kernel-fxtec-pro1x/net/ipv4/tcp_input.c
David S. Miller 314324121f [TCP]: Fix stretch ACK performance killer when doing ucopy.
When we are doing ucopy, we try to defer the ACK generation to
cleanup_rbuf().  This works most of the time very well, but if the
ucopy prequeue is large, this ACKing behavior kills performance.

With TSO, it is possible to fill the prequeue so large that by the
time the ACK is sent and gets back to the sender, most of the window
has emptied of data and performance suffers significantly.

This behavior does help in some cases, so we should think about
re-enabling this trick in the future, using some kind of limit in
order to avoid the bug case.

Signed-off-by: David S. Miller <davem@davemloft.net>
2005-05-23 12:03:06 -07:00

4949 lines
139 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Implementation of the Transmission Control Protocol(TCP).
*
* Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Florian La Roche, <flla@stud.uni-sb.de>
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
* Linus Torvalds, <torvalds@cs.helsinki.fi>
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Matthew Dillon, <dillon@apollo.west.oic.com>
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
* Jorge Cwik, <jorge@laser.satlink.net>
*/
/*
* Changes:
* Pedro Roque : Fast Retransmit/Recovery.
* Two receive queues.
* Retransmit queue handled by TCP.
* Better retransmit timer handling.
* New congestion avoidance.
* Header prediction.
* Variable renaming.
*
* Eric : Fast Retransmit.
* Randy Scott : MSS option defines.
* Eric Schenk : Fixes to slow start algorithm.
* Eric Schenk : Yet another double ACK bug.
* Eric Schenk : Delayed ACK bug fixes.
* Eric Schenk : Floyd style fast retrans war avoidance.
* David S. Miller : Don't allow zero congestion window.
* Eric Schenk : Fix retransmitter so that it sends
* next packet on ack of previous packet.
* Andi Kleen : Moved open_request checking here
* and process RSTs for open_requests.
* Andi Kleen : Better prune_queue, and other fixes.
* Andrey Savochkin: Fix RTT measurements in the presnce of
* timestamps.
* Andrey Savochkin: Check sequence numbers correctly when
* removing SACKs due to in sequence incoming
* data segments.
* Andi Kleen: Make sure we never ack data there is not
* enough room for. Also make this condition
* a fatal error if it might still happen.
* Andi Kleen: Add tcp_measure_rcv_mss to make
* connections with MSS<min(MTU,ann. MSS)
* work without delayed acks.
* Andi Kleen: Process packets with PSH set in the
* fast path.
* J Hadi Salim: ECN support
* Andrei Gurtov,
* Pasi Sarolahti,
* Panu Kuhlberg: Experimental audit of TCP (re)transmission
* engine. Lots of bugs are found.
* Pasi Sarolahti: F-RTO for dealing with spurious RTOs
* Angelo Dell'Aera: TCP Westwood+ support
*/
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/sysctl.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <linux/ipsec.h>
#include <asm/unaligned.h>
int sysctl_tcp_timestamps = 1;
int sysctl_tcp_window_scaling = 1;
int sysctl_tcp_sack = 1;
int sysctl_tcp_fack = 1;
int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
int sysctl_tcp_ecn;
int sysctl_tcp_dsack = 1;
int sysctl_tcp_app_win = 31;
int sysctl_tcp_adv_win_scale = 2;
int sysctl_tcp_stdurg;
int sysctl_tcp_rfc1337;
int sysctl_tcp_max_orphans = NR_FILE;
int sysctl_tcp_frto;
int sysctl_tcp_nometrics_save;
int sysctl_tcp_westwood;
int sysctl_tcp_vegas_cong_avoid;
int sysctl_tcp_moderate_rcvbuf = 1;
/* Default values of the Vegas variables, in fixed-point representation
* with V_PARAM_SHIFT bits to the right of the binary point.
*/
#define V_PARAM_SHIFT 1
int sysctl_tcp_vegas_alpha = 1<<V_PARAM_SHIFT;
int sysctl_tcp_vegas_beta = 3<<V_PARAM_SHIFT;
int sysctl_tcp_vegas_gamma = 1<<V_PARAM_SHIFT;
int sysctl_tcp_bic = 1;
int sysctl_tcp_bic_fast_convergence = 1;
int sysctl_tcp_bic_low_window = 14;
int sysctl_tcp_bic_beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
#define FLAG_DATA 0x01 /* Incoming frame contained data. */
#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
#define FLAG_DATA_SACKED 0x20 /* New SACK. */
#define FLAG_ECE 0x40 /* ECE in this ACK */
#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
/* Adapt the MSS value used to make delayed ack decision to the
* real world.
*/
static inline void tcp_measure_rcv_mss(struct tcp_sock *tp,
struct sk_buff *skb)
{
unsigned int len, lss;
lss = tp->ack.last_seg_size;
tp->ack.last_seg_size = 0;
/* skb->len may jitter because of SACKs, even if peer
* sends good full-sized frames.
*/
len = skb->len;
if (len >= tp->ack.rcv_mss) {
tp->ack.rcv_mss = len;
} else {
/* Otherwise, we make more careful check taking into account,
* that SACKs block is variable.
*
* "len" is invariant segment length, including TCP header.
*/
