|
|
* Symbol Wireless Networker LA4137, CompactFlash cards by Socket
|
|
* Communications and Intel PRO/Wireless 2011B.
|
|
*
|
|
* The driver implements Symbol firmware download. The rest is handled
|
|
* in hermes.c and orinoco.c.
|
|
*
|
|
* Utilities for downloading the Symbol firmware are available at
|
|
* http://sourceforge.net/projects/orinoco/
|
|
*
|
|
* Copyright (C) 2002-2005 Pavel Roskin <proski@gnu.org>
|
|
* Portions based on orinoco_cs.c:
|
|
* Copyright (C) David Gibson, Linuxcare Australia
|
|
* Portions based on Spectrum24tDnld.c from original spectrum24 driver:
|
|
* Copyright (C) Symbol Technologies.
|
|
*
|
|
* See copyright notice in file orinoco.c.
|
|
*/
|
|
|
|
#define DRIVER_NAME "spectrum_cs"
|
|
#define PFX DRIVER_NAME ": "
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/firmware.h>
|
|
#include <pcmcia/cs_types.h>
|
|
#include <pcmcia/cs.h>
|
|
#include <pcmcia/cistpl.h>
|
|
#include <pcmcia/cisreg.h>
|
|
#include <pcmcia/ds.h>
|
|
|
|
#include "orinoco.h"
|
|
|
|
static unsigned char *primsym;
|
|
static unsigned char *secsym;
|
|
static const char primary_fw_name[] = "symbol_sp24t_prim_fw";
|
|
static const char secondary_fw_name[] = "symbol_sp24t_sec_fw";
|
|
|
|
/********************************************************************/
|
|
/* Module stuff */
|
|
/********************************************************************/
|
|
|
|
MODULE_AUTHOR("Pavel Roskin <proski@gnu.org>");
|
|
MODULE_DESCRIPTION("Driver for Symbol Spectrum24 Trilogy cards with firmware downloader");
|
|
MODULE_LICENSE("Dual MPL/GPL");
|
|
|
|
/* Module parameters */
|
|
|
|
/* Some D-Link cards have buggy CIS. They do work at 5v properly, but
|
|
* don't have any CIS entry for it. This workaround it... */
|
|
static int ignore_cis_vcc; /* = 0 */
|
|
module_param(ignore_cis_vcc, int, 0);
|
|
MODULE_PARM_DESC(ignore_cis_vcc, "Allow voltage mismatch between card and socket");
|
|
|
|
/********************************************************************/
|
|
/* Data structures */
|
|
/********************************************************************/
|
|
|
|
/* PCMCIA specific device information (goes in the card field of
|
|
* struct orinoco_private */
|
|
struct orinoco_pccard {
|
|
struct pcmcia_device *p_dev;
|
|
dev_node_t node;
|
|
};
|
|
|
|
/********************************************************************/
|
|
/* Function prototypes */
|
|
/********************************************************************/
|
|
|
|
static int spectrum_cs_config(struct pcmcia_device *link);
|
|
static void spectrum_cs_release(struct pcmcia_device *link);
|
|
|
|
/********************************************************************/
|
|
/* Firmware downloader */
|
|
/********************************************************************/
|
|
|
|
/* Position of PDA in the adapter memory */
|
|
#define EEPROM_ADDR 0x3000
|
|
#define EEPROM_LEN 0x200
|
|
#define PDA_OFFSET 0x100
|
|
|
|
#define PDA_ADDR (EEPROM_ADDR + PDA_OFFSET)
|
|
#define PDA_WORDS ((EEPROM_LEN - PDA_OFFSET) / 2)
|
|
|
|
/* Constants for the CISREG_CCSR register */
|
|
#define HCR_RUN 0x07 /* run firmware after reset */
|
|
#define HCR_IDLE 0x0E /* don't run firmware after reset */
|
|
#define HCR_MEM16 0x10 /* memory width bit, should be preserved */
|
|
|
|
/*
|
|
* AUX port access. To unlock the AUX port write the access keys to the
|
|
* PARAM0-2 registers, then write HERMES_AUX_ENABLE to the HERMES_CONTROL
|
|
* register. Then read it and make sure it's HERMES_AUX_ENABLED.
