kernel-fxtec-pro1x/drivers/scsi/nsp32.c
Tim Schmielau cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00

3594 lines
92 KiB
C

/*
* NinjaSCSI-32Bi Cardbus, NinjaSCSI-32UDE PCI/CardBus SCSI driver
* Copyright (C) 2001, 2002, 2003
* YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>
* GOTO Masanori <gotom@debian.or.jp>, <gotom@debian.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* Revision History:
* 1.0: Initial Release.
* 1.1: Add /proc SDTR status.
* Remove obsolete error handler nsp32_reset.
* Some clean up.
* 1.2: PowerPC (big endian) support.
*/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/ioport.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/dma-mapping.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/io.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_ioctl.h>
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0))
# include <linux/blk.h>
#endif
#include "nsp32.h"
/***********************************************************************
* Module parameters
*/
static int trans_mode = 0; /* default: BIOS */
module_param (trans_mode, int, 0);
MODULE_PARM_DESC(trans_mode, "transfer mode (0: BIOS(default) 1: Async 2: Ultra20M");
#define ASYNC_MODE 1
#define ULTRA20M_MODE 2
static int auto_param = 0; /* default: ON */
module_param (auto_param, bool, 0);
MODULE_PARM_DESC(auto_param, "AutoParameter mode (0: ON(default) 1: OFF)");
static int disc_priv = 1; /* default: OFF */
module_param (disc_priv, bool, 0);
MODULE_PARM_DESC(disc_priv, "disconnection privilege mode (0: ON 1: OFF(default))");
MODULE_AUTHOR("YOKOTA Hiroshi <yokota@netlab.is.tsukuba.ac.jp>, GOTO Masanori <gotom@debian.or.jp>");
MODULE_DESCRIPTION("Workbit NinjaSCSI-32Bi/UDE CardBus/PCI SCSI host bus adapter module");
MODULE_LICENSE("GPL");
static const char *nsp32_release_version = "1.2";
/****************************************************************************
* Supported hardware
*/
static struct pci_device_id nsp32_pci_table[] __devinitdata = {
{
.vendor = PCI_VENDOR_ID_IODATA,
.device = PCI_DEVICE_ID_NINJASCSI_32BI_CBSC_II,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_IODATA,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32BI_KME,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_KME,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32BI_WBT,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_WORKBIT,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_WORKBIT_STANDARD,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_PCI_WORKBIT,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32BI_LOGITEC,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_LOGITEC,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_PCI_LOGITEC,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_PCI_MELCO,
},
{
.vendor = PCI_VENDOR_ID_WORKBIT,
.device = PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO_II,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = MODEL_PCI_MELCO,
},
{0,0,},
};
MODULE_DEVICE_TABLE(pci, nsp32_pci_table);
static nsp32_hw_data nsp32_data_base; /* probe <-> detect glue */
/*
* Period/AckWidth speed conversion table
*
* Note: This period/ackwidth speed table must be in descending order.
*/
static nsp32_sync_table nsp32_sync_table_40M[] = {
/* {PNo, AW, SP, EP, SREQ smpl} Speed(MB/s) Period AckWidth */
{0x1, 0, 0x0c, 0x0c, SMPL_40M}, /* 20.0 : 50ns, 25ns */
{0x2, 0, 0x0d, 0x18, SMPL_40M}, /* 13.3 : 75ns, 25ns */
{0x3, 1, 0x19, 0x19, SMPL_40M}, /* 10.0 : 100ns, 50ns */
{0x4, 1, 0x1a, 0x1f, SMPL_20M}, /* 8.0 : 125ns, 50ns */
{0x5, 2, 0x20, 0x25, SMPL_20M}, /* 6.7 : 150ns, 75ns */
{0x6, 2, 0x26, 0x31, SMPL_20M}, /* 5.7 : 175ns, 75ns */
{0x7, 3, 0x32, 0x32, SMPL_20M}, /* 5.0 : 200ns, 100ns */
{0x8, 3, 0x33, 0x38, SMPL_10M}, /* 4.4 : 225ns, 100ns */
{0x9, 3, 0x39, 0x3e, SMPL_10M}, /* 4.0 : 250ns, 100ns */
};
static nsp32_sync_table nsp32_sync_table_20M[] = {
{0x1, 0, 0x19, 0x19, SMPL_40M}, /* 10.0 : 100ns, 50ns */
{0x2, 0, 0x1a, 0x25, SMPL_20M}, /* 6.7 : 150ns, 50ns */
{0x3, 1, 0x26, 0x32, SMPL_20M}, /* 5.0 : 200ns, 100ns */
{0x4, 1, 0x33, 0x3e, SMPL_10M}, /* 4.0 : 250ns, 100ns */
{0x5, 2, 0x3f, 0x4b, SMPL_10M}, /* 3.3 : 300ns, 150ns */
{0x6, 2, 0x4c, 0x57, SMPL_10M}, /* 2.8 : 350ns, 150ns */
{0x7, 3, 0x58, 0x64, SMPL_10M}, /* 2.5 : 400ns, 200ns */
{0x8, 3, 0x65, 0x70, SMPL_10M}, /* 2.2 : 450ns, 200ns */
{0x9, 3, 0x71, 0x7d, SMPL_10M}, /* 2.0 : 500ns, 200ns */
};
static nsp32_sync_table nsp32_sync_table_pci[] = {
{0x1, 0, 0x0c, 0x0f, SMPL_40M}, /* 16.6 : 60ns, 30ns */
{0x2, 0, 0x10, 0x16, SMPL_40M}, /* 11.1 : 90ns, 30ns */
{0x3, 1, 0x17, 0x1e, SMPL_20M}, /* 8.3 : 120ns, 60ns */
{0x4, 1, 0x1f, 0x25, SMPL_20M}, /* 6.7 : 150ns, 60ns */
{0x5, 2, 0x26, 0x2d, SMPL_20M}, /* 5.6 : 180ns, 90ns */
{0x6, 2, 0x2e, 0x34, SMPL_10M}, /* 4.8 : 210ns, 90ns */
{0x7, 3, 0x35, 0x3c, SMPL_10M}, /* 4.2 : 240ns, 120ns */
{0x8, 3, 0x3d, 0x43, SMPL_10M}, /* 3.7 : 270ns, 120ns */
{0x9, 3, 0x44, 0x4b, SMPL_10M}, /* 3.3 : 300ns, 120ns */
};
/*
* function declaration
*/
/* module entry point */
static int __devinit nsp32_probe (struct pci_dev *, const struct pci_device_id *);
static void __devexit nsp32_remove(struct pci_dev *);
static int __init init_nsp32 (void);
static void __exit exit_nsp32 (void);
/* struct struct scsi_host_template */
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
static int nsp32_proc_info (struct Scsi_Host *, char *, char **, off_t, int, int);
#else
static int nsp32_proc_info (char *, char **, off_t, int, int, int);
#endif
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
static int nsp32_detect (struct pci_dev *pdev);
#else
static int nsp32_detect (struct scsi_host_template *);
#endif
static int nsp32_queuecommand(struct scsi_cmnd *,
void (*done)(struct scsi_cmnd *));
static const char *nsp32_info (struct Scsi_Host *);
static int nsp32_release (struct Scsi_Host *);
/* SCSI error handler */
static int nsp32_eh_abort (struct scsi_cmnd *);
static int nsp32_eh_bus_reset (struct scsi_cmnd *);
static int nsp32_eh_host_reset(struct scsi_cmnd *);
/* generate SCSI message */
static void nsp32_build_identify(struct scsi_cmnd *);
static void nsp32_build_nop (struct scsi_cmnd *);
static void nsp32_build_reject (struct scsi_cmnd *);
static void nsp32_build_sdtr (struct scsi_cmnd *, unsigned char, unsigned char);
/* SCSI message handler */
static int nsp32_busfree_occur(struct scsi_cmnd *, unsigned short);
static void nsp32_msgout_occur (struct scsi_cmnd *);
static void nsp32_msgin_occur (struct scsi_cmnd *, unsigned long, unsigned short);
static int nsp32_setup_sg_table (struct scsi_cmnd *);
static int nsp32_selection_autopara(struct scsi_cmnd *);
static int nsp32_selection_autoscsi(struct scsi_cmnd *);
static void nsp32_scsi_done (struct scsi_cmnd *);
static int nsp32_arbitration (struct scsi_cmnd *, unsigned int);
static int nsp32_reselection (struct scsi_cmnd *, unsigned char);
static void nsp32_adjust_busfree (struct scsi_cmnd *, unsigned int);
static void nsp32_restart_autoscsi (struct scsi_cmnd *, unsigned short);
/* SCSI SDTR */
static void nsp32_analyze_sdtr (struct scsi_cmnd *);
static int nsp32_search_period_entry(nsp32_hw_data *, nsp32_target *, unsigned char);
static void nsp32_set_async (nsp32_hw_data *, nsp32_target *);
static void nsp32_set_max_sync (nsp32_hw_data *, nsp32_target *, unsigned char *, unsigned char *);
static void nsp32_set_sync_entry (nsp32_hw_data *, nsp32_target *, int, unsigned char);
/* SCSI bus status handler */
static void nsp32_wait_req (nsp32_hw_data *, int);
static void nsp32_wait_sack (nsp32_hw_data *, int);
static void nsp32_sack_assert (nsp32_hw_data *);
static void nsp32_sack_negate (nsp32_hw_data *);
static void nsp32_do_bus_reset(nsp32_hw_data *);
/* hardware interrupt handler */
static irqreturn_t do_nsp32_isr(int, void *);
/* initialize hardware */
static int nsp32hw_init(nsp32_hw_data *);
/* EEPROM handler */
static int nsp32_getprom_param (nsp32_hw_data *);
static int nsp32_getprom_at24 (nsp32_hw_data *);
static int nsp32_getprom_c16 (nsp32_hw_data *);
static void nsp32_prom_start (nsp32_hw_data *);
static void nsp32_prom_stop (nsp32_hw_data *);
static int nsp32_prom_read (nsp32_hw_data *, int);
static int nsp32_prom_read_bit (nsp32_hw_data *);
static void nsp32_prom_write_bit(nsp32_hw_data *, int);
static void nsp32_prom_set (nsp32_hw_data *, int, int);
static int nsp32_prom_get (nsp32_hw_data *, int);
/* debug/warning/info message */
static void nsp32_message (const char *, int, char *, char *, ...);
#ifdef NSP32_DEBUG
static void nsp32_dmessage(const char *, int, int, char *, ...);
#endif
/*
* max_sectors is currently limited up to 128.
*/
static struct scsi_host_template nsp32_template = {
.proc_name = "nsp32",
.name = "Workbit NinjaSCSI-32Bi/UDE",
.proc_info = nsp32_proc_info,
.info = nsp32_info,
.queuecommand = nsp32_queuecommand,
.can_queue = 1,
.sg_tablesize = NSP32_SG_SIZE,
.max_sectors = 128,
.cmd_per_lun = 1,
.this_id = NSP32_HOST_SCSIID,
.use_clustering = DISABLE_CLUSTERING,
.eh_abort_handler = nsp32_eh_abort,
.eh_bus_reset_handler = nsp32_eh_bus_reset,
.eh_host_reset_handler = nsp32_eh_host_reset,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,74))
.detect = nsp32_detect,
.release = nsp32_release,
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,2))
.use_new_eh_code = 1,
#else
/* .highmem_io = 1, */
#endif
};
#include "nsp32_io.h"
/***********************************************************************
* debug, error print
*/
#ifndef NSP32_DEBUG
# define NSP32_DEBUG_MASK 0x000000
# define nsp32_msg(type, args...) nsp32_message ("", 0, (type), args)
# define nsp32_dbg(mask, args...) /* */
#else
# define NSP32_DEBUG_MASK 0xffffff
# define nsp32_msg(type, args...) \
nsp32_message (__FUNCTION__, __LINE__, (type), args)
# define nsp32_dbg(mask, args...) \
nsp32_dmessage(__FUNCTION__, __LINE__, (mask), args)
#endif
#define NSP32_DEBUG_QUEUECOMMAND BIT(0)
#define NSP32_DEBUG_REGISTER BIT(1)
#define NSP32_DEBUG_AUTOSCSI BIT(2)
#define NSP32_DEBUG_INTR BIT(3)
#define NSP32_DEBUG_SGLIST BIT(4)
#define NSP32_DEBUG_BUSFREE BIT(5)
#define NSP32_DEBUG_CDB_CONTENTS BIT(6)
#define NSP32_DEBUG_RESELECTION BIT(7)
#define NSP32_DEBUG_MSGINOCCUR BIT(8)
#define NSP32_DEBUG_EEPROM BIT(9)
#define NSP32_DEBUG_MSGOUTOCCUR BIT(10)
#define NSP32_DEBUG_BUSRESET BIT(11)
#define NSP32_DEBUG_RESTART BIT(12)
#define NSP32_DEBUG_SYNC BIT(13)
#define NSP32_DEBUG_WAIT BIT(14)
#define NSP32_DEBUG_TARGETFLAG BIT(15)
#define NSP32_DEBUG_PROC BIT(16)
#define NSP32_DEBUG_INIT BIT(17)
#define NSP32_SPECIAL_PRINT_REGISTER BIT(20)
#define NSP32_DEBUG_BUF_LEN 100
static void nsp32_message(const char *func, int line, char *type, char *fmt, ...)