len += skb->data - skb->h.raw;
if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
/* If PSH is not set, packet should be
* full sized, provided peer TCP is not badly broken.
* This observation (if it is correct 8)) allows
* to handle super-low mtu links fairly.
*/
(len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
!(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
/* Subtract also invariant (if peer is RFC compliant),
* tcp header plus fixed timestamp option length.
* Resulting "len" is MSS free of SACK jitter.
*/
len -= tp->tcp_header_len;
tp->ack.last_seg_size = len;
if (len == lss) {
tp->ack.rcv_mss = len;
return;
}
}
tp->ack.pending |= TCP_ACK_PUSHED;
}
}
static void tcp_incr_quickack(struct tcp_sock *tp)
{
unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
if (quickacks==0)
quickacks=2;
if (quickacks > tp->ack.quick)
tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
}
void tcp_enter_quickack_mode(struct tcp_sock *tp)
{
tcp_incr_quickack(tp);
tp->ack.pingpong = 0;
tp->ack.ato = TCP_ATO_MIN;
}
/* Send ACKs quickly, if "quick" count is not exhausted
* and the session is not interactive.
*/
static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp)
{
return (tp->ack.quick && !tp->ack.pingpong);
}
/* Buffer size and advertised window tuning.
*
* 1. Tuning sk->sk_sndbuf, when connection enters established state.
*/
static void tcp_fixup_sndbuf(struct sock *sk)
{
int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
sizeof(struct sk_buff);
if (sk->sk_sndbuf < 3 * sndmem)
sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
}
/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
*
* All tcp_full_space() is split to two parts: "network" buffer, allocated
* forward and advertised in receiver window (tp->rcv_wnd) and
* "application buffer", required to isolate scheduling/application
* latencies from network.
* window_clamp is maximal advertised window. It can be less than
* tcp_full_space(), in this case tcp_full_space() - window_clamp
* is reserved for "application" buffer. The less window_clamp is
* the smoother our behaviour from viewpoint of network, but the lower
* throughput and the higher sensitivity of the connection to losses. 8)
*
* rcv_ssthresh is more strict window_clamp used at "slow start"
* phase to predict further behaviour of this connection.
* It is used for two goals:
* - to enforce header prediction at sender, even when application
* requires some significant "application buffer". It is check #1.
* - to prevent pruning of receive queue because of misprediction
* of receiver window. Check #2.
*
* The scheme does not work when sender sends good segments opening
* window and then starts to feed us spagetti. But it should work
* in common situations. Otherwise, we have to rely on queue collapsing.
*/
/* Slow part of check#2. */
static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
struct sk_buff *skb)
{
/* Optimize this! */
int truesize = tcp_win_from_space(skb->truesize)/2;
int window = tcp_full_space(sk)/2;
while (tp->rcv_ssthresh <= window) {
if (truesize <= skb->len)
return 2*tp->ack.rcv_mss;
truesize >>= 1;
window >>= 1;
}
return 0;
}
static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
struct sk_buff *skb)
{
/* Check #1 */
if (tp->rcv_ssthresh < tp->window_clamp &&
(int)tp->rcv_ssthresh < tcp_space(sk) &&
!tcp_memory_pressure) {
int incr;
/* Check #2. Increase window, if skb with such overhead
* will fit to rcvbuf in future.
*/
if (tcp_win_from_space(skb->truesize) <= skb->len)
incr = 2*tp->advmss;
else
incr = __tcp_grow_window(sk, tp, skb);
if (incr) {
tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
tp->ack.quick |= 1;
}
}
}
/* 3. Tuning rcvbuf, when connection enters established state. */
static void tcp_fixup_rcvbuf(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
/* Try to select rcvbuf so that 4 mss-sized segments
* will fit to window and correspoding skbs will fit to our rcvbuf.
* (was 3; 4 is minimum to allow fast retransmit to work.)
*/
while (tcp_win_from_space(rcvmem) < tp->advmss)
rcvmem += 128;
if (sk->sk_rcvbuf < 4 * rcvmem)
sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
}
/* 4. Try to fixup all. It is made iimediately after connection enters
* established state.
*/
static void tcp_init_buffer_space(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
int maxwin;
if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
tcp_fixup_rcvbuf(sk);
if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
tcp_fixup_sndbuf(sk);
tp->rcvq_space.space = tp->rcv_wnd;
maxwin = tcp_full_space(sk);
if (tp->window_clamp >= maxwin) {
tp->window_clamp = maxwin;
if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
tp->window_clamp = max(maxwin -
(maxwin >> sysctl_tcp_app_win),
4 * tp->advmss);
}
/* Force reservation of