|
|
*/
|
|
#define HERMES_AUX_ENABLE 0x8000 /* Enable auxiliary port access */
|
|
#define HERMES_AUX_DISABLE 0x4000 /* Disable to auxiliary port access */
|
|
#define HERMES_AUX_ENABLED 0xC000 /* Auxiliary port is open */
|
|
|
|
#define HERMES_AUX_PW0 0xFE01
|
|
#define HERMES_AUX_PW1 0xDC23
|
|
#define HERMES_AUX_PW2 0xBA45
|
|
|
|
/* End markers */
|
|
#define PDI_END 0x00000000 /* End of PDA */
|
|
#define BLOCK_END 0xFFFFFFFF /* Last image block */
|
|
#define TEXT_END 0x1A /* End of text header */
|
|
|
|
/*
|
|
* The following structures have little-endian fields denoted by
|
|
* the leading underscore. Don't access them directly - use inline
|
|
* functions defined below.
|
|
*/
|
|
|
|
/*
|
|
* The binary image to be downloaded consists of series of data blocks.
|
|
* Each block has the following structure.
|
|
*/
|
|
struct dblock {
|
|
__le32 addr; /* adapter address where to write the block */
|
|
__le16 len; /* length of the data only, in bytes */
|
|
char data[0]; /* data to be written */
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* Plug Data References are located in in the image after the last data
|
|
* block. They refer to areas in the adapter memory where the plug data
|
|
* items with matching ID should be written.
|
|
*/
|
|
struct pdr {
|
|
__le32 id; /* record ID */
|
|
__le32 addr; /* adapter address where to write the data */
|
|
__le32 len; /* expected length of the data, in bytes */
|
|
char next[0]; /* next PDR starts here */
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/*
|
|
* Plug Data Items are located in the EEPROM read from the adapter by
|
|
* primary firmware. They refer to the device-specific data that should
|
|
* be plugged into the secondary firmware.
|
|
*/
|
|
struct pdi {
|
|
__le16 len; /* length of ID and data, in words */
|
|
__le16 id; /* record ID */
|
|
char data[0]; /* plug data */
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/* Functions for access to little-endian data */
|
|
static inline u32
|
|
dblock_addr(const struct dblock *blk)
|
|
{
|
|
return le32_to_cpu(blk->addr);
|
|
}
|
|
|
|
static inline u32
|
|
dblock_len(const struct dblock *blk)
|
|
{
|
|
return le16_to_cpu(blk->len);
|
|
}
|
|
|
|
static inline u32
|
|
pdr_id(const struct pdr *pdr)
|
|
{
|
|
return le32_to_cpu(pdr->id);
|
|
}
|
|
|
|
static inline u32
|
|
pdr_addr(const struct pdr *pdr)
|
|
{
|
|
return le32_to_cpu(pdr->addr);
|
|
}
|
|
|
|
static inline u32
|
|
pdr_len(const struct pdr *pdr)
|
|
{
|
|
return le32_to_cpu(pdr->len);
|
|
}
|
|
|
|
static inline u32
|
|
pdi_id(const struct pdi *pdi)
|
|
{
|
|
return le16_to_cpu(pdi->id);
|
|
}
|
|
|
|
/* Return length of the data only, in bytes */
|
|
static inline u32
|
|
pdi_len(const struct pdi *pdi)
|
|
{
|
|
return 2 * (le16_to_cpu(pdi->len) - 1);
|
|
}
|
|
|
|
|
|
/* Set address of the auxiliary port */
|
|
static inline void
|
|
spectrum_aux_setaddr(hermes_t *hw, u32 addr)
|
|
{
|
|
hermes_write_reg(hw, HERMES_AUXPAGE, (u16) (addr >> 7));
|
|
hermes_write_reg(hw, HERMES_AUXOFFSET, (u16) (addr & 0x7F));
|
|
}
|
|
|
|
|
|
/* Open access to the auxiliary port */
|
|
static int
|
|
spectrum_aux_open(hermes_t *hw)
|
|
{
|
|
int i;
|
|
|
|
/* Already open? */
|
|
if (hermes_read_reg(hw, HERMES_CONTROL) == HERMES_AUX_ENABLED)
|
|
return 0;
|
|
|
|
hermes_write_reg(hw, HERMES_PARAM0, HERMES_AUX_PW0);
|
|
hermes_write_reg(hw, HERMES_PARAM1, HERMES_AUX_PW1);
|
|
hermes_write_reg(hw, HERMES_PARAM2, HERMES_AUX_PW2);
|
|
hermes_write_reg(hw, HERMES_CONTROL, HERMES_AUX_ENABLE);
|
|
|
|
for (i = 0; i < 20; i++) {
|
|
udelay(10);
|
|
if (hermes_read_reg(hw, HERMES_CONTROL) ==
|
|
HERMES_AUX_ENABLED)
|
|
return 0;
|
|
}
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
|
|
#define CS_CHECK(fn, ret) \
|
|
do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0)
|
|
|
|
/*
|
|
* Reset the card using configuration registers COR and CCSR.