{
va_list args;
char buf[NSP32_DEBUG_BUF_LEN];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
#ifndef NSP32_DEBUG
printk("%snsp32: %s\n", type, buf);
#else
printk("%snsp32: %s (%d): %s\n", type, func, line, buf);
#endif
}
#ifdef NSP32_DEBUG
static void nsp32_dmessage(const char *func, int line, int mask, char *fmt, ...)
{
va_list args;
char buf[NSP32_DEBUG_BUF_LEN];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
if (mask & NSP32_DEBUG_MASK) {
printk("nsp32-debug: 0x%x %s (%d): %s\n", mask, func, line, buf);
}
}
#endif
#ifdef NSP32_DEBUG
# include "nsp32_debug.c"
#else
# define show_command(arg) /* */
# define show_busphase(arg) /* */
# define show_autophase(arg) /* */
#endif
/*
* IDENTIFY Message
*/
static void nsp32_build_identify(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int pos = data->msgout_len;
int mode = FALSE;
/* XXX: Auto DiscPriv detection is progressing... */
if (disc_priv == 0) {
/* mode = TRUE; */
}
data->msgoutbuf[pos] = IDENTIFY(mode, SCpnt->device->lun); pos++;
data->msgout_len = pos;
}
/*
* SDTR Message Routine
*/
static void nsp32_build_sdtr(struct scsi_cmnd *SCpnt,
unsigned char period,
unsigned char offset)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int pos = data->msgout_len;
data->msgoutbuf[pos] = EXTENDED_MESSAGE; pos++;
data->msgoutbuf[pos] = EXTENDED_SDTR_LEN; pos++;
data->msgoutbuf[pos] = EXTENDED_SDTR; pos++;
data->msgoutbuf[pos] = period; pos++;
data->msgoutbuf[pos] = offset; pos++;
data->msgout_len = pos;
}
/*
* No Operation Message
*/
static void nsp32_build_nop(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int pos = data->msgout_len;
if (pos != 0) {
nsp32_msg(KERN_WARNING,
"Some messages are already contained!");
return;
}
data->msgoutbuf[pos] = NOP; pos++;
data->msgout_len = pos;
}
/*
* Reject Message
*/
static void nsp32_build_reject(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int pos = data->msgout_len;
data->msgoutbuf[pos] = MESSAGE_REJECT; pos++;
data->msgout_len = pos;
}
/*
* timer
*/
#if 0
static void nsp32_start_timer(struct scsi_cmnd *SCpnt, int time)
{
unsigned int base = SCpnt->host->io_port;
nsp32_dbg(NSP32_DEBUG_INTR, "timer=%d", time);
if (time & (~TIMER_CNT_MASK)) {
nsp32_dbg(NSP32_DEBUG_INTR, "timer set overflow");
}
nsp32_write2(base, TIMER_SET, time & TIMER_CNT_MASK);
}
#endif
/*
* set SCSI command and other parameter to asic, and start selection phase
*/
static int nsp32_selection_autopara(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
unsigned int host_id = SCpnt->device->host->this_id;
unsigned char target = scmd_id(SCpnt);
nsp32_autoparam *param = data->autoparam;
unsigned char phase;
int i, ret;
unsigned int msgout;
u16_le s;
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "in");
/*
* check bus free
*/
phase = nsp32_read1(base, SCSI_BUS_MONITOR);
if (phase != BUSMON_BUS_FREE) {
nsp32_msg(KERN_WARNING, "bus busy");
show_busphase(phase & BUSMON_PHASE_MASK);
SCpnt->result = DID_BUS_BUSY << 16;
return FALSE;
}
/*
* message out
*
* Note: If the range of msgout_len is 1 - 3, fill scsi_msgout.
* over 3 messages needs another routine.
*/
if (data->msgout_len == 0) {
nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!");
SCpnt->result = DID_ERROR << 16;
return FALSE;
} else if (data->msgout_len > 0 && data->msgout_len <= 3) {
msgout = 0;
for (i = 0; i < data->msgout_len; i++) {
/*
* the sending order of the message is:
* MCNT 3: MSG#0 -> MSG#1 -> MSG#2
* MCNT 2: MSG#1 -> MSG#2
* MCNT 1: MSG#2
*/
msgout >>= 8;
msgout |= ((unsigned int)(data->msgoutbuf[i]) << 24);
}
msgout |= MV_VALID; /* MV valid */
msgout |= (unsigned int)data->msgout_len; /* len */
} else {
/* data->msgout_len > 3 */
msgout = 0;
}
// nsp_dbg(NSP32_DEBUG_AUTOSCSI, "sel time out=0x%x\n", nsp32_read2(base, SEL_TIME_OUT));
// nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME);
/*
* setup asic parameter
*/
memset(param, 0, sizeof(nsp32_autoparam));
/* cdb */
for (i = 0; i < SCpnt->cmd_len; i++) {
param->cdb[4 * i] = SCpnt->cmnd[i];
}
/* outgoing messages */
param->msgout = cpu_to_le32(msgout);
/* syncreg, ackwidth, target id, SREQ sampling rate */
param->syncreg = data->cur_target->syncreg;
param->ackwidth = data->cur_target->ackwidth;
param->target_id = BIT(host_id) | BIT(target);
param->sample_reg = data->cur_target->sample_reg;
// nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "sample rate=0x%x\n", data->cur_target->sample_reg);
/* command control */
param->command_control = cpu_to_le16(CLEAR_CDB_FIFO_POINTER |
AUTOSCSI_START |
AUTO_MSGIN_00_OR_04 |
AUTO_MSGIN_02 |
AUTO_ATN );
/* transfer control */
s = 0;
switch (data->trans_method) {
case NSP32_TRANSFER_BUSMASTER:
s |= BM_START;
break;
case NSP32_TRANSFER_MMIO:
s |= CB_MMIO_MODE;
break;
case NSP32_TRANSFER_PIO:
s |= CB_IO_MODE;
break;
default:
nsp32_msg(KERN_ERR, "unknown trans_method");
break;
}
/*
* OR-ed BLIEND_MODE, FIFO intr is decreased, instead of PCI bus waits.
* For bus master transfer, it's taken off.
*/
s |= (TRANSFER_GO | ALL_COUNTER_CLR);
param->transfer_control = cpu_to_le16(s);
/* sg table addr */
param->sgt_pointer = cpu_to_le32(data->cur_lunt->sglun_paddr);
/*
* transfer parameter to ASIC
*/
nsp32_write4(base, SGT_ADR, data->auto_paddr);
nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER |
AUTO_PARAMETER );
/*
* Check arbitration
*/
ret = nsp32_arbitration(SCpnt, base);
return ret;
}
/*
* Selection with AUTO SCSI (without AUTO PARAMETER)
*/
static int nsp32_selection_autoscsi(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
unsigned int host_id = SCpnt->device->host->this_id;
unsigned char target = scmd_id(SCpnt);
unsigned char phase;
int status;
unsigned short command = 0;
unsigned int msgout = 0;
unsigned short execph;
int i;
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "in");
/*
* IRQ disable
*/
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
/*
* check bus line
*/
phase = nsp32_read1(base, SCSI_BUS_MONITOR);
if(((phase & BUSMON_BSY) == 1) || (phase & BUSMON_SEL) == 1) {
nsp32_msg(KERN_WARNING, "bus busy");
SCpnt->result = DID_BUS_BUSY << 16;
status = 1;
goto out;
}
/*
* clear execph
*/
execph = nsp32_read2(base, SCSI_EXECUTE_PHASE);
/*
* clear FIFO counter to set CDBs
*/
nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER);
/*
* set CDB0 - CDB15
*/
for (i = 0; i < SCpnt->cmd_len; i++) {
nsp32_write1(base, COMMAND_DATA, SCpnt->cmnd[i]);
}
nsp32_dbg(NSP32_DEBUG_CDB_CONTENTS, "CDB[0]=[0x%x]", SCpnt->cmnd[0]);
/*
* set SCSIOUT LATCH(initiator)/TARGET(target) (OR-ed) ID
*/
nsp32_write1(base, SCSI_OUT_LATCH_TARGET_ID, BIT(host_id) | BIT(target));
/*
* set SCSI MSGOUT REG
*
* Note: If the range of msgout_len is 1 - 3, fill scsi_msgout.
* over 3 messages needs another routine.
*/
if (data->msgout_len == 0) {
nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!");
SCpnt->result = DID_ERROR << 16;
status = 1;
goto out;
} else if (data->msgout_len > 0 && data->msgout_len <= 3) {
msgout = 0;
for (i = 0; i < data->msgout_len; i++) {
/*
* the sending order of the message is:
* MCNT 3: MSG#0 -> MSG#1 -> MSG#2
* MCNT 2: MSG#1 -> MSG#2
* MCNT 1: MSG#2
*/
msgout >>= 8;
msgout |= ((unsigned int)(data->msgoutbuf[i]) << 24);
}
msgout |= MV_VALID; /* MV valid */
msgout |= (unsigned int)data->msgout_len; /* len */
nsp32_write4(base, SCSI_MSG_OUT, msgout);
} else {
/* data->msgout_len > 3 */
nsp32_write4(base, SCSI_MSG_OUT, 0);
}
/*
* set selection timeout(= 250ms)
*/
nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME);
/*
* set SREQ hazard killer sampling rate
*
* TODO: sample_rate (BASE+0F) is 0 when internal clock = 40MHz.
* check other internal clock!
*/
nsp32_write1(base, SREQ_SMPL_RATE, data->cur_target->sample_reg);
/*
* clear Arbit
*/
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
/*
* set SYNCREG
* Don't set BM_START_ADR before setting this register.
*/
nsp32_write1(base, SYNC_REG, data->cur_target->syncreg);
/*
* set ACKWIDTH
*/
nsp32_write1(base, ACK_WIDTH, data->cur_target->ackwidth);
nsp32_dbg(NSP32_DEBUG_AUTOSCSI,
"syncreg=0x%x, ackwidth=0x%x, sgtpaddr=0x%x, id=0x%x",
nsp32_read1(base, SYNC_REG), nsp32_read1(base, ACK_WIDTH),
nsp32_read4(base, SGT_ADR), nsp32_read1(base, SCSI_OUT_LATCH_TARGET_ID));
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "msgout_len=%d, msgout=0x%x",
data->msgout_len, msgout);
/*
* set SGT ADDR (physical address)
*/
nsp32_write4(base, SGT_ADR, data->cur_lunt->sglun_paddr);
/*
* set TRANSFER CONTROL REG
*/
command = 0;
command |= (TRANSFER_GO | ALL_COUNTER_CLR);
if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
if (SCpnt->request_bufflen > 0) {
command |= BM_START;
}
} else if (data->trans_method & NSP32_TRANSFER_MMIO) {
command |= CB_MMIO_MODE;
} else if (data->trans_method & NSP32_TRANSFER_PIO) {
command |= CB_IO_MODE;
}
nsp32_write2(base, TRANSFER_CONTROL, command);
/*
* start AUTO SCSI, kick off arbitration
*/
command = (CLEAR_CDB_FIFO_POINTER |
AUTOSCSI_START |
AUTO_MSGIN_00_OR_04 |
AUTO_MSGIN_02 |
AUTO_ATN );
nsp32_write2(base, COMMAND_CONTROL, command);
/*
* Check arbitration
*/
status = nsp32_arbitration(SCpnt, base);
out:
/*
* IRQ enable
*/
nsp32_write2(base, IRQ_CONTROL, 0);
return status;
}
/*
* Arbitration Status Check
*
* Note: Arbitration counter is waited during ARBIT_GO is not lifting.
* Using udelay(1) consumes CPU time and system time, but
* arbitration delay time is defined minimal 2.4us in SCSI
* specification, thus udelay works as coarse grained wait timer.
*/
static int nsp32_arbitration(struct scsi_cmnd *SCpnt, unsigned int base)
{
unsigned char arbit;
int status = TRUE;
int time = 0;
do {
arbit = nsp32_read1(base, ARBIT_STATUS);
time++;
} while ((arbit & (ARBIT_WIN | ARBIT_FAIL)) == 0 &&
(time <= ARBIT_TIMEOUT_TIME));
nsp32_dbg(NSP32_DEBUG_AUTOSCSI,
"arbit: 0x%x, delay time: %d", arbit, time);
if (arbit & ARBIT_WIN) {
/* Arbitration succeeded */
SCpnt->result = DID_OK << 16;
nsp32_index_write1(base, EXT_PORT, LED_ON); /* PCI LED on */
} else if (arbit & ARBIT_FAIL) {
/* Arbitration failed */
SCpnt->result = DID_BUS_BUSY << 16;
status = FALSE;
} else {
/*
* unknown error or ARBIT_GO timeout,
* something lock up! guess no connection.
*/
nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "arbit timeout");
SCpnt->result = DID_NO_CONNECT << 16;
status = FALSE;
}
/*
* clear Arbit
*/
nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR);
return status;
}
/*
* reselection
*
* Note: This reselection routine is called from msgin_occur,
* reselection target id&lun must be already set.
* SCSI-2 says IDENTIFY implies RESTORE_POINTER operation.
