kernel-fxtec-pro1x/arch/sparc/kernel/sun4m_smp.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

451 lines
11 KiB
C

/* sun4m_smp.c: Sparc SUN4M SMP support.
*
* Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
*/
#include <asm/head.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/profile.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/cpudata.h>
#define IRQ_RESCHEDULE 13
#define IRQ_STOP_CPU 14
#define IRQ_CROSS_CALL 15
extern ctxd_t *srmmu_ctx_table_phys;
extern void calibrate_delay(void);
extern volatile int smp_processors_ready;
extern int smp_num_cpus;
extern volatile unsigned long cpu_callin_map[NR_CPUS];
extern unsigned char boot_cpu_id;
extern int smp_activated;
extern volatile int __cpu_number_map[NR_CPUS];
extern volatile int __cpu_logical_map[NR_CPUS];
extern volatile unsigned long ipi_count;
extern volatile int smp_process_available;
extern volatile int smp_commenced;
extern int __smp4m_processor_id(void);
/*#define SMP_DEBUG*/
#ifdef SMP_DEBUG
#define SMP_PRINTK(x) printk x
#else
#define SMP_PRINTK(x)
#endif
static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
{
__asm__ __volatile__("swap [%1], %0\n\t" :
"=&r" (val), "=&r" (ptr) :
"0" (val), "1" (ptr));
return val;
}
static void smp_setup_percpu_timer(void);
extern void cpu_probe(void);
void __init smp4m_callin(void)
{
int cpuid = hard_smp_processor_id();
local_flush_cache_all();
local_flush_tlb_all();
set_irq_udt(boot_cpu_id);
/* Get our local ticker going. */
smp_setup_percpu_timer();
calibrate_delay();
smp_store_cpu_info(cpuid);
local_flush_cache_all();
local_flush_tlb_all();
/*
* Unblock the master CPU _only_ when the scheduler state
* of all secondary CPUs will be up-to-date, so after
* the SMP initialization the master will be just allowed
* to call the scheduler code.
*/
/* Allow master to continue. */
swap((unsigned long *)&cpu_callin_map[cpuid], 1);
local_flush_cache_all();
local_flush_tlb_all();
cpu_probe();
/* Fix idle thread fields. */
__asm__ __volatile__("ld [%0], %%g6\n\t"
: : "r" (&current_set[cpuid])
: "memory" /* paranoid */);
/* Attach to the address space of init_task. */
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
while(!smp_commenced)
barrier();
local_flush_cache_all();
local_flush_tlb_all();
local_irq_enable();
}
extern void init_IRQ(void);
extern void cpu_panic(void);
/*
* Cycle through the processors asking the PROM to start each one.
*/
extern struct linux_prom_registers smp_penguin_ctable;
extern unsigned long trapbase_cpu1[];
extern unsigned long trapbase_cpu2[];
extern unsigned long trapbase_cpu3[];
void __init smp4m_boot_cpus(void)
{
int cpucount = 0;
int i, mid;
printk("Entering SMP Mode...\n");
local_irq_enable();
cpus_clear(cpu_present_map);
for (i = 0; !cpu_find_by_instance(i, NULL, &mid); i++)
cpu_set(mid, cpu_present_map);
for(i=0; i < NR_CPUS; i++) {
__cpu_number_map[i] = -1;
__cpu_logical_map[i] = -1;
}
__cpu_number_map[boot_cpu_id] = 0;
__cpu_logical_map[0] = boot_cpu_id;
current_thread_info()->cpu = boot_cpu_id;
smp_store_cpu_info(boot_cpu_id);
set_irq_udt(boot_cpu_id);
smp_setup_percpu_timer();
local_flush_cache_all();
if(cpu_find_by_instance(1, NULL, NULL))
return; /* Not an MP box. */
for(i = 0; i < NR_CPUS; i++) {
if(i == boot_cpu_id)
continue;
if (cpu_isset(i, cpu_present_map)) {
extern unsigned long sun4m_cpu_startup;
unsigned long *entry = &sun4m_cpu_startup;
struct task_struct *p;
int timeout;
/* Cook up an idler for this guy. */
p = fork_idle(i);
cpucount++;
current_set[i] = p->thread_info;
/* See trampoline.S for details... */
entry += ((i-1) * 3);
/*
* Initialize the contexts table
* Since the call to prom_startcpu() trashes the structure,
* we need to re-initialize it for each cpu
*/
smp_penguin_ctable.which_io = 0;
smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
smp_penguin_ctable.reg_size = 0;
/* whirrr, whirrr, whirrrrrrrrr... */
printk("Starting CPU %d at %p\n", i, entry);
local_flush_cache_all();
prom_startcpu(cpu_data(i).prom_node,
&smp_penguin_ctable, 0, (char *)entry);
/* wheee... it's going... */
for(timeout = 0; timeout < 10000; timeout++) {
if(cpu_callin_map[i])
break;
udelay(200);
}
if(cpu_callin_map[i]) {
/* Another "Red Snapper". */
__cpu_number_map[i] = i;
__cpu_logical_map[i] = i;
} else {
cpucount--;
printk("Processor %d is stuck.\n", i);
}
}
if(!(cpu_callin_map[i])) {
cpu_clear(i, cpu_present_map);
__cpu_number_map[i] = -1;
}
}
local_flush_cache_all();
if(cpucount == 0) {
printk("Error: only one Processor found.\n");
cpu_present_map = cpumask_of_cpu(smp_processor_id());
} else {
unsigned long bogosum = 0;
for(i = 0; i < NR_CPUS; i++) {
if (cpu_isset(i, cpu_present_map))
bogosum += cpu_data(i).udelay_val;
}
printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n",
cpucount + 1,
bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
smp_activated = 1;
smp_num_cpus = cpucount + 1;
}
/* Free unneeded trap tables */
if (!cpu_isset(i, cpu_present_map)) {
ClearPageReserved(virt_to_page(trapbase_cpu1));
set_page_count(virt_to_page(trapbase_cpu1), 1);
free_page((unsigned long)trapbase_cpu1);
totalram_pages++;
num_physpages++;
}
if (!cpu_isset(2, cpu_present_map)) {
ClearPageReserved(virt_to_page(trapbase_cpu2));
set_page_count(virt_to_page(trapbase_cpu2), 1);
free_page((unsigned long)trapbase_cpu2);
totalram_pages++;
num_physpages++;
}
if (!cpu_isset(3, cpu_present_map)) {
ClearPageReserved(virt_to_page(trapbase_cpu3));
set_page_count(virt_to_page(trapbase_cpu3), 1);
free_page((unsigned long)trapbase_cpu3);
totalram_pages++;
num_physpages++;
}
/* Ok, they are spinning and ready to go. */
smp_processors_ready = 1;
}
/* At each hardware IRQ, we get this called to forward IRQ reception
* to the next processor. The caller must disable the IRQ level being
* serviced globally so that there are no double interrupts received.