|
|
* If IDLE is 1, stop the firmware, so that it can be safely rewritten.
|
|
*/
|
|
static int
|
|
spectrum_reset(struct pcmcia_device *link, int idle)
|
|
{
|
|
int last_ret, last_fn;
|
|
conf_reg_t reg;
|
|
u_int save_cor;
|
|
|
|
/* Doing it if hardware is gone is guaranteed crash */
|
|
if (pcmcia_dev_present(link))
|
|
return -ENODEV;
|
|
|
|
/* Save original COR value */
|
|
reg.Function = 0;
|
|
reg.Action = CS_READ;
|
|
reg.Offset = CISREG_COR;
|
|
CS_CHECK(AccessConfigurationRegister,
|
|
pcmcia_access_configuration_register(link, ®));
|
|
save_cor = reg.Value;
|
|
|
|
/* Soft-Reset card */
|
|
reg.Action = CS_WRITE;
|
|
reg.Offset = CISREG_COR;
|
|
reg.Value = (save_cor | COR_SOFT_RESET);
|
|
CS_CHECK(AccessConfigurationRegister,
|
|
pcmcia_access_configuration_register(link, ®));
|
|
udelay(1000);
|
|
|
|
/* Read CCSR */
|
|
reg.Action = CS_READ;
|
|
reg.Offset = CISREG_CCSR;
|
|
CS_CHECK(AccessConfigurationRegister,
|
|
pcmcia_access_configuration_register(link, ®));
|
|
|
|
/*
|
|
* Start or stop the firmware. Memory width bit should be
|
|
* preserved from the value we've just read.
|
|
*/
|
|
reg.Action = CS_WRITE;
|
|
reg.Offset = CISREG_CCSR;
|
|
reg.Value = (idle ? HCR_IDLE : HCR_RUN) | (reg.Value & HCR_MEM16);
|
|
CS_CHECK(AccessConfigurationRegister,
|
|
pcmcia_access_configuration_register(link, ®));
|
|
udelay(1000);
|
|
|
|
/* Restore original COR configuration index */
|
|
reg.Action = CS_WRITE;
|
|
reg.Offset = CISREG_COR;
|
|
reg.Value = (save_cor & ~COR_SOFT_RESET);
|
|
CS_CHECK(AccessConfigurationRegister,
|
|
pcmcia_access_configuration_register(link, ®));
|
|
udelay(1000);
|
|
return 0;
|
|
|
|
cs_failed:
|
|
cs_error(link, last_fn, last_ret);
|
|
return -ENODEV;
|
|
}
|
|
|
|
|
|
/*
|
|
* Scan PDR for the record with the specified RECORD_ID.
|
|
* If it's not found, return NULL.
|
|
*/
|
|
static struct pdr *
|
|
spectrum_find_pdr(struct pdr *first_pdr, u32 record_id)
|
|
{
|
|
struct pdr *pdr = first_pdr;
|
|
|
|
while (pdr_id(pdr) != PDI_END) {
|
|
/*
|
|
* PDR area is currently not terminated by PDI_END.
|
|
* It's followed by CRC records, which have the type
|
|
* field where PDR has length. The type can be 0 or 1.