*/
static int nsp32_reselection(struct scsi_cmnd *SCpnt, unsigned char newlun)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int host_id = SCpnt->device->host->this_id;
unsigned int base = SCpnt->device->host->io_port;
unsigned char tmpid, newid;
nsp32_dbg(NSP32_DEBUG_RESELECTION, "enter");
/*
* calculate reselected SCSI ID
*/
tmpid = nsp32_read1(base, RESELECT_ID);
tmpid &= (~BIT(host_id));
newid = 0;
while (tmpid) {
if (tmpid & 1) {
break;
}
tmpid >>= 1;
newid++;
}
/*
* If reselected New ID:LUN is not existed
* or current nexus is not existed, unexpected
* reselection is occurred. Send reject message.
*/
if (newid >= ARRAY_SIZE(data->lunt) || newlun >= ARRAY_SIZE(data->lunt[0])) {
nsp32_msg(KERN_WARNING, "unknown id/lun");
return FALSE;
} else if(data->lunt[newid][newlun].SCpnt == NULL) {
nsp32_msg(KERN_WARNING, "no SCSI command is processing");
return FALSE;
}
data->cur_id = newid;
data->cur_lun = newlun;
data->cur_target = &(data->target[newid]);
data->cur_lunt = &(data->lunt[newid][newlun]);
/* reset SACK/SavedACK counter (or ALL clear?) */
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
return TRUE;
}
/*
* nsp32_setup_sg_table - build scatter gather list for transfer data
* with bus master.
*
* Note: NinjaSCSI-32Bi/UDE bus master can not transfer over 64KB at a time.
*/
static int nsp32_setup_sg_table(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
struct scatterlist *sgl;
nsp32_sgtable *sgt = data->cur_lunt->sglun->sgt;
int num, i;
u32_le l;
if (SCpnt->request_bufflen == 0) {
return TRUE;
}
if (sgt == NULL) {
nsp32_dbg(NSP32_DEBUG_SGLIST, "SGT == null");
return FALSE;
}
if (SCpnt->use_sg) {
sgl = (struct scatterlist *)SCpnt->request_buffer;
num = pci_map_sg(data->Pci, sgl, SCpnt->use_sg,
SCpnt->sc_data_direction);
for (i = 0; i < num; i++) {
/*
* Build nsp32_sglist, substitute sg dma addresses.
*/
sgt[i].addr = cpu_to_le32(sg_dma_address(sgl));
sgt[i].len = cpu_to_le32(sg_dma_len(sgl));
sgl++;
if (le32_to_cpu(sgt[i].len) > 0x10000) {
nsp32_msg(KERN_ERR,
"can't transfer over 64KB at a time, size=0x%lx", le32_to_cpu(sgt[i].len));
return FALSE;
}
nsp32_dbg(NSP32_DEBUG_SGLIST,
"num 0x%x : addr 0x%lx len 0x%lx",
i,
le32_to_cpu(sgt[i].addr),
le32_to_cpu(sgt[i].len ));
}
/* set end mark */
l = le32_to_cpu(sgt[num-1].len);
sgt[num-1].len = cpu_to_le32(l | SGTEND);
} else {
SCpnt->SCp.have_data_in = pci_map_single(data->Pci,
SCpnt->request_buffer, SCpnt->request_bufflen,
SCpnt->sc_data_direction);
sgt[0].addr = cpu_to_le32(SCpnt->SCp.have_data_in);
sgt[0].len = cpu_to_le32(SCpnt->request_bufflen | SGTEND); /* set end mark */
if (SCpnt->request_bufflen > 0x10000) {
nsp32_msg(KERN_ERR,
"can't transfer over 64KB at a time, size=0x%lx", SCpnt->request_bufflen);
return FALSE;
}
nsp32_dbg(NSP32_DEBUG_SGLIST, "single : addr 0x%lx len=0x%lx",
le32_to_cpu(sgt[0].addr),
le32_to_cpu(sgt[0].len ));
}
return TRUE;
}
static int nsp32_queuecommand(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *))
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
nsp32_target *target;
nsp32_lunt *cur_lunt;
int ret;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"enter. target: 0x%x LUN: 0x%x cmnd: 0x%x cmndlen: 0x%x "
"use_sg: 0x%x reqbuf: 0x%lx reqlen: 0x%x",
SCpnt->device->id, SCpnt->device->lun, SCpnt->cmnd[0], SCpnt->cmd_len,
SCpnt->use_sg, SCpnt->request_buffer, SCpnt->request_bufflen);
if (data->CurrentSC != NULL) {
nsp32_msg(KERN_ERR, "Currentsc != NULL. Cancel this command request");
data->CurrentSC = NULL;
SCpnt->result = DID_NO_CONNECT << 16;
done(SCpnt);
return 0;
}
/* check target ID is not same as this initiator ID */
if (scmd_id(SCpnt) == SCpnt->device->host->this_id) {
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "terget==host???");
SCpnt->result = DID_BAD_TARGET << 16;
done(SCpnt);
return 0;
}
/* check target LUN is allowable value */
if (SCpnt->device->lun >= MAX_LUN) {
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "no more lun");
SCpnt->result = DID_BAD_TARGET << 16;
done(SCpnt);
return 0;
}
show_command(SCpnt);
SCpnt->scsi_done = done;
data->CurrentSC = SCpnt;
SCpnt->SCp.Status = CHECK_CONDITION;
SCpnt->SCp.Message = 0;
SCpnt->resid = SCpnt->request_bufflen;
SCpnt->SCp.ptr = (char *) SCpnt->request_buffer;
SCpnt->SCp.this_residual = SCpnt->request_bufflen;
SCpnt->SCp.buffer = NULL;
SCpnt->SCp.buffers_residual = 0;
/* initialize data */
data->msgout_len = 0;
data->msgin_len = 0;
cur_lunt = &(data->lunt[SCpnt->device->id][SCpnt->device->lun]);
cur_lunt->SCpnt = SCpnt;
cur_lunt->save_datp = 0;
cur_lunt->msgin03 = FALSE;
data->cur_lunt = cur_lunt;
data->cur_id = SCpnt->device->id;
data->cur_lun = SCpnt->device->lun;
ret = nsp32_setup_sg_table(SCpnt);
if (ret == FALSE) {
nsp32_msg(KERN_ERR, "SGT fail");
SCpnt->result = DID_ERROR << 16;
nsp32_scsi_done(SCpnt);
return 0;
}
/* Build IDENTIFY */
nsp32_build_identify(SCpnt);
/*
* If target is the first time to transfer after the reset
* (target don't have SDTR_DONE and SDTR_INITIATOR), sync
* message SDTR is needed to do synchronous transfer.
*/
target = &data->target[scmd_id(SCpnt)];
data->cur_target = target;
if (!(target->sync_flag & (SDTR_DONE | SDTR_INITIATOR | SDTR_TARGET))) {
unsigned char period, offset;
if (trans_mode != ASYNC_MODE) {
nsp32_set_max_sync(data, target, &period, &offset);
nsp32_build_sdtr(SCpnt, period, offset);
target->sync_flag |= SDTR_INITIATOR;
} else {
nsp32_set_async(data, target);
target->sync_flag |= SDTR_DONE;
}
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"SDTR: entry: %d start_period: 0x%x offset: 0x%x\n",
target->limit_entry, period, offset);
} else if (target->sync_flag & SDTR_INITIATOR) {
/*
* It was negotiating SDTR with target, sending from the
* initiator, but there are no chance to remove this flag.
* Set async because we don't get proper negotiation.
*/
nsp32_set_async(data, target);
target->sync_flag &= ~SDTR_INITIATOR;
target->sync_flag |= SDTR_DONE;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"SDTR_INITIATOR: fall back to async");
} else if (target->sync_flag & SDTR_TARGET) {
/*
* It was negotiating SDTR with target, sending from target,
* but there are no chance to remove this flag. Set async
* because we don't get proper negotiation.
*/
nsp32_set_async(data, target);
target->sync_flag &= ~SDTR_TARGET;
target->sync_flag |= SDTR_DONE;
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND,
"Unknown SDTR from target is reached, fall back to async.");
}
nsp32_dbg(NSP32_DEBUG_TARGETFLAG,
"target: %d sync_flag: 0x%x syncreg: 0x%x ackwidth: 0x%x",
SCpnt->device->id, target->sync_flag, target->syncreg,
target->ackwidth);
/* Selection */
if (auto_param == 0) {
ret = nsp32_selection_autopara(SCpnt);
} else {
ret = nsp32_selection_autoscsi(SCpnt);
}
if (ret != TRUE) {
nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "selection fail");
nsp32_scsi_done(SCpnt);
}
return 0;
}
/* initialize asic */
static int nsp32hw_init(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned short irq_stat;
unsigned long lc_reg;
unsigned char power;
lc_reg = nsp32_index_read4(base, CFG_LATE_CACHE);
if ((lc_reg & 0xff00) == 0) {
lc_reg |= (0x20 << 8);
nsp32_index_write2(base, CFG_LATE_CACHE, lc_reg & 0xffff);
}
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
nsp32_write2(base, SCSI_EXECUTE_PHASE, 0);
do {
irq_stat = nsp32_read2(base, IRQ_STATUS);
nsp32_dbg(NSP32_DEBUG_INIT, "irq_stat 0x%x", irq_stat);
} while (irq_stat & IRQSTATUS_ANY_IRQ);
/*
* Fill FIFO_FULL_SHLD, FIFO_EMPTY_SHLD. Below parameter is
* designated by specification.
*/
if ((data->trans_method & NSP32_TRANSFER_PIO) ||
(data->trans_method & NSP32_TRANSFER_MMIO)) {
nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT, 0x40);
nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x40);
} else if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT, 0x10);
nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x60);
} else {
nsp32_dbg(NSP32_DEBUG_INIT, "unknown transfer mode");
}
nsp32_dbg(NSP32_DEBUG_INIT, "full 0x%x emp 0x%x",
nsp32_index_read1(base, FIFO_FULL_SHLD_COUNT),
nsp32_index_read1(base, FIFO_EMPTY_SHLD_COUNT));
nsp32_index_write1(base, CLOCK_DIV, data->clock);
nsp32_index_write1(base, BM_CYCLE, MEMRD_CMD1 | SGT_AUTO_PARA_MEMED_CMD);
nsp32_write1(base, PARITY_CONTROL, 0); /* parity check is disable */
/*
* initialize MISC_WRRD register
*
* Note: Designated parameters is obeyed as following:
* MISC_SCSI_DIRECTION_DETECTOR_SELECT: It must be set.
* MISC_MASTER_TERMINATION_SELECT: It must be set.
* MISC_BMREQ_NEGATE_TIMING_SEL: It should be set.
* MISC_AUTOSEL_TIMING_SEL: It should be set.
* MISC_BMSTOP_CHANGE2_NONDATA_PHASE: It should be set.
* MISC_DELAYED_BMSTART: It's selected for safety.
*
* Note: If MISC_BMSTOP_CHANGE2_NONDATA_PHASE is set, then
* we have to set TRANSFERCONTROL_BM_START as 0 and set
* appropriate value before restarting bus master transfer.
*/
nsp32_index_write2(base, MISC_WR,
(SCSI_DIRECTION_DETECTOR_SELECT |
DELAYED_BMSTART |
MASTER_TERMINATION_SELECT |
BMREQ_NEGATE_TIMING_SEL |
AUTOSEL_TIMING_SEL |
BMSTOP_CHANGE2_NONDATA_PHASE));
nsp32_index_write1(base, TERM_PWR_CONTROL, 0);
power = nsp32_index_read1(base, TERM_PWR_CONTROL);
if (!(power & SENSE)) {
nsp32_msg(KERN_INFO, "term power on");
nsp32_index_write1(base, TERM_PWR_CONTROL, BPWR);
}
nsp32_write2(base, TIMER_SET, TIMER_STOP);
nsp32_write2(base, TIMER_SET, TIMER_STOP); /* Required 2 times */
nsp32_write1(base, SYNC_REG, 0);
nsp32_write1(base, ACK_WIDTH, 0);
nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME);
/*
* enable to select designated IRQ (except for
* IRQSELECT_SERR, IRQSELECT_PERR, IRQSELECT_BMCNTERR)
*/
nsp32_index_write2(base, IRQ_SELECT, IRQSELECT_TIMER_IRQ |
IRQSELECT_SCSIRESET_IRQ |
IRQSELECT_FIFO_SHLD_IRQ |
IRQSELECT_RESELECT_IRQ |
IRQSELECT_PHASE_CHANGE_IRQ |
IRQSELECT_AUTO_SCSI_SEQ_IRQ |
// IRQSELECT_BMCNTERR_IRQ |
IRQSELECT_TARGET_ABORT_IRQ |
IRQSELECT_MASTER_ABORT_IRQ );
nsp32_write2(base, IRQ_CONTROL, 0);
/* PCI LED off */
nsp32_index_write1(base, EXT_PORT_DDR, LED_OFF);
nsp32_index_write1(base, EXT_PORT, LED_OFF);
return TRUE;
}
/* interrupt routine */
static irqreturn_t do_nsp32_isr(int irq, void *dev_id)
{
nsp32_hw_data *data = dev_id;
unsigned int base = data->BaseAddress;
struct scsi_cmnd *SCpnt = data->CurrentSC;
unsigned short auto_stat, irq_stat, trans_stat;
unsigned char busmon, busphase;
unsigned long flags;
int ret;
int handled = 0;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0))
struct Scsi_Host *host = data->Host;
spin_lock_irqsave(host->host_lock, flags);
#else
spin_lock_irqsave(&io_request_lock, flags);
#endif
/*
* IRQ check, then enable IRQ mask
*/
irq_stat = nsp32_read2(base, IRQ_STATUS);
nsp32_dbg(NSP32_DEBUG_INTR,
"enter IRQ: %d, IRQstatus: 0x%x", irq, irq_stat);
/* is this interrupt comes from Ninja asic? */
if ((irq_stat & IRQSTATUS_ANY_IRQ) == 0) {
nsp32_dbg(NSP32_DEBUG_INTR, "shared interrupt: irq other 0x%x", irq_stat);
goto out2;
}
handled = 1;
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
busmon = nsp32_read1(base, SCSI_BUS_MONITOR);
busphase = busmon & BUSMON_PHASE_MASK;
trans_stat = nsp32_read2(base, TRANSFER_STATUS);
if ((irq_stat == 0xffff) && (trans_stat == 0xffff)) {
nsp32_msg(KERN_INFO, "card disconnect");
if (data->CurrentSC != NULL) {
nsp32_msg(KERN_INFO, "clean up current SCSI command");
SCpnt->result = DID_BAD_TARGET << 16;
nsp32_scsi_done(SCpnt);
}
goto out;
}
/* Timer IRQ */
if (irq_stat & IRQSTATUS_TIMER_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "timer stop");
nsp32_write2(base, TIMER_SET, TIMER_STOP);
goto out;
}
/* SCSI reset */
if (irq_stat & IRQSTATUS_SCSIRESET_IRQ) {
nsp32_msg(KERN_INFO, "detected someone do bus reset");
nsp32_do_bus_reset(data);
if (SCpnt != NULL) {
SCpnt->result = DID_RESET << 16;
nsp32_scsi_done(SCpnt);
}
goto out;
}
if (SCpnt == NULL) {
nsp32_msg(KERN_WARNING, "SCpnt==NULL this can't be happened");
nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
goto out;
}
/*
* AutoSCSI Interrupt.