*
* XXX See sparc64 irq.c.
*/
void smp4m_irq_rotate(int cpu)
{
}
/* Cross calls, in order to work efficiently and atomically do all
* the message passing work themselves, only stopcpu and reschedule
* messages come through here.
*/
void smp4m_message_pass(int target, int msg, unsigned long data, int wait)
{
static unsigned long smp_cpu_in_msg[NR_CPUS];
cpumask_t mask;
int me = smp_processor_id();
int irq, i;
if(msg == MSG_RESCHEDULE) {
irq = IRQ_RESCHEDULE;
if(smp_cpu_in_msg[me])
return;
} else if(msg == MSG_STOP_CPU) {
irq = IRQ_STOP_CPU;
} else {
goto barf;
}
smp_cpu_in_msg[me]++;
if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) {
mask = cpu_present_map;
if(target == MSG_ALL_BUT_SELF)
cpu_clear(me, mask);
for(i = 0; i < 4; i++) {
if (cpu_isset(i, mask))
set_cpu_int(i, irq);
}
} else {
set_cpu_int(target, irq);
}
smp_cpu_in_msg[me]--;
return;
barf:
printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me);
panic("Bogon SMP message pass.");
}
static struct smp_funcall {
smpfunc_t func;
unsigned long arg1;
unsigned long arg2;
unsigned long arg3;
unsigned long arg4;
unsigned long arg5;
unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */
unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */
} ccall_info;
static DEFINE_SPINLOCK(cross_call_lock);
/* Cross calls must be serialized, at least currently. */
void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2,
unsigned long arg3, unsigned long arg4, unsigned long arg5)
{
if(smp_processors_ready) {
register int ncpus = smp_num_cpus;
unsigned long flags;
spin_lock_irqsave(&cross_call_lock, flags);
/* Init function glue. */
ccall_info.func = func;
ccall_info.arg1 = arg1;
ccall_info.arg2 = arg2;
ccall_info.arg3 = arg3;
ccall_info.arg4 = arg4;
ccall_info.arg5 = arg5;
/* Init receive/complete mapping, plus fire the IPI's off. */
{
cpumask_t mask = cpu_present_map;
register int i;
cpu_clear(smp_processor_id(), mask);
for(i = 0; i < ncpus; i++) {
if (cpu_isset(i, mask)) {
ccall_info.processors_in[i] = 0;
ccall_info.processors_out[i] = 0;
set_cpu_int(i, IRQ_CROSS_CALL);
} else {
ccall_info.processors_in[i] = 1;
ccall_info.processors_out[i] = 1;
}
}
}
{
register int i;
i = 0;
do {
while(!ccall_info.processors_in[i])
barrier();
} while(++i < ncpus);
i = 0;
do {
while(!ccall_info.processors_out[i])
barrier();
} while(++i < ncpus);
}
spin_unlock_irqrestore(&cross_call_lock, flags);
}
}
/* Running cross calls. */
void smp4m_cross_call_irq(void)
{
int i = smp_processor_id();
ccall_info.processors_in[i] = 1;
ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
ccall_info.arg4, ccall_info.arg5);
ccall_info.processors_out[i] = 1;
}
void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
{
int cpu = smp_processor_id();
clear_profile_irq(cpu);
profile_tick(CPU_PROFILING, regs);
if(!--prof_counter(cpu)) {
int user = user_mode(regs);
irq_enter();
update_process_times(user);
irq_exit();
prof_counter(cpu) = prof_multiplier(cpu);
}
}
extern unsigned int lvl14_resolution;
static void __init smp_setup_percpu_timer(void)
{
int cpu = smp_processor_id();
prof_counter(cpu) = prof_multiplier(cpu) = 1;
load_profile_irq(cpu, lvl14_resolution);
if(cpu == boot_cpu_id)
enable_pil_irq(14);
}
void __init smp4m_blackbox_id(unsigned *addr)
{
int rd = *addr & 0x3e000000;
int rs1 = rd >> 11;
addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */
addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */
}
void __init smp4m_blackbox_current(unsigned *addr)
{
int rd = *addr & 0x3e000000;
int rs1 = rd >> 11;
addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */
addr[4] = 0x8008200c | rd | rs1; /* and reg, 3, reg */
}
void __init sun4m_init_smp(void)
{
BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM);
BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);
}