|
|
*/
|
|
if (pdr_len(pdr) < 2)
|
|
return NULL;
|
|
|
|
/* If the record ID matches, we are done */
|
|
if (pdr_id(pdr) == record_id)
|
|
return pdr;
|
|
|
|
pdr = (struct pdr *) pdr->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Process one Plug Data Item - find corresponding PDR and plug it */
|
|
static int
|
|
spectrum_plug_pdi(hermes_t *hw, struct pdr *first_pdr, struct pdi *pdi)
|
|
{
|
|
struct pdr *pdr;
|
|
|
|
/* Find the PDI corresponding to this PDR */
|
|
pdr = spectrum_find_pdr(first_pdr, pdi_id(pdi));
|
|
|
|
/* No match is found, safe to ignore */
|
|
if (!pdr)
|
|
return 0;
|
|
|
|
/* Lengths of the data in PDI and PDR must match */
|
|
if (pdi_len(pdi) != pdr_len(pdr))
|
|
return -EINVAL;
|
|
|
|
/* do the actual plugging */
|
|
spectrum_aux_setaddr(hw, pdr_addr(pdr));
|
|
hermes_write_bytes(hw, HERMES_AUXDATA, pdi->data, pdi_len(pdi));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Read PDA from the adapter */
|
|
static int
|
|
spectrum_read_pda(hermes_t *hw, __le16 *pda, int pda_len)
|
|
{
|
|
int ret;
|
|
int pda_size;
|
|
|
|
/* Issue command to read EEPROM */
|
|
ret = hermes_docmd_wait(hw, HERMES_CMD_READMIF, 0, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Open auxiliary port */
|
|
ret = spectrum_aux_open(hw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* read PDA from EEPROM */
|
|
spectrum_aux_setaddr(hw, PDA_ADDR);
|
|
hermes_read_words(hw, HERMES_AUXDATA, pda, pda_len / 2);
|
|
|
|
/* Check PDA length */
|
|
pda_size = le16_to_cpu(pda[0]);
|
|
if (pda_size > pda_len)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Parse PDA and write the records into the adapter */
|
|
static int
|
|
spectrum_apply_pda(hermes_t *hw, const struct dblock *first_block,
|
|
__le16 *pda)
|
|
{
|
|
int ret;
|
|
struct pdi *pdi;
|
|
struct pdr *first_pdr;
|
|
const struct dblock *blk = first_block;
|
|
|
|
/* Skip all blocks to locate Plug Data References */
|
|
while (dblock_addr(blk) != BLOCK_END)
|
|
blk = (struct dblock *) &blk->data[dblock_len(blk)];
|
|
|
|
first_pdr = (struct pdr *) blk;
|
|
|
|
/* Go through every PDI and plug them into the adapter */
|
|
pdi = (struct pdi *) (pda + 2);
|
|
while (pdi_id(pdi) != PDI_END) {
|
|
ret = spectrum_plug_pdi(hw, first_pdr, pdi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Increment to the next PDI */
|
|
pdi = (struct pdi *) &pdi->data[pdi_len(pdi)];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Load firmware blocks into the adapter */
|
|
static int
|
|
spectrum_load_blocks(hermes_t *hw, const struct dblock *first_block)
|
|
{
|
|
const struct dblock *blk;
|
|
u32 blkaddr;
|
|
u32 blklen;
|
|
|
|
blk = first_block;
|
|
blkaddr = dblock_addr(blk);
|
|
blklen = dblock_len(blk);
|
|
|
|
while (dblock_addr(blk) != BLOCK_END) {
|
|
spectrum_aux_setaddr(hw, blkaddr);
|
|
hermes_write_bytes(hw, HERMES_AUXDATA, blk->data,
|
|
blklen);
|
|
|
|
blk = (struct dblock *) &blk->data[blklen];
|
|
blkaddr = dblock_addr(blk);
|
|
blklen = dblock_len(blk);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Process a firmware image - stop the card, load the firmware, reset
|
|
* the card and make sure it responds. For the secondary firmware take
|
|
* care of the PDA - read it and then write it on top of the firmware.
|
|
*/
|
|
static int
|
|
spectrum_dl_image(hermes_t *hw, struct pcmcia_device *link,
|
|
const unsigned char *image)
|
|
{
|
|
int ret;
|
|
const unsigned char *ptr;
|
|
const struct dblock *first_block;
|
|
|
|
/* Plug Data Area (PDA) */
|
|
__le16 pda[PDA_WORDS];
|
|
|
|
/* Binary block begins after the 0x1A marker */
|
|
ptr = image;
|
|
while (*ptr++ != TEXT_END);
|
|
first_block = (const struct dblock *) ptr;
|
|
|
|
/* Read the PDA */
|
|
if (image != primsym) {
|
|
ret = spectrum_read_pda(hw, pda, sizeof(pda));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Stop the firmware, so that it can be safely rewritten */
|
|
ret = spectrum_reset(link, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Program the adapter with new firmware */
|
|
ret = spectrum_load_blocks(hw, first_block);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Write the PDA to the adapter */
|
|
if (image != primsym) {
|
|
ret = spectrum_apply_pda(hw, first_block, pda);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Run the firmware */
|
|
ret = spectrum_reset(link, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Reset hermes chip and make sure it responds */
|
|
ret = hermes_init(hw);
|
|
|
|
/* hermes_reset() should return 0 with the secondary firmware */
|
|
if (image != primsym && ret != 0)
|
|
return -ENODEV;
|
|
|
|
/* And this should work with any firmware */
|
|
if (!hermes_present(hw))
|
|
return -ENODEV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Download the firmware into the card, this also does a PCMCIA soft
|
|
* reset on the card, to make sure it's in a sane state.