* Note: This interrupt is occurred when AutoSCSI is finished. Then
* check SCSIEXECUTEPHASE, and do appropriate action. Each phases are
* recorded when AutoSCSI sequencer has been processed.
*/
if(irq_stat & IRQSTATUS_AUTOSCSI_IRQ) {
/* getting SCSI executed phase */
auto_stat = nsp32_read2(base, SCSI_EXECUTE_PHASE);
nsp32_write2(base, SCSI_EXECUTE_PHASE, 0);
/* Selection Timeout, go busfree phase. */
if (auto_stat & SELECTION_TIMEOUT) {
nsp32_dbg(NSP32_DEBUG_INTR,
"selection timeout occurred");
SCpnt->result = DID_TIME_OUT << 16;
nsp32_scsi_done(SCpnt);
goto out;
}
if (auto_stat & MSGOUT_PHASE) {
/*
* MsgOut phase was processed.
* If MSG_IN_OCCUER is not set, then MsgOut phase is
* completed. Thus, msgout_len must reset. Otherwise,
* nothing to do here. If MSG_OUT_OCCUER is occurred,
* then we will encounter the condition and check.
*/
if (!(auto_stat & MSG_IN_OCCUER) &&
(data->msgout_len <= 3)) {
/*
* !MSG_IN_OCCUER && msgout_len <=3
* ---> AutoSCSI with MSGOUTreg is processed.
*/
data->msgout_len = 0;
};
nsp32_dbg(NSP32_DEBUG_INTR, "MsgOut phase processed");
}
if ((auto_stat & DATA_IN_PHASE) &&
(SCpnt->resid > 0) &&
((nsp32_read2(base, FIFO_REST_CNT) & FIFO_REST_MASK) != 0)) {
printk( "auto+fifo\n");
//nsp32_pio_read(SCpnt);
}
if (auto_stat & (DATA_IN_PHASE | DATA_OUT_PHASE)) {
/* DATA_IN_PHASE/DATA_OUT_PHASE was processed. */
nsp32_dbg(NSP32_DEBUG_INTR,
"Data in/out phase processed");
/* read BMCNT, SGT pointer addr */
nsp32_dbg(NSP32_DEBUG_INTR, "BMCNT=0x%lx",
nsp32_read4(base, BM_CNT));
nsp32_dbg(NSP32_DEBUG_INTR, "addr=0x%lx",
nsp32_read4(base, SGT_ADR));
nsp32_dbg(NSP32_DEBUG_INTR, "SACK=0x%lx",
nsp32_read4(base, SACK_CNT));
nsp32_dbg(NSP32_DEBUG_INTR, "SSACK=0x%lx",
nsp32_read4(base, SAVED_SACK_CNT));
SCpnt->resid = 0; /* all data transfered! */
}
/*
* MsgIn Occur
*/
if (auto_stat & MSG_IN_OCCUER) {
nsp32_msgin_occur(SCpnt, irq_stat, auto_stat);
}
/*
* MsgOut Occur
*/
if (auto_stat & MSG_OUT_OCCUER) {
nsp32_msgout_occur(SCpnt);
}
/*
* Bus Free Occur
*/
if (auto_stat & BUS_FREE_OCCUER) {
ret = nsp32_busfree_occur(SCpnt, auto_stat);
if (ret == TRUE) {
goto out;
}
}
if (auto_stat & STATUS_PHASE) {
/*
* Read CSB and substitute CSB for SCpnt->result
* to save status phase stutas byte.
* scsi error handler checks host_byte (DID_*:
* low level driver to indicate status), then checks
* status_byte (SCSI status byte).
*/
SCpnt->result = (int)nsp32_read1(base, SCSI_CSB_IN);
}
if (auto_stat & ILLEGAL_PHASE) {
/* Illegal phase is detected. SACK is not back. */
nsp32_msg(KERN_WARNING,
"AUTO SCSI ILLEGAL PHASE OCCUR!!!!");
/* TODO: currently we don't have any action... bus reset? */
/*
* To send back SACK, assert, wait, and negate.
*/
nsp32_sack_assert(data);
nsp32_wait_req(data, NEGATE);
nsp32_sack_negate(data);
}
if (auto_stat & COMMAND_PHASE) {
/* nothing to do */
nsp32_dbg(NSP32_DEBUG_INTR, "Command phase processed");
}
if (auto_stat & AUTOSCSI_BUSY) {
/* AutoSCSI is running */
}
show_autophase(auto_stat);
}
/* FIFO_SHLD_IRQ */
if (irq_stat & IRQSTATUS_FIFO_SHLD_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "FIFO IRQ");
switch(busphase) {
case BUSPHASE_DATA_OUT:
nsp32_dbg(NSP32_DEBUG_INTR, "fifo/write");
//nsp32_pio_write(SCpnt);
break;
case BUSPHASE_DATA_IN:
nsp32_dbg(NSP32_DEBUG_INTR, "fifo/read");
//nsp32_pio_read(SCpnt);
break;
case BUSPHASE_STATUS:
nsp32_dbg(NSP32_DEBUG_INTR, "fifo/status");
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
break;
default:
nsp32_dbg(NSP32_DEBUG_INTR, "fifo/other phase");
nsp32_dbg(NSP32_DEBUG_INTR, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
show_busphase(busphase);
break;
}
goto out;
}
/* Phase Change IRQ */
if (irq_stat & IRQSTATUS_PHASE_CHANGE_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "phase change IRQ");
switch(busphase) {
case BUSPHASE_MESSAGE_IN:
nsp32_dbg(NSP32_DEBUG_INTR, "phase chg/msg in");
nsp32_msgin_occur(SCpnt, irq_stat, 0);
break;
default:
nsp32_msg(KERN_WARNING, "phase chg/other phase?");
nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x\n",
irq_stat, trans_stat);
show_busphase(busphase);
break;
}
goto out;
}
/* PCI_IRQ */
if (irq_stat & IRQSTATUS_PCI_IRQ) {
nsp32_dbg(NSP32_DEBUG_INTR, "PCI IRQ occurred");
/* Do nothing */
}
/* BMCNTERR_IRQ */
if (irq_stat & IRQSTATUS_BMCNTERR_IRQ) {
nsp32_msg(KERN_ERR, "Received unexpected BMCNTERR IRQ! ");
/*
* TODO: To be implemented improving bus master
* transfer reliablity when BMCNTERR is occurred in
* AutoSCSI phase described in specification.
*/
}
#if 0
nsp32_dbg(NSP32_DEBUG_INTR,
"irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat);
show_busphase(busphase);
#endif
out:
/* disable IRQ mask */
nsp32_write2(base, IRQ_CONTROL, 0);
out2:
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0))
spin_unlock_irqrestore(host->host_lock, flags);
#else
spin_unlock_irqrestore(&io_request_lock, flags);
#endif
nsp32_dbg(NSP32_DEBUG_INTR, "exit");
return IRQ_RETVAL(handled);
}
#undef SPRINTF
#define SPRINTF(args...) \
do { \
if(length > (pos - buffer)) { \
pos += snprintf(pos, length - (pos - buffer) + 1, ## args); \
nsp32_dbg(NSP32_DEBUG_PROC, "buffer=0x%p pos=0x%p length=%d %d\n", buffer, pos, length, length - (pos - buffer));\
} \
} while(0)
static int nsp32_proc_info(
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
struct Scsi_Host *host,
#endif
char *buffer,
char **start,
off_t offset,
int length,
#if !(LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
int hostno,
#endif
int inout)
{
char *pos = buffer;
int thislength;
unsigned long flags;
nsp32_hw_data *data;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
int hostno;
#else
struct Scsi_Host *host;
#endif
unsigned int base;
unsigned char mode_reg;
int id, speed;
long model;
/* Write is not supported, just return. */
if (inout == TRUE) {
return -EINVAL;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
hostno = host->host_no;
#else
/* search this HBA host */
host = scsi_host_hn_get(hostno);
if (host == NULL) {
return -ESRCH;
}
#endif
data = (nsp32_hw_data *)host->hostdata;
base = host->io_port;
SPRINTF("NinjaSCSI-32 status\n\n");
SPRINTF("Driver version: %s, $Revision: 1.33 $\n", nsp32_release_version);
SPRINTF("SCSI host No.: %d\n", hostno);
SPRINTF("IRQ: %d\n", host->irq);
SPRINTF("IO: 0x%lx-0x%lx\n", host->io_port, host->io_port + host->n_io_port - 1);
SPRINTF("MMIO(virtual address): 0x%lx-0x%lx\n", host->base, host->base + data->MmioLength - 1);
SPRINTF("sg_tablesize: %d\n", host->sg_tablesize);
SPRINTF("Chip revision: 0x%x\n", (nsp32_read2(base, INDEX_REG) >> 8) & 0xff);
mode_reg = nsp32_index_read1(base, CHIP_MODE);
model = data->pci_devid->driver_data;
#ifdef CONFIG_PM
SPRINTF("Power Management: %s\n", (mode_reg & OPTF) ? "yes" : "no");
#endif
SPRINTF("OEM: %ld, %s\n", (mode_reg & (OEM0|OEM1)), nsp32_model[model]);
spin_lock_irqsave(&(data->Lock), flags);
SPRINTF("CurrentSC: 0x%p\n\n", data->CurrentSC);
spin_unlock_irqrestore(&(data->Lock), flags);
SPRINTF("SDTR status\n");
for (id = 0; id < ARRAY_SIZE(data->target); id++) {
SPRINTF("id %d: ", id);
if (id == host->this_id) {
SPRINTF("----- NinjaSCSI-32 host adapter\n");
continue;
}
if (data->target[id].sync_flag == SDTR_DONE) {
if (data->target[id].period == 0 &&
data->target[id].offset == ASYNC_OFFSET ) {
SPRINTF("async");
} else {
SPRINTF(" sync");
}
} else {
SPRINTF(" none");
}
if (data->target[id].period != 0) {
speed = 1000000 / (data->target[id].period * 4);
SPRINTF(" transfer %d.%dMB/s, offset %d",
speed / 1000,
speed % 1000,
data->target[id].offset
);
}
SPRINTF("\n");
}
thislength = pos - (buffer + offset);
if(thislength < 0) {
*start = NULL;
return 0;
}
thislength = min(thislength, length);
*start = buffer + offset;
return thislength;
}
#undef SPRINTF
/*
* Reset parameters and call scsi_done for data->cur_lunt.
* Be careful setting SCpnt->result = DID_* before calling this function.
*/
static void nsp32_scsi_done(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
/*
* unmap pci
*/
if (SCpnt->request_bufflen == 0) {
goto skip;
}
if (SCpnt->use_sg) {
pci_unmap_sg(data->Pci,
(struct scatterlist *)SCpnt->request_buffer,
SCpnt->use_sg, SCpnt->sc_data_direction);
} else {
pci_unmap_single(data->Pci,
(u32)SCpnt->SCp.have_data_in,
SCpnt->request_bufflen,
SCpnt->sc_data_direction);
}
skip:
/*
* clear TRANSFERCONTROL_BM_START
*/
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
/*
* call scsi_done
*/
(*SCpnt->scsi_done)(SCpnt);
/*
* reset parameters
*/
data->cur_lunt->SCpnt = NULL;
data->cur_lunt = NULL;
data->cur_target = NULL;
data->CurrentSC = NULL;
}
/*
* Bus Free Occur
*
* Current Phase is BUSFREE. AutoSCSI is automatically execute BUSFREE phase
* with ACK reply when below condition is matched:
* MsgIn 00: Command Complete.
* MsgIn 02: Save Data Pointer.
* MsgIn 04: Diconnect.
* In other case, unexpected BUSFREE is detected.
*/
static int nsp32_busfree_occur(struct scsi_cmnd *SCpnt, unsigned short execph)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
nsp32_dbg(NSP32_DEBUG_BUSFREE, "enter execph=0x%x", execph);
show_autophase(execph);
nsp32_write4(base, BM_CNT, 0);
nsp32_write2(base, TRANSFER_CONTROL, 0);
/*
* MsgIn 02: Save Data Pointer
*
* VALID:
* Save Data Pointer is received. Adjust pointer.
*
* NO-VALID:
* SCSI-3 says if Save Data Pointer is not received, then we restart
* processing and we can't adjust any SCSI data pointer in next data
* phase.
*/
if (execph & MSGIN_02_VALID) {
nsp32_dbg(NSP32_DEBUG_BUSFREE, "MsgIn02_Valid");
/*
* Check sack_cnt/saved_sack_cnt, then adjust sg table if
* needed.
*/
if (!(execph & MSGIN_00_VALID) &&
((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE))) {
unsigned int sacklen, s_sacklen;
/*
* Read SACK count and SAVEDSACK count, then compare.
*/
sacklen = nsp32_read4(base, SACK_CNT );
s_sacklen = nsp32_read4(base, SAVED_SACK_CNT);
/*
* If SAVEDSACKCNT == 0, it means SavedDataPointer is
* come after data transfering.
*/
if (s_sacklen > 0) {
/*
* Comparing between sack and savedsack to
* check the condition of AutoMsgIn03.
*
* If they are same, set msgin03 == TRUE,
* COMMANDCONTROL_AUTO_MSGIN_03 is enabled at
* reselection. On the other hand, if they
* aren't same, set msgin03 == FALSE, and
* COMMANDCONTROL_AUTO_MSGIN_03 is disabled at
* reselection.
*/
if (sacklen != s_sacklen) {
data->cur_lunt->msgin03 = FALSE;
} else {
data->cur_lunt->msgin03 = TRUE;
}
nsp32_adjust_busfree(SCpnt, s_sacklen);
}
}
/* This value has not substitude with valid value yet... */
//data->cur_lunt->save_datp = data->cur_datp;
} else {
/*
* no processing.
*/
}
if (execph & MSGIN_03_VALID) {
/* MsgIn03 was valid to be processed. No need processing. */
}
/*
* target SDTR check
*/
if (data->cur_target->sync_flag & SDTR_INITIATOR) {
/*
* SDTR negotiation pulled by the initiator has not
* finished yet. Fall back to ASYNC mode.
*/
nsp32_set_async(data, data->cur_target);
data->cur_target->sync_flag &= ~SDTR_INITIATOR;
data->cur_target->sync_flag |= SDTR_DONE;
} else if (data->cur_target->sync_flag & SDTR_TARGET) {
/*
* SDTR negotiation pulled by the target has been
* negotiating.
*/
if (execph & (MSGIN_00_VALID | MSGIN_04_VALID)) {
/*
* If valid message is received, then
* negotiation is succeeded.
*/
} else {
/*
* On the contrary, if unexpected bus free is
* occurred, then negotiation is failed. Fall
* back to ASYNC mode.
*/
nsp32_set_async(data, data->cur_target);
}
data->cur_target->sync_flag &= ~SDTR_TARGET;
data->cur_target->sync_flag |= SDTR_DONE;
}
/*
* It is always ensured by SCSI standard that initiator
* switches into Bus Free Phase after
* receiving message 00 (Command Complete), 04 (Disconnect).
* It's the reason that processing here is valid.
*/
if (execph & MSGIN_00_VALID) {
/* MsgIn 00: Command Complete */
nsp32_dbg(NSP32_DEBUG_BUSFREE, "command complete");
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
SCpnt->SCp.Message = 0;
nsp32_dbg(NSP32_DEBUG_BUSFREE,
"normal end stat=0x%x resid=0x%x\n",
SCpnt->SCp.Status, SCpnt->resid);
SCpnt->result = (DID_OK << 16) |
(SCpnt->SCp.Message << 8) |
(SCpnt->SCp.Status << 0);
nsp32_scsi_done(SCpnt);
/* All operation is done */
return TRUE;
} else if (execph & MSGIN_04_VALID) {
/* MsgIn 04: Disconnect */
SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN);
SCpnt->SCp.Message = 4;
nsp32_dbg(NSP32_DEBUG_BUSFREE, "disconnect");
return TRUE;
} else {
/* Unexpected bus free */
nsp32_msg(KERN_WARNING, "unexpected bus free occurred");
/* DID_ERROR? */
//SCpnt->result = (DID_OK << 16) | (SCpnt->SCp.Message << 8) | (SCpnt->SCp.Status << 0);
SCpnt->result = DID_ERROR << 16;
nsp32_scsi_done(SCpnt);
return TRUE;
}
return FALSE;
}
/*
* nsp32_adjust_busfree - adjusting SG table
*
* Note: This driver adjust the SG table using SCSI ACK
* counter instead of BMCNT counter!
*/
static void nsp32_adjust_busfree(struct scsi_cmnd *SCpnt, unsigned int s_sacklen)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
int old_entry = data->cur_entry;
int new_entry;
int sg_num = data->cur_lunt->sg_num;
nsp32_sgtable *sgt = data->cur_lunt->sglun->sgt;
unsigned int restlen, sentlen;
u32_le len, addr;
nsp32_dbg(NSP32_DEBUG_SGLIST, "old resid=0x%x", SCpnt->resid);
/* adjust saved SACK count with 4 byte start address boundary */
s_sacklen -= le32_to_cpu(sgt[old_entry].addr) & 3;
/*
* calculate new_entry from sack count and each sgt[].len
* calculate the byte which is intent to send
*/
sentlen = 0;
for (new_entry = old_entry; new_entry < sg_num; new_entry++) {
sentlen += (le32_to_cpu(sgt[new_entry].len) & ~SGTEND);
if (sentlen > s_sacklen) {
break;
}
}
/* all sgt is processed */
if (new_entry == sg_num) {
goto last;
}
if (sentlen == s_sacklen) {
/* XXX: confirm it's ok or not */
/* In this case, it's ok because we are at
the head element of the sg. restlen is correctly calculated. */
}
/* calculate the rest length for transfering */
restlen = sentlen - s_sacklen;
/* update adjusting current SG table entry */
len = le32_to_cpu(sgt[new_entry].len);
addr = le32_to_cpu(sgt[new_entry].addr);
addr += (len - restlen);
sgt[new_entry].addr = cpu_to_le32(addr);
sgt[new_entry].len = cpu_to_le32(restlen);
/* set cur_entry with new_entry */
data->cur_entry = new_entry;
return;
last:
if (SCpnt->resid < sentlen) {
nsp32_msg(KERN_ERR, "resid underflow");
}
SCpnt->resid -= sentlen;
nsp32_dbg(NSP32_DEBUG_SGLIST, "new resid=0x%x", SCpnt->resid);
/* update hostdata and lun */
return;
}
/*
* It's called MsgOut phase occur.
* NinjaSCSI-32Bi/UDE automatically processes up to 3 messages in
* message out phase. It, however, has more than 3 messages,
* HBA creates the interrupt and we have to process by hand.
*/
static void nsp32_msgout_occur(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
//unsigned short command;
long new_sgtp;
int i;
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR,
"enter: msgout_len: 0x%x", data->msgout_len);
/*
* If MsgOut phase is occurred without having any
* message, then No_Operation is sent (SCSI-2).
*/
if (data->msgout_len == 0) {
nsp32_build_nop(SCpnt);
}
/*
* Set SGTP ADDR current entry for restarting AUTOSCSI,
* because SGTP is incremented next point.
* There is few statement in the specification...
*/
new_sgtp = data->cur_lunt->sglun_paddr +
(data->cur_lunt->cur_entry * sizeof(nsp32_sgtable));
/*
* send messages
*/
for (i = 0; i < data->msgout_len; i++) {
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR,
"%d : 0x%x", i, data->msgoutbuf[i]);
/*
* Check REQ is asserted.
*/
nsp32_wait_req(data, ASSERT);
if (i == (data->msgout_len - 1)) {
/*
* If the last message, set the AutoSCSI restart
* before send back the ack message. AutoSCSI
* restart automatically negate ATN signal.
*/
//command = (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02);
//nsp32_restart_autoscsi(SCpnt, command);
nsp32_write2(base, COMMAND_CONTROL,
(CLEAR_CDB_FIFO_POINTER |
AUTO_COMMAND_PHASE |
AUTOSCSI_RESTART |
AUTO_MSGIN_00_OR_04 |
AUTO_MSGIN_02 ));
}
/*
* Write data with SACK, then wait sack is
* automatically negated.
*/
nsp32_write1(base, SCSI_DATA_WITH_ACK, data->msgoutbuf[i]);
nsp32_wait_sack(data, NEGATE);
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "bus: 0x%x\n",
nsp32_read1(base, SCSI_BUS_MONITOR));
};
data->msgout_len = 0;
nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "exit");
}
/*
* Restart AutoSCSI
*
* Note: Restarting AutoSCSI needs set:
* SYNC_REG, ACK_WIDTH, SGT_ADR, TRANSFER_CONTROL
*/
static void nsp32_restart_autoscsi(struct scsi_cmnd *SCpnt, unsigned short command)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = data->BaseAddress;
unsigned short transfer = 0;
nsp32_dbg(NSP32_DEBUG_RESTART, "enter");
if (data->cur_target == NULL || data->cur_lunt == NULL) {
nsp32_msg(KERN_ERR, "Target or Lun is invalid");
}
/*
* set SYNC_REG
* Don't set BM_START_ADR before setting this register.
*/
nsp32_write1(base, SYNC_REG, data->cur_target->syncreg);
/*
* set ACKWIDTH
*/
nsp32_write1(base, ACK_WIDTH, data->cur_target->ackwidth);
/*
* set SREQ hazard killer sampling rate
*/
nsp32_write1(base, SREQ_SMPL_RATE, data->cur_target->sample_reg);
/*
* set SGT ADDR (physical address)
*/
nsp32_write4(base, SGT_ADR, data->cur_lunt->sglun_paddr);
/*
* set TRANSFER CONTROL REG
*/
transfer = 0;
transfer |= (TRANSFER_GO | ALL_COUNTER_CLR);
if (data->trans_method & NSP32_TRANSFER_BUSMASTER) {
if (SCpnt->request_bufflen > 0) {
transfer |= BM_START;
}
} else if (data->trans_method & NSP32_TRANSFER_MMIO) {
transfer |= CB_MMIO_MODE;
} else if (data->trans_method & NSP32_TRANSFER_PIO) {
transfer |= CB_IO_MODE;
}
nsp32_write2(base, TRANSFER_CONTROL, transfer);
/*
* restart AutoSCSI
*
* TODO: COMMANDCONTROL_AUTO_COMMAND_PHASE is needed ?
*/
command |= (CLEAR_CDB_FIFO_POINTER |
AUTO_COMMAND_PHASE |
AUTOSCSI_RESTART );
nsp32_write2(base, COMMAND_CONTROL, command);
nsp32_dbg(NSP32_DEBUG_RESTART, "exit");
}
/*
* cannot run automatically message in occur
*/
static void nsp32_msgin_occur(struct scsi_cmnd *SCpnt,
unsigned long irq_status,
unsigned short execph)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
unsigned char msg;
unsigned char msgtype;
unsigned char newlun;
unsigned short command = 0;
int msgclear = TRUE;
long new_sgtp;
int ret;
/*
* read first message
* Use SCSIDATA_W_ACK instead of SCSIDATAIN, because the procedure
* of Message-In have to be processed before sending back SCSI ACK.
*/
msg = nsp32_read1(base, SCSI_DATA_IN);
data->msginbuf[(unsigned char)data->msgin_len] = msg;
msgtype = data->msginbuf[0];
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR,
"enter: msglen: 0x%x msgin: 0x%x msgtype: 0x%x",
data->msgin_len, msg, msgtype);
/*
* TODO: We need checking whether bus phase is message in?
*/
/*
* assert SCSI ACK
*/
nsp32_sack_assert(data);
/*
* processing IDENTIFY
*/
if (msgtype & 0x80) {
if (!(irq_status & IRQSTATUS_RESELECT_OCCUER)) {
/* Invalid (non reselect) phase */
goto reject;
}
newlun = msgtype & 0x1f; /* TODO: SPI-3 compliant? */
ret = nsp32_reselection(SCpnt, newlun);
if (ret == TRUE) {
goto restart;
} else {
goto reject;
}
}
/*
* processing messages except for IDENTIFY
*
* TODO: Messages are all SCSI-2 terminology. SCSI-3 compliance is TODO.
*/
switch (msgtype) {
/*
* 1-byte message
*/
case COMMAND_COMPLETE:
case DISCONNECT:
/*
* These messages should not be occurred.
* They should be processed on AutoSCSI sequencer.
*/
nsp32_msg(KERN_WARNING,
"unexpected message of AutoSCSI MsgIn: 0x%x", msg);
break;
case RESTORE_POINTERS:
/*
* AutoMsgIn03 is disabled, and HBA gets this message.