|
|
*/
|
|
static int
|
|
spectrum_dl_firmware(hermes_t *hw, struct pcmcia_device *link)
|
|
{
|
|
int ret;
|
|
const struct firmware *fw_entry;
|
|
|
|
if (request_firmware(&fw_entry, primary_fw_name,
|
|
&handle_to_dev(link)) == 0) {
|
|
primsym = fw_entry->data;
|
|
} else {
|
|
printk(KERN_ERR PFX "Cannot find firmware: %s\n",
|
|
primary_fw_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (request_firmware(&fw_entry, secondary_fw_name,
|
|
&handle_to_dev(link)) == 0) {
|
|
secsym = fw_entry->data;
|
|
} else {
|
|
printk(KERN_ERR PFX "Cannot find firmware: %s\n",
|
|
secondary_fw_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Load primary firmware */
|
|
ret = spectrum_dl_image(hw, link, primsym);
|
|
if (ret) {
|
|
printk(KERN_ERR PFX "Primary firmware download failed\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Load secondary firmware */
|
|
ret = spectrum_dl_image(hw, link, secsym);
|
|
|
|
if (ret) {
|
|
printk(KERN_ERR PFX "Secondary firmware download failed\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/********************************************************************/
|
|
/* Device methods */
|
|
/********************************************************************/
|
|
|
|
static int
|
|
spectrum_cs_hard_reset(struct orinoco_private *priv)
|
|
{
|
|
struct orinoco_pccard *card = priv->card;
|
|
struct pcmcia_device *link = card->p_dev;
|
|
int err;
|
|
|
|
if (!hermes_present(&priv->hw)) {
|
|
/* The firmware needs to be reloaded */
|
|
if (spectrum_dl_firmware(&priv->hw, link) != 0) {
|
|
printk(KERN_ERR PFX "Firmware download failed\n");
|
|
err = -ENODEV;
|
|
}
|
|
} else {
|
|
/* Soft reset using COR and HCR */
|
|
spectrum_reset(link, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/********************************************************************/
|
|
/* PCMCIA stuff */
|
|
/********************************************************************/
|
|
|
|
/*
|
|
* This creates an "instance" of the driver, allocating local data
|
|
* structures for one device. The device is registered with Card
|
|
* Services.
|
|
*
|
|
* The dev_link structure is initialized, but we don't actually
|
|
* configure the card at this point -- we wait until we receive a card
|
|
* insertion event. */
|
|
static int
|
|
spectrum_cs_probe(struct pcmcia_device *link)
|
|
{
|
|
struct net_device *dev;
|
|
struct orinoco_private *priv;
|
|
struct orinoco_pccard *card;
|
|
|
|
dev = alloc_orinocodev(sizeof(*card), spectrum_cs_hard_reset);
|
|
if (! dev)
|
|
return -ENOMEM;
|
|
priv = netdev_priv(dev);
|
|
card = priv->card;
|
|
|
|
/* Link both structures together */
|
|
card->p_dev = link;
|
|
link->priv = dev;
|
|
|
|
/* Interrupt setup */
|
|
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
|
|
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
|
|
link->irq.Handler = orinoco_interrupt;
|
|
link->irq.Instance = dev;
|
|
|
|
/* General socket configuration defaults can go here. In this
|
|
* client, we assume very little, and rely on the CIS for
|
|
* almost everything. In most clients, many details (i.e.,
|
|
* number, sizes, and attributes of IO windows) are fixed by
|
|
* the nature of the device, and can be hard-wired here. */
|
|
link->conf.Attributes = 0;
|
|
link->conf.IntType = INT_MEMORY_AND_IO;
|
|
|
|
return spectrum_cs_config(link);
|
|
} /* spectrum_cs_attach */
|
|
|
|
/*
|
|
* This deletes a driver "instance". The device is de-registered with
|
|
* Card Services. If it has been released, all local data structures
|
|
* are freed. Otherwise, the structures will be freed when the device
|
|
* is released.