*/
if ((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE)) {
unsigned int s_sacklen;
s_sacklen = nsp32_read4(base, SAVED_SACK_CNT);
if ((execph & MSGIN_02_VALID) && (s_sacklen > 0)) {
nsp32_adjust_busfree(SCpnt, s_sacklen);
} else {
/* No need to rewrite SGT */
}
}
data->cur_lunt->msgin03 = FALSE;
/* Update with the new value */
/* reset SACK/SavedACK counter (or ALL clear?) */
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
/*
* set new sg pointer
*/
new_sgtp = data->cur_lunt->sglun_paddr +
(data->cur_lunt->cur_entry * sizeof(nsp32_sgtable));
nsp32_write4(base, SGT_ADR, new_sgtp);
break;
case SAVE_POINTERS:
/*
* These messages should not be occurred.
* They should be processed on AutoSCSI sequencer.
*/
nsp32_msg (KERN_WARNING,
"unexpected message of AutoSCSI MsgIn: SAVE_POINTERS");
break;
case MESSAGE_REJECT:
/* If previous message_out is sending SDTR, and get
message_reject from target, SDTR negotiation is failed */
if (data->cur_target->sync_flag &
(SDTR_INITIATOR | SDTR_TARGET)) {
/*
* Current target is negotiating SDTR, but it's
* failed. Fall back to async transfer mode, and set
* SDTR_DONE.
*/
nsp32_set_async(data, data->cur_target);
data->cur_target->sync_flag &= ~SDTR_INITIATOR;
data->cur_target->sync_flag |= SDTR_DONE;
}
break;
case LINKED_CMD_COMPLETE:
case LINKED_FLG_CMD_COMPLETE:
/* queue tag is not supported currently */
nsp32_msg (KERN_WARNING,
"unsupported message: 0x%x", msgtype);
break;
case INITIATE_RECOVERY:
/* staring ECA (Extended Contingent Allegiance) state. */
/* This message is declined in SPI2 or later. */
goto reject;
/*
* 2-byte message
*/
case SIMPLE_QUEUE_TAG:
case 0x23:
/*
* 0x23: Ignore_Wide_Residue is not declared in scsi.h.
* No support is needed.
*/
if (data->msgin_len >= 1) {
goto reject;
}
/* current position is 1-byte of 2 byte */
msgclear = FALSE;
break;
/*
* extended message
*/
case EXTENDED_MESSAGE:
if (data->msgin_len < 1) {
/*
* Current position does not reach 2-byte
* (2-byte is extended message length).
*/
msgclear = FALSE;
break;
}
if ((data->msginbuf[1] + 1) > data->msgin_len) {
/*
* Current extended message has msginbuf[1] + 2
* (msgin_len starts counting from 0, so buf[1] + 1).
* If current message position is not finished,
* continue receiving message.
*/
msgclear = FALSE;
break;
}
/*
* Reach here means regular length of each type of
* extended messages.
*/
switch (data->msginbuf[2]) {
case EXTENDED_MODIFY_DATA_POINTER:
/* TODO */
goto reject; /* not implemented yet */
break;
case EXTENDED_SDTR:
/*
* Exchange this message between initiator and target.
*/
if (data->msgin_len != EXTENDED_SDTR_LEN + 1) {
/*
* received inappropriate message.
*/
goto reject;
break;
}
nsp32_analyze_sdtr(SCpnt);
break;
case EXTENDED_EXTENDED_IDENTIFY:
/* SCSI-I only, not supported. */
goto reject; /* not implemented yet */
break;
case EXTENDED_WDTR:
goto reject; /* not implemented yet */
break;
default:
goto reject;
}
break;
default:
goto reject;
}
restart:
if (msgclear == TRUE) {
data->msgin_len = 0;
/*
* If restarting AutoSCSI, but there are some message to out
* (msgout_len > 0), set AutoATN, and set SCSIMSGOUT as 0
* (MV_VALID = 0). When commandcontrol is written with
* AutoSCSI restart, at the same time MsgOutOccur should be
* happened (however, such situation is really possible...?).
*/
if (data->msgout_len > 0) {
nsp32_write4(base, SCSI_MSG_OUT, 0);
command |= AUTO_ATN;
}
/*
* restart AutoSCSI
* If it's failed, COMMANDCONTROL_AUTO_COMMAND_PHASE is needed.
*/
command |= (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02);
/*
* If current msgin03 is TRUE, then flag on.
*/
if (data->cur_lunt->msgin03 == TRUE) {
command |= AUTO_MSGIN_03;
}
data->cur_lunt->msgin03 = FALSE;
} else {
data->msgin_len++;
}
/*
* restart AutoSCSI
*/
nsp32_restart_autoscsi(SCpnt, command);
/*
* wait SCSI REQ negate for REQ-ACK handshake
*/
nsp32_wait_req(data, NEGATE);
/*
* negate SCSI ACK
*/
nsp32_sack_negate(data);
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit");
return;
reject:
nsp32_msg(KERN_WARNING,
"invalid or unsupported MessageIn, rejected. "
"current msg: 0x%x (len: 0x%x), processing msg: 0x%x",
msg, data->msgin_len, msgtype);
nsp32_build_reject(SCpnt);
data->msgin_len = 0;
goto restart;
}
/*
*
*/
static void nsp32_analyze_sdtr(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
nsp32_target *target = data->cur_target;
nsp32_sync_table *synct;
unsigned char get_period = data->msginbuf[3];
unsigned char get_offset = data->msginbuf[4];
int entry;
int syncnum;
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "enter");
synct = data->synct;
syncnum = data->syncnum;
/*
* If this inititor sent the SDTR message, then target responds SDTR,
* initiator SYNCREG, ACKWIDTH from SDTR parameter.
* Messages are not appropriate, then send back reject message.
* If initiator did not send the SDTR, but target sends SDTR,
* initiator calculator the appropriate parameter and send back SDTR.
*/
if (target->sync_flag & SDTR_INITIATOR) {
/*
* Initiator sent SDTR, the target responds and
* send back negotiation SDTR.
*/
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target responds SDTR");
target->sync_flag &= ~SDTR_INITIATOR;
target->sync_flag |= SDTR_DONE;
/*
* offset:
*/
if (get_offset > SYNC_OFFSET) {
/*
* Negotiation is failed, the target send back
* unexpected offset value.
*/
goto reject;
}
if (get_offset == ASYNC_OFFSET) {
/*
* Negotiation is succeeded, the target want
* to fall back into asynchronous transfer mode.
*/
goto async;
}
/*
* period:
* Check whether sync period is too short. If too short,
* fall back to async mode. If it's ok, then investigate
* the received sync period. If sync period is acceptable
* between sync table start_period and end_period, then
* set this I_T nexus as sent offset and period.
* If it's not acceptable, send back reject and fall back
* to async mode.
*/
if (get_period < data->synct[0].period_num) {
/*
* Negotiation is failed, the target send back
* unexpected period value.
*/
goto reject;
}
entry = nsp32_search_period_entry(data, target, get_period);
if (entry < 0) {
/*
* Target want to use long period which is not
* acceptable NinjaSCSI-32Bi/UDE.
*/
goto reject;
}
/*
* Set new sync table and offset in this I_T nexus.
*/
nsp32_set_sync_entry(data, target, entry, get_offset);
} else {
/* Target send SDTR to initiator. */
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target send SDTR");
target->sync_flag |= SDTR_INITIATOR;
/* offset: */
if (get_offset > SYNC_OFFSET) {
/* send back as SYNC_OFFSET */
get_offset = SYNC_OFFSET;
}
/* period: */
if (get_period < data->synct[0].period_num) {
get_period = data->synct[0].period_num;
}
entry = nsp32_search_period_entry(data, target, get_period);
if (get_offset == ASYNC_OFFSET || entry < 0) {
nsp32_set_async(data, target);
nsp32_build_sdtr(SCpnt, 0, ASYNC_OFFSET);
} else {
nsp32_set_sync_entry(data, target, entry, get_offset);
nsp32_build_sdtr(SCpnt, get_period, get_offset);
}
}
target->period = get_period;
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit");
return;
reject:
/*
* If the current message is unacceptable, send back to the target
* with reject message.
*/
nsp32_build_reject(SCpnt);
async:
nsp32_set_async(data, target); /* set as ASYNC transfer mode */
target->period = 0;
nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit: set async");
return;
}
/*
* Search config entry number matched in sync_table from given
* target and speed period value. If failed to search, return negative value.
*/
static int nsp32_search_period_entry(nsp32_hw_data *data,
nsp32_target *target,
unsigned char period)
{
int i;
if (target->limit_entry >= data->syncnum) {
nsp32_msg(KERN_ERR, "limit_entry exceeds syncnum!");
target->limit_entry = 0;
}
for (i = target->limit_entry; i < data->syncnum; i++) {
if (period >= data->synct[i].start_period &&
period <= data->synct[i].end_period) {
break;
}
}
/*
* Check given period value is over the sync_table value.
* If so, return max value.
*/
if (i == data->syncnum) {
i = -1;
}
return i;
}
/*
* target <-> initiator use ASYNC transfer
*/
static void nsp32_set_async(nsp32_hw_data *data, nsp32_target *target)
{
unsigned char period = data->synct[target->limit_entry].period_num;
target->offset = ASYNC_OFFSET;
target->period = 0;
target->syncreg = TO_SYNCREG(period, ASYNC_OFFSET);
target->ackwidth = 0;
target->sample_reg = 0;
nsp32_dbg(NSP32_DEBUG_SYNC, "set async");
}
/*
* target <-> initiator use maximum SYNC transfer
*/
static void nsp32_set_max_sync(nsp32_hw_data *data,
nsp32_target *target,
unsigned char *period,
unsigned char *offset)
{
unsigned char period_num, ackwidth;
period_num = data->synct[target->limit_entry].period_num;
*period = data->synct[target->limit_entry].start_period;
ackwidth = data->synct[target->limit_entry].ackwidth;
*offset = SYNC_OFFSET;
target->syncreg = TO_SYNCREG(period_num, *offset);
target->ackwidth = ackwidth;
target->offset = *offset;
target->sample_reg = 0; /* disable SREQ sampling */
}
/*
* target <-> initiator use entry number speed
*/
static void nsp32_set_sync_entry(nsp32_hw_data *data,
nsp32_target *target,
int entry,
unsigned char offset)
{
unsigned char period, ackwidth, sample_rate;
period = data->synct[entry].period_num;
ackwidth = data->synct[entry].ackwidth;
offset = offset;
sample_rate = data->synct[entry].sample_rate;
target->syncreg = TO_SYNCREG(period, offset);
target->ackwidth = ackwidth;
target->offset = offset;
target->sample_reg = sample_rate | SAMPLING_ENABLE;
nsp32_dbg(NSP32_DEBUG_SYNC, "set sync");
}
/*
* It waits until SCSI REQ becomes assertion or negation state.
*
* Note: If nsp32_msgin_occur is called, we asserts SCSI ACK. Then
* connected target responds SCSI REQ negation. We have to wait
* SCSI REQ becomes negation in order to negate SCSI ACK signal for
* REQ-ACK handshake.
*/
static void nsp32_wait_req(nsp32_hw_data *data, int state)
{
unsigned int base = data->BaseAddress;
int wait_time = 0;
unsigned char bus, req_bit;
if (!((state == ASSERT) || (state == NEGATE))) {
nsp32_msg(KERN_ERR, "unknown state designation");
}
/* REQ is BIT(5) */
req_bit = (state == ASSERT ? BUSMON_REQ : 0);
do {
bus = nsp32_read1(base, SCSI_BUS_MONITOR);
if ((bus & BUSMON_REQ) == req_bit) {
nsp32_dbg(NSP32_DEBUG_WAIT,
"wait_time: %d", wait_time);
return;
}
udelay(1);
wait_time++;
} while (wait_time < REQSACK_TIMEOUT_TIME);
nsp32_msg(KERN_WARNING, "wait REQ timeout, req_bit: 0x%x", req_bit);
}
/*
* It waits until SCSI SACK becomes assertion or negation state.
*/
static void nsp32_wait_sack(nsp32_hw_data *data, int state)
{
unsigned int base = data->BaseAddress;
int wait_time = 0;
unsigned char bus, ack_bit;
if (!((state == ASSERT) || (state == NEGATE))) {
nsp32_msg(KERN_ERR, "unknown state designation");
}
/* ACK is BIT(4) */
ack_bit = (state == ASSERT ? BUSMON_ACK : 0);
do {
bus = nsp32_read1(base, SCSI_BUS_MONITOR);
if ((bus & BUSMON_ACK) == ack_bit) {
nsp32_dbg(NSP32_DEBUG_WAIT,
"wait_time: %d", wait_time);
return;
}
udelay(1);
wait_time++;
} while (wait_time < REQSACK_TIMEOUT_TIME);
nsp32_msg(KERN_WARNING, "wait SACK timeout, ack_bit: 0x%x", ack_bit);
}
/*
* assert SCSI ACK
*
* Note: SCSI ACK assertion needs with ACKENB=1, AUTODIRECTION=1.