|
|
*/
|
|
static void spectrum_cs_detach(struct pcmcia_device *link)
|
|
{
|
|
struct net_device *dev = link->priv;
|
|
|
|
if (link->dev_node)
|
|
unregister_netdev(dev);
|
|
|
|
spectrum_cs_release(link);
|
|
|
|
free_orinocodev(dev);
|
|
} /* spectrum_cs_detach */
|
|
|
|
/*
|
|
* spectrum_cs_config() is scheduled to run after a CARD_INSERTION
|
|
* event is received, to configure the PCMCIA socket, and to make the
|
|
* device available to the system.
|
|
*/
|
|
|
|
static int
|
|
spectrum_cs_config(struct pcmcia_device *link)
|
|
{
|
|
struct net_device *dev = link->priv;
|
|
struct orinoco_private *priv = netdev_priv(dev);
|
|
struct orinoco_pccard *card = priv->card;
|
|
hermes_t *hw = &priv->hw;
|
|
int last_fn, last_ret;
|
|
u_char buf[64];
|
|
config_info_t conf;
|
|
tuple_t tuple;
|
|
cisparse_t parse;
|
|
void __iomem *mem;
|
|
|
|
/*
|
|
* This reads the card's CONFIG tuple to find its
|
|
* configuration registers.
|
|
*/
|
|
tuple.DesiredTuple = CISTPL_CONFIG;
|
|
tuple.Attributes = 0;
|
|
tuple.TupleData = buf;
|
|
tuple.TupleDataMax = sizeof(buf);
|
|
tuple.TupleOffset = 0;
|
|
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
|
|
CS_CHECK(GetTupleData, pcmcia_get_tuple_data(link, &tuple));
|
|
CS_CHECK(ParseTuple, pcmcia_parse_tuple(link, &tuple, &parse));
|
|
link->conf.ConfigBase = parse.config.base;
|
|
link->conf.Present = parse.config.rmask[0];
|
|
|
|
/* Look up the current Vcc */
|
|
CS_CHECK(GetConfigurationInfo,
|
|
pcmcia_get_configuration_info(link, &conf));
|
|
|
|
/*
|
|
* In this loop, we scan the CIS for configuration table
|
|
* entries, each of which describes a valid card
|
|
* configuration, including voltage, IO window, memory window,
|
|
* and interrupt settings.
|
|
*
|
|
* We make no assumptions about the card to be configured: we
|
|
* use just the information available in the CIS. In an ideal
|
|
* world, this would work for any PCMCIA card, but it requires
|
|
* a complete and accurate CIS. In practice, a driver usually
|
|
* "knows" most of these things without consulting the CIS,
|
|
* and most client drivers will only use the CIS to fill in
|
|
* implementation-defined details.
|
|
*/
|
|
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
|
|
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
|
|
while (1) {
|
|
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
|
|
cistpl_cftable_entry_t dflt = { .index = 0 };
|
|
|
|
if ( (pcmcia_get_tuple_data(link, &tuple) != 0)
|
|
|| (pcmcia_parse_tuple(link, &tuple, &parse) != 0))
|
|
goto next_entry;
|
|
|
|
if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
|
|
dflt = *cfg;
|
|
if (cfg->index == 0)
|
|
goto next_entry;
|
|
link->conf.ConfigIndex = cfg->index;
|
|
|
|
/* Use power settings for Vcc and Vpp if present */
|
|
/* Note that the CIS values need to be rescaled */
|
|
if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
|
|
if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) {
|
|
DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000);
|
|
if (!ignore_cis_vcc)
|
|
goto next_entry;
|
|
}
|
|
} else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) {
|
|
if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) {
|
|
DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000);
|
|
if(!ignore_cis_vcc)
|
|
goto next_entry;
|
|
}
|
|
}
|
|
|
|
if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
|
|
link->conf.Vpp =
|
|
cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
|
|
else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM))
|
|
link->conf.Vpp =
|
|
dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
|
|
|
|
/* Do we need to allocate an interrupt? */
|
|
link->conf.Attributes |= CONF_ENABLE_IRQ;
|
|
|
|
/* IO window settings */
|
|
link->io.NumPorts1 = link->io.NumPorts2 = 0;
|
|
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {
|
|
cistpl_io_t *io =
|
|
(cfg->io.nwin) ? &cfg->io : &dflt.io;
|
|
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
|
|
if (!(io->flags & CISTPL_IO_8BIT))
|
|
link->io.Attributes1 =
|
|
IO_DATA_PATH_WIDTH_16;
|
|
if (!(io->flags & CISTPL_IO_16BIT))
|
|
link->io.Attributes1 =
|
|
IO_DATA_PATH_WIDTH_8;
|
|
link->io.IOAddrLines =
|
|
io->flags & CISTPL_IO_LINES_MASK;
|
|
link->io.BasePort1 = io->win[0].base;
|
|
link->io.NumPorts1 = io->win[0].len;
|
|
if (io->nwin > 1) {
|
|
link->io.Attributes2 =
|
|
link->io.Attributes1;
|
|
link->io.BasePort2 = io->win[1].base;
|
|
link->io.NumPorts2 = io->win[1].len;
|
|
}
|
|
|
|
/* This reserves IO space but doesn't actually enable it */
|
|
if (pcmcia_request_io(link, &link->io) != 0)
|
|
goto next_entry;
|
|
}
|
|
|
|
|
|
/* If we got this far, we're cool! */
|
|
|
|
break;
|
|
|
|
next_entry:
|
|
pcmcia_disable_device(link);
|
|
last_ret = pcmcia_get_next_tuple(link, &tuple);
|
|
if (last_ret == CS_NO_MORE_ITEMS) {
|
|
printk(KERN_ERR PFX "GetNextTuple(): No matching "
|
|
"CIS configuration. Maybe you need the "
|
|
"ignore_cis_vcc=1 parameter.\n");
|
|
goto cs_failed;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate an interrupt line. Note that this does not assign
|
|
* a handler to the interrupt, unless the 'Handler' member of
|
|
* the irq structure is initialized.
|
|
*/
|
|
CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));
|
|
|
|
/* We initialize the hermes structure before completing PCMCIA
|
|
* configuration just in case the interrupt handler gets
|
|
* called. */
|
|
mem = ioport_map(link->io.BasePort1, link->io.NumPorts1);
|
|
if (!mem)
|
|
goto cs_failed;
|
|
|
|
hermes_struct_init(hw, mem, HERMES_16BIT_REGSPACING);
|
|
|
|
/*
|
|
* This actually configures the PCMCIA socket -- setting up
|
|
* the I/O windows and the interrupt mapping, and putting the
|
|
* card and host interface into "Memory and IO" mode.
|
|
*/
|
|
CS_CHECK(RequestConfiguration,
|
|
pcmcia_request_configuration(link, &link->conf));
|
|
|
|
/* Ok, we have the configuration, prepare to register the netdev */
|
|
dev->base_addr = link->io.BasePort1;
|
|
dev->irq = link->irq.AssignedIRQ;
|
|
SET_MODULE_OWNER(dev);
|
|
card->node.major = card->node.minor = 0;
|
|
|
|
/* Reset card and download firmware */
|
|
if (spectrum_cs_hard_reset(priv) != 0) {
|
|
goto failed;
|
|
}
|
|
|
|
SET_NETDEV_DEV(dev, &handle_to_dev(link));
|
|
/* Tell the stack we exist */
|
|
if (register_netdev(dev) != 0) {
|
|
printk(KERN_ERR PFX "register_netdev() failed\n");
|
|
goto failed;
|
|
}
|
|
|
|
/* At this point, the dev_node_t structure(s) needs to be
|
|
* initialized and arranged in a linked list at link->dev_node. */
|
|
strcpy(card->node.dev_name, dev->name);
|
|
link->dev_node = &card->node; /* link->dev_node being non-NULL is also
|
|
used to indicate that the
|
|
net_device has been registered */
|
|
|
|
/* Finally, report what we've done */
|
|
printk(KERN_DEBUG "%s: " DRIVER_NAME " at %s, irq %d, io "
|
|
"0x%04x-0x%04x\n", dev->name, dev->class_dev.dev->bus_id,
|
|
link->irq.AssignedIRQ, link->io.BasePort1,
|
|
link->io.BasePort1 + link->io.NumPorts1 - 1);
|
|
|
|
return 0;
|
|
|
|
cs_failed:
|
|
cs_error(link, last_fn, last_ret);
|
|
|
|
failed:
|
|
spectrum_cs_release(link);
|
|
return -ENODEV;
|
|
} /* spectrum_cs_config */
|
|
|
|
/*
|
|
* After a card is removed, spectrum_cs_release() will unregister the
|
|
* device, and release the PCMCIA configuration. If the device is
|
|
* still open, this will be postponed until it is closed.