*/
static void nsp32_sack_assert(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned char busctrl;
busctrl = nsp32_read1(base, SCSI_BUS_CONTROL);
busctrl |= (BUSCTL_ACK | AUTODIRECTION | ACKENB);
nsp32_write1(base, SCSI_BUS_CONTROL, busctrl);
}
/*
* negate SCSI ACK
*/
static void nsp32_sack_negate(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned char busctrl;
busctrl = nsp32_read1(base, SCSI_BUS_CONTROL);
busctrl &= ~BUSCTL_ACK;
nsp32_write1(base, SCSI_BUS_CONTROL, busctrl);
}
/*
* Note: n_io_port is defined as 0x7f because I/O register port is
* assigned as:
* 0x800-0x8ff: memory mapped I/O port
* 0x900-0xbff: (map same 0x800-0x8ff I/O port image repeatedly)
* 0xc00-0xfff: CardBus status registers
*/
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
#define DETECT_OK 0
#define DETECT_NG 1
#define PCIDEV pdev
static int nsp32_detect(struct pci_dev *pdev)
#else
#define DETECT_OK 1
#define DETECT_NG 0
#define PCIDEV (data->Pci)
static int nsp32_detect(struct scsi_host_template *sht)
#endif
{
struct Scsi_Host *host; /* registered host structure */
struct resource *res;
nsp32_hw_data *data;
int ret;
int i, j;
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
/*
* register this HBA as SCSI device
*/
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
host = scsi_host_alloc(&nsp32_template, sizeof(nsp32_hw_data));
#else
host = scsi_register(sht, sizeof(nsp32_hw_data));
#endif
if (host == NULL) {
nsp32_msg (KERN_ERR, "failed to scsi register");
goto err;
}
/*
* set nsp32_hw_data
*/
data = (nsp32_hw_data *)host->hostdata;
memcpy(data, &nsp32_data_base, sizeof(nsp32_hw_data));
host->irq = data->IrqNumber;
host->io_port = data->BaseAddress;
host->unique_id = data->BaseAddress;
host->n_io_port = data->NumAddress;
host->base = (unsigned long)data->MmioAddress;
#if (LINUX_VERSION_CODE <= KERNEL_VERSION(2,5,63))
scsi_set_pci_device(host, PCIDEV);
#endif
data->Host = host;
spin_lock_init(&(data->Lock));
data->cur_lunt = NULL;
data->cur_target = NULL;
/*
* Bus master transfer mode is supported currently.
*/
data->trans_method = NSP32_TRANSFER_BUSMASTER;
/*
* Set clock div, CLOCK_4 (HBA has own external clock, and
* dividing * 100ns/4).
* Currently CLOCK_4 has only tested, not for CLOCK_2/PCICLK yet.
*/
data->clock = CLOCK_4;
/*
* Select appropriate nsp32_sync_table and set I_CLOCKDIV.
*/
switch (data->clock) {
case CLOCK_4:
/* If data->clock is CLOCK_4, then select 40M sync table. */
data->synct = nsp32_sync_table_40M;
data->syncnum = ARRAY_SIZE(nsp32_sync_table_40M);
break;
case CLOCK_2:
/* If data->clock is CLOCK_2, then select 20M sync table. */
data->synct = nsp32_sync_table_20M;
data->syncnum = ARRAY_SIZE(nsp32_sync_table_20M);
break;
case PCICLK:
/* If data->clock is PCICLK, then select pci sync table. */
data->synct = nsp32_sync_table_pci;
data->syncnum = ARRAY_SIZE(nsp32_sync_table_pci);
break;
default:
nsp32_msg(KERN_WARNING,
"Invalid clock div is selected, set CLOCK_4.");
/* Use default value CLOCK_4 */
data->clock = CLOCK_4;
data->synct = nsp32_sync_table_40M;
data->syncnum = ARRAY_SIZE(nsp32_sync_table_40M);
}
/*
* setup nsp32_lunt
*/
/*
* setup DMA
*/
if (pci_set_dma_mask(PCIDEV, DMA_32BIT_MASK) != 0) {
nsp32_msg (KERN_ERR, "failed to set PCI DMA mask");
goto scsi_unregister;
}
/*
* allocate autoparam DMA resource.
*/
data->autoparam = pci_alloc_consistent(PCIDEV, sizeof(nsp32_autoparam), &(data->auto_paddr));
if (data->autoparam == NULL) {
nsp32_msg(KERN_ERR, "failed to allocate DMA memory");
goto scsi_unregister;
}
/*
* allocate scatter-gather DMA resource.
*/
data->sg_list = pci_alloc_consistent(PCIDEV, NSP32_SG_TABLE_SIZE,
&(data->sg_paddr));
if (data->sg_list == NULL) {
nsp32_msg(KERN_ERR, "failed to allocate DMA memory");
goto free_autoparam;
}
for (i = 0; i < ARRAY_SIZE(data->lunt); i++) {
for (j = 0; j < ARRAY_SIZE(data->lunt[0]); j++) {
int offset = i * ARRAY_SIZE(data->lunt[0]) + j;
nsp32_lunt tmp = {
.SCpnt = NULL,
.save_datp = 0,
.msgin03 = FALSE,
.sg_num = 0,
.cur_entry = 0,
.sglun = &(data->sg_list[offset]),
.sglun_paddr = data->sg_paddr + (offset * sizeof(nsp32_sglun)),
};
data->lunt[i][j] = tmp;
}
}
/*
* setup target
*/
for (i = 0; i < ARRAY_SIZE(data->target); i++) {
nsp32_target *target = &(data->target[i]);
target->limit_entry = 0;
target->sync_flag = 0;
nsp32_set_async(data, target);
}
/*
* EEPROM check
*/
ret = nsp32_getprom_param(data);
if (ret == FALSE) {
data->resettime = 3; /* default 3 */
}
/*
* setup HBA
*/
nsp32hw_init(data);
snprintf(data->info_str, sizeof(data->info_str),
"NinjaSCSI-32Bi/UDE: irq %d, io 0x%lx+0x%x",
host->irq, host->io_port, host->n_io_port);
/*
* SCSI bus reset
*
* Note: It's important to reset SCSI bus in initialization phase.
* NinjaSCSI-32Bi/UDE HBA EEPROM seems to exchange SDTR when
* system is coming up, so SCSI devices connected to HBA is set as
* un-asynchronous mode. It brings the merit that this HBA is
* ready to start synchronous transfer without any preparation,
* but we are difficult to control transfer speed. In addition,
* it prevents device transfer speed from effecting EEPROM start-up
* SDTR. NinjaSCSI-32Bi/UDE has the feature if EEPROM is set as
* Auto Mode, then FAST-10M is selected when SCSI devices are
* connected same or more than 4 devices. It should be avoided
* depending on this specification. Thus, resetting the SCSI bus
* restores all connected SCSI devices to asynchronous mode, then
* this driver set SDTR safely later, and we can control all SCSI
* device transfer mode.
*/
nsp32_do_bus_reset(data);
ret = request_irq(host->irq, do_nsp32_isr, IRQF_SHARED, "nsp32", data);
if (ret < 0) {
nsp32_msg(KERN_ERR, "Unable to allocate IRQ for NinjaSCSI32 "
"SCSI PCI controller. Interrupt: %d", host->irq);
goto free_sg_list;
}
/*
* PCI IO register
*/
res = request_region(host->io_port, host->n_io_port, "nsp32");
if (res == NULL) {
nsp32_msg(KERN_ERR,
"I/O region 0x%lx+0x%lx is already used",
data->BaseAddress, data->NumAddress);
goto free_irq;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
ret = scsi_add_host(host, &PCIDEV->dev);
if (ret) {
nsp32_msg(KERN_ERR, "failed to add scsi host");
goto free_region;
}
scsi_scan_host(host);
#endif
pci_set_drvdata(PCIDEV, host);
return DETECT_OK;
free_region:
release_region(host->io_port, host->n_io_port);
free_irq:
free_irq(host->irq, data);
free_sg_list:
pci_free_consistent(PCIDEV, NSP32_SG_TABLE_SIZE,
data->sg_list, data->sg_paddr);
free_autoparam:
pci_free_consistent(PCIDEV, sizeof(nsp32_autoparam),
data->autoparam, data->auto_paddr);
scsi_unregister:
scsi_host_put(host);
err:
return DETECT_NG;
}
#undef DETECT_OK
#undef DETECT_NG
#undef PCIDEV
static int nsp32_release(struct Scsi_Host *host)
{
nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;
if (data->autoparam) {
pci_free_consistent(data->Pci, sizeof(nsp32_autoparam),
data->autoparam, data->auto_paddr);
}
if (data->sg_list) {
pci_free_consistent(data->Pci, NSP32_SG_TABLE_SIZE,
data->sg_list, data->sg_paddr);
}
if (host->irq) {
free_irq(host->irq, data);
}
if (host->io_port && host->n_io_port) {
release_region(host->io_port, host->n_io_port);
}
if (data->MmioAddress) {
iounmap(data->MmioAddress);
}
return 0;
}
static const char *nsp32_info(struct Scsi_Host *shpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)shpnt->hostdata;
return data->info_str;
}
/****************************************************************************
* error handler
*/
static int nsp32_eh_abort(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
nsp32_msg(KERN_WARNING, "abort");
if (data->cur_lunt->SCpnt == NULL) {
nsp32_dbg(NSP32_DEBUG_BUSRESET, "abort failed");
return FAILED;
}
if (data->cur_target->sync_flag & (SDTR_INITIATOR | SDTR_TARGET)) {
/* reset SDTR negotiation */
data->cur_target->sync_flag = 0;
nsp32_set_async(data, data->cur_target);
}
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write2(base, BM_CNT, 0);
SCpnt->result = DID_ABORT << 16;
nsp32_scsi_done(SCpnt);
nsp32_dbg(NSP32_DEBUG_BUSRESET, "abort success");
return SUCCESS;
}
static int nsp32_eh_bus_reset(struct scsi_cmnd *SCpnt)
{
nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata;
unsigned int base = SCpnt->device->host->io_port;
spin_lock_irq(SCpnt->device->host->host_lock);
nsp32_msg(KERN_INFO, "Bus Reset");
nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt);
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_do_bus_reset(data);
nsp32_write2(base, IRQ_CONTROL, 0);
spin_unlock_irq(SCpnt->device->host->host_lock);
return SUCCESS; /* SCSI bus reset is succeeded at any time. */
}
static void nsp32_do_bus_reset(nsp32_hw_data *data)
{
unsigned int base = data->BaseAddress;
unsigned short intrdat;
int i;
nsp32_dbg(NSP32_DEBUG_BUSRESET, "in");
/*
* stop all transfer
* clear TRANSFERCONTROL_BM_START
* clear counter
*/
nsp32_write2(base, TRANSFER_CONTROL, 0);
nsp32_write4(base, BM_CNT, 0);
nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK);
/*
* fall back to asynchronous transfer mode
* initialize SDTR negotiation flag
*/
for (i = 0; i < ARRAY_SIZE(data->target); i++) {
nsp32_target *target = &data->target[i];
target->sync_flag = 0;
nsp32_set_async(data, target);
}
/*
* reset SCSI bus
*/
nsp32_write1(base, SCSI_BUS_CONTROL, BUSCTL_RST);
udelay(RESET_HOLD_TIME);
nsp32_write1(base, SCSI_BUS_CONTROL, 0);
for(i = 0; i < 5; i++) {
intrdat = nsp32_read2(base, IRQ_STATUS); /* dummy read */
nsp32_dbg(NSP32_DEBUG_BUSRESET, "irq:1: 0x%x", intrdat);
}
data->CurrentSC = NULL;
}
static int nsp32_eh_host_reset(struct scsi_cmnd *SCpnt)
{
struct Scsi_Host *host = SCpnt->device->host;
unsigned int base = SCpnt->device->host->io_port;
nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;
nsp32_msg(KERN_INFO, "Host Reset");
nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt);
spin_lock_irq(SCpnt->device->host->host_lock);
nsp32hw_init(data);
nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK);
nsp32_do_bus_reset(data);
nsp32_write2(base, IRQ_CONTROL, 0);
spin_unlock_irq(SCpnt->device->host->host_lock);
return SUCCESS; /* Host reset is succeeded at any time. */
}
/**************************************************************************
* EEPROM handler
*/
/*
* getting EEPROM parameter
*/
static int nsp32_getprom_param(nsp32_hw_data *data)
{
int vendor = data->pci_devid->vendor;
int device = data->pci_devid->device;
int ret, val, i;
/*
* EEPROM checking.