|
|
*/
|
|
static void
|
|
spectrum_cs_release(struct pcmcia_device *link)
|
|
{
|
|
struct net_device *dev = link->priv;
|
|
struct orinoco_private *priv = netdev_priv(dev);
|
|
unsigned long flags;
|
|
|
|
/* We're committed to taking the device away now, so mark the
|
|
* hardware as unavailable */
|
|
spin_lock_irqsave(&priv->lock, flags);
|
|
priv->hw_unavailable++;
|
|
spin_unlock_irqrestore(&priv->lock, flags);
|
|
|
|
pcmcia_disable_device(link);
|
|
if (priv->hw.iobase)
|
|
ioport_unmap(priv->hw.iobase);
|
|
} /* spectrum_cs_release */
|
|
|
|
|
|
static int
|
|
spectrum_cs_suspend(struct pcmcia_device *link)
|
|
{
|
|
struct net_device *dev = link->priv;
|
|
struct orinoco_private *priv = netdev_priv(dev);
|
|
int err = 0;
|
|
|
|
/* Mark the device as stopped, to block IO until later */
|
|
spin_lock(&priv->lock);
|
|
|
|
err = __orinoco_down(dev);
|
|
if (err)
|
|
printk(KERN_WARNING "%s: Error %d downing interface\n",
|
|
dev->name, err);
|
|
|
|
netif_device_detach(dev);
|
|
priv->hw_unavailable++;
|
|
|
|
spin_unlock(&priv->lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
spectrum_cs_resume(struct pcmcia_device *link)
|
|
{
|
|
struct net_device *dev = link->priv;
|
|
struct orinoco_private *priv = netdev_priv(dev);
|
|
|
|
netif_device_attach(dev);
|
|
priv->hw_unavailable--;
|
|
schedule_work(&priv->reset_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/********************************************************************/
|
|
/* Module initialization */
|
|
/********************************************************************/
|
|
|
|
/* Can't be declared "const" or the whole __initdata section will
|
|
* become const */
|
|
static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
|
|
" (Pavel Roskin <proski@gnu.org>,"
|
|
" David Gibson <hermes@gibson.dropbear.id.au>, et al)";
|
|
|
|
static struct pcmcia_device_id spectrum_cs_ids[] = {
|
|
PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4137 */
|
|
PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */
|
|
PCMCIA_DEVICE_PROD_ID12("Intel", "PRO/Wireless LAN PC Card", 0x816cc815, 0x6fbf459a), /* 2011B, not 2011 */
|
|
PCMCIA_DEVICE_NULL,
|
|
};
|
|
MODULE_DEVICE_TABLE(pcmcia, spectrum_cs_ids);
|
|
|
|
static struct pcmcia_driver orinoco_driver = {
|
|
.owner = THIS_MODULE,
|
|
.drv = {
|
|
.name = DRIVER_NAME,
|
|
},
|
|
.probe = spectrum_cs_probe,
|
|
.remove = spectrum_cs_detach,
|
|
.suspend = spectrum_cs_suspend,
|
|
.resume = spectrum_cs_resume,
|
|
.id_table = spectrum_cs_ids,
|
|
};
|
|
|
|
static int __init
|
|
init_spectrum_cs(void)
|
|
{
|
|
printk(KERN_DEBUG "%s\n", version);
|
|
|
|
return pcmcia_register_driver(&orinoco_driver);
|
|
}
|
|
|
|
static void __exit
|
|
exit_spectrum_cs(void)
|
|
{
|
|
pcmcia_unregister_driver(&orinoco_driver);
|
|
}
|
|
|
|
module_init(init_spectrum_cs);
|
|
module_exit(exit_spectrum_cs);
|