*/
ret = nsp32_prom_read(data, 0x7e);
if (ret != 0x55) {
nsp32_msg(KERN_INFO, "No EEPROM detected: 0x%x", ret);
return FALSE;
}
ret = nsp32_prom_read(data, 0x7f);
if (ret != 0xaa) {
nsp32_msg(KERN_INFO, "Invalid number: 0x%x", ret);
return FALSE;
}
/*
* check EEPROM type
*/
if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_WORKBIT_STANDARD) {
ret = nsp32_getprom_c16(data);
} else if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC) {
ret = nsp32_getprom_at24(data);
} else if (vendor == PCI_VENDOR_ID_WORKBIT &&
device == PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO ) {
ret = nsp32_getprom_at24(data);
} else {
nsp32_msg(KERN_WARNING, "Unknown EEPROM");
ret = FALSE;
}
/* for debug : SPROM data full checking */
for (i = 0; i <= 0x1f; i++) {
val = nsp32_prom_read(data, i);
nsp32_dbg(NSP32_DEBUG_EEPROM,
"rom address 0x%x : 0x%x", i, val);
}
return ret;
}
/*
* AT24C01A (Logitec: LHA-600S), AT24C02 (Melco Buffalo: IFC-USLP) data map:
*
* ROMADDR
* 0x00 - 0x06 : Device Synchronous Transfer Period (SCSI ID 0 - 6)
* Value 0x0: ASYNC, 0x0c: Ultra-20M, 0x19: Fast-10M
* 0x07 : HBA Synchronous Transfer Period
* Value 0: AutoSync, 1: Manual Setting
* 0x08 - 0x0f : Not Used? (0x0)
* 0x10 : Bus Termination
* Value 0: Auto[ON], 1: ON, 2: OFF
* 0x11 : Not Used? (0)
* 0x12 : Bus Reset Delay Time (0x03)
* 0x13 : Bootable CD Support
* Value 0: Disable, 1: Enable
* 0x14 : Device Scan
* Bit 7 6 5 4 3 2 1 0
* | <----------------->
* | SCSI ID: Value 0: Skip, 1: YES
* |-> Value 0: ALL scan, Value 1: Manual
* 0x15 - 0x1b : Not Used? (0)
* 0x1c : Constant? (0x01) (clock div?)
* 0x1d - 0x7c : Not Used (0xff)
* 0x7d : Not Used? (0xff)
* 0x7e : Constant (0x55), Validity signature
* 0x7f : Constant (0xaa), Validity signature
*/
static int nsp32_getprom_at24(nsp32_hw_data *data)
{
int ret, i;
int auto_sync;
nsp32_target *target;
int entry;
/*
* Reset time which is designated by EEPROM.
*
* TODO: Not used yet.
*/
data->resettime = nsp32_prom_read(data, 0x12);
/*
* HBA Synchronous Transfer Period
*
* Note: auto_sync = 0: auto, 1: manual. Ninja SCSI HBA spec says
* that if auto_sync is 0 (auto), and connected SCSI devices are
* same or lower than 3, then transfer speed is set as ULTRA-20M.
* On the contrary if connected SCSI devices are same or higher
* than 4, then transfer speed is set as FAST-10M.
*
* I break this rule. The number of connected SCSI devices are
* only ignored. If auto_sync is 0 (auto), then transfer speed is
* forced as ULTRA-20M.
*/
ret = nsp32_prom_read(data, 0x07);
switch (ret) {
case 0:
auto_sync = TRUE;
break;
case 1:
auto_sync = FALSE;
break;
default:
nsp32_msg(KERN_WARNING,
"Unsupported Auto Sync mode. Fall back to manual mode.");
auto_sync = TRUE;
}
if (trans_mode == ULTRA20M_MODE) {
auto_sync = TRUE;
}
/*
* each device Synchronous Transfer Period
*/
for (i = 0; i < NSP32_HOST_SCSIID; i++) {
target = &data->target[i];
if (auto_sync == TRUE) {
target->limit_entry = 0; /* set as ULTRA20M */
} else {
ret = nsp32_prom_read(data, i);
entry = nsp32_search_period_entry(data, target, ret);
if (entry < 0) {
/* search failed... set maximum speed */
entry = 0;
}
target->limit_entry = entry;
}
}
return TRUE;
}
/*
* C16 110 (I-O Data: SC-NBD) data map:
*
* ROMADDR
* 0x00 - 0x06 : Device Synchronous Transfer Period (SCSI ID 0 - 6)
* Value 0x0: 20MB/S, 0x1: 10MB/S, 0x2: 5MB/S, 0x3: ASYNC
* 0x07 : 0 (HBA Synchronous Transfer Period: Auto Sync)
* 0x08 - 0x0f : Not Used? (0x0)
* 0x10 : Transfer Mode
* Value 0: PIO, 1: Busmater
* 0x11 : Bus Reset Delay Time (0x00-0x20)
* 0x12 : Bus Termination
* Value 0: Disable, 1: Enable
* 0x13 - 0x19 : Disconnection
* Value 0: Disable, 1: Enable
* 0x1a - 0x7c : Not Used? (0)
* 0x7d : Not Used? (0xf8)
* 0x7e : Constant (0x55), Validity signature
* 0x7f : Constant (0xaa), Validity signature
*/
static int nsp32_getprom_c16(nsp32_hw_data *data)
{
int ret, i;
nsp32_target *target;
int entry, val;
/*
* Reset time which is designated by EEPROM.
*
* TODO: Not used yet.
*/
data->resettime = nsp32_prom_read(data, 0x11);
/*
* each device Synchronous Transfer Period
*/
for (i = 0; i < NSP32_HOST_SCSIID; i++) {
target = &data->target[i];
ret = nsp32_prom_read(data, i);
switch (ret) {
case 0: /* 20MB/s */
val = 0x0c;
break;
case 1: /* 10MB/s */
val = 0x19;
break;
case 2: /* 5MB/s */
val = 0x32;
break;
case 3: /* ASYNC */
val = 0x00;
break;
default: /* default 20MB/s */
val = 0x0c;
break;
}
entry = nsp32_search_period_entry(data, target, val);
if (entry < 0 || trans_mode == ULTRA20M_MODE) {
/* search failed... set maximum speed */
entry = 0;
}
target->limit_entry = entry;
}
return TRUE;
}
/*
* Atmel AT24C01A (drived in 5V) serial EEPROM routines
*/
static int nsp32_prom_read(nsp32_hw_data *data, int romaddr)
{
int i, val;
/* start condition */
nsp32_prom_start(data);
/* device address */
nsp32_prom_write_bit(data, 1); /* 1 */
nsp32_prom_write_bit(data, 0); /* 0 */
nsp32_prom_write_bit(data, 1); /* 1 */
nsp32_prom_write_bit(data, 0); /* 0 */
nsp32_prom_write_bit(data, 0); /* A2: 0 (GND) */
nsp32_prom_write_bit(data, 0); /* A1: 0 (GND) */
nsp32_prom_write_bit(data, 0); /* A0: 0 (GND) */
/* R/W: W for dummy write */
nsp32_prom_write_bit(data, 0);
/* ack */
nsp32_prom_write_bit(data, 0);
/* word address */
for (i = 7; i >= 0; i--) {
nsp32_prom_write_bit(data, ((romaddr >> i) & 1));
}
/* ack */
nsp32_prom_write_bit(data, 0);
/* start condition */
nsp32_prom_start(data);
/* device address */
nsp32_prom_write_bit(data, 1); /* 1 */
nsp32_prom_write_bit(data, 0); /* 0 */
nsp32_prom_write_bit(data, 1); /* 1 */
nsp32_prom_write_bit(data, 0); /* 0 */
nsp32_prom_write_bit(data, 0); /* A2: 0 (GND) */
nsp32_prom_write_bit(data, 0); /* A1: 0 (GND) */
nsp32_prom_write_bit(data, 0); /* A0: 0 (GND) */
/* R/W: R */
nsp32_prom_write_bit(data, 1);
/* ack */
nsp32_prom_write_bit(data, 0);
/* data... */
val = 0;
for (i = 7; i >= 0; i--) {
val += (nsp32_prom_read_bit(data) << i);
}
/* no ack */
nsp32_prom_write_bit(data, 1);
/* stop condition */
nsp32_prom_stop(data);
return val;
}
static void nsp32_prom_set(nsp32_hw_data *data, int bit, int val)
{
int base = data->BaseAddress;
int tmp;
tmp = nsp32_index_read1(base, SERIAL_ROM_CTL);
if (val == 0) {
tmp &= ~bit;
} else {
tmp |= bit;
}
nsp32_index_write1(base, SERIAL_ROM_CTL, tmp);
udelay(10);
}
static int nsp32_prom_get(nsp32_hw_data *data, int bit)
{
int base = data->BaseAddress;
int tmp, ret;
if (bit != SDA) {
nsp32_msg(KERN_ERR, "return value is not appropriate");
return 0;
}
tmp = nsp32_index_read1(base, SERIAL_ROM_CTL) & bit;
if (tmp == 0) {
ret = 0;
} else {
ret = 1;
}
udelay(10);
return ret;
}
static void nsp32_prom_start (nsp32_hw_data *data)
{
/* start condition */
nsp32_prom_set(data, SCL, 1);
nsp32_prom_set(data, SDA, 1);
nsp32_prom_set(data, ENA, 1); /* output mode */
nsp32_prom_set(data, SDA, 0); /* keeping SCL=1 and transiting
* SDA 1->0 is start condition */
nsp32_prom_set(data, SCL, 0);
}
static void nsp32_prom_stop (nsp32_hw_data *data)
{
/* stop condition */
nsp32_prom_set(data, SCL, 1);
nsp32_prom_set(data, SDA, 0);
nsp32_prom_set(data, ENA, 1); /* output mode */
nsp32_prom_set(data, SDA, 1);
nsp32_prom_set(data, SCL, 0);
}
static void nsp32_prom_write_bit(nsp32_hw_data *data, int val)
{
/* write */
nsp32_prom_set(data, SDA, val);
nsp32_prom_set(data, SCL, 1 );
nsp32_prom_set(data, SCL, 0 );
}
static int nsp32_prom_read_bit(nsp32_hw_data *data)
{
int val;
/* read */
nsp32_prom_set(data, ENA, 0); /* input mode */
nsp32_prom_set(data, SCL, 1);
val = nsp32_prom_get(data, SDA);
nsp32_prom_set(data, SCL, 0);
nsp32_prom_set(data, ENA, 1); /* output mode */
return val;
}
/**************************************************************************
* Power Management
*/
#ifdef CONFIG_PM
/* Device suspended */
static int nsp32_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
nsp32_msg(KERN_INFO, "pci-suspend: pdev=0x%p, state=%ld, slot=%s, host=0x%p", pdev, state, pci_name(pdev), host);
pci_save_state (pdev);
pci_disable_device (pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
/* Device woken up */
static int nsp32_resume(struct pci_dev *pdev)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata;
unsigned short reg;
nsp32_msg(KERN_INFO, "pci-resume: pdev=0x%p, slot=%s, host=0x%p", pdev, pci_name(pdev), host);
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake (pdev, PCI_D0, 0);
pci_restore_state (pdev);
reg = nsp32_read2(data->BaseAddress, INDEX_REG);
nsp32_msg(KERN_INFO, "io=0x%x reg=0x%x", data->BaseAddress, reg);
if (reg == 0xffff) {
nsp32_msg(KERN_INFO, "missing device. abort resume.");
return 0;
}
nsp32hw_init (data);
nsp32_do_bus_reset(data);
nsp32_msg(KERN_INFO, "resume success");
return 0;
}
/* Enable wake event */
static int nsp32_enable_wake(struct pci_dev *pdev, pci_power_t state, int enable)
{
struct Scsi_Host *host = pci_get_drvdata(pdev);
nsp32_msg(KERN_INFO, "pci-enable_wake: stub, pdev=0x%p, enable=%d, slot=%s, host=0x%p", pdev, enable, pci_name(pdev), host);
return 0;
}
#endif
/************************************************************************
* PCI/Cardbus probe/remove routine
*/
static int __devinit nsp32_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int ret;
nsp32_hw_data *data = &nsp32_data_base;
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
ret = pci_enable_device(pdev);
if (ret) {
nsp32_msg(KERN_ERR, "failed to enable pci device");
return ret;
}
data->Pci = pdev;
data->pci_devid = id;
data->IrqNumber = pdev->irq;
data->BaseAddress = pci_resource_start(pdev, 0);
data->NumAddress = pci_resource_len (pdev, 0);
data->MmioAddress = ioremap_nocache(pci_resource_start(pdev, 1),
pci_resource_len (pdev, 1));
data->MmioLength = pci_resource_len (pdev, 1);
pci_set_master(pdev);
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
ret = nsp32_detect(pdev);
#else
ret = scsi_register_host(&nsp32_template);
#endif
nsp32_msg(KERN_INFO, "irq: %i mmio: %p+0x%lx slot: %s model: %s",
pdev->irq,
data->MmioAddress, data->MmioLength,
pci_name(pdev),
nsp32_model[id->driver_data]);
nsp32_dbg(NSP32_DEBUG_REGISTER, "exit %d", ret);
return ret;
}
static void __devexit nsp32_remove(struct pci_dev *pdev)
{
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
struct Scsi_Host *host = pci_get_drvdata(pdev);
#endif
nsp32_dbg(NSP32_DEBUG_REGISTER, "enter");
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,73))
scsi_remove_host(host);
nsp32_release(host);
scsi_host_put(host);
#else
scsi_unregister_host(&nsp32_template);
#endif
}
static struct pci_driver nsp32_driver = {
.name = "nsp32",
.id_table = nsp32_pci_table,
.probe = nsp32_probe,
.remove = __devexit_p(nsp32_remove),
#ifdef CONFIG_PM
.suspend = nsp32_suspend,
.resume = nsp32_resume,
.enable_wake = nsp32_enable_wake,
#endif
};
/*********************************************************************
* Moule entry point
*/
static int __init init_nsp32(void) {
nsp32_msg(KERN_INFO, "loading...");
return pci_register_driver(&nsp32_driver);
}
static void __exit exit_nsp32(void) {
nsp32_msg(KERN_INFO, "unloading...");
pci_unregister_driver(&nsp32_driver);
}
module_init(init_nsp32);
module_exit(exit_nsp32);
/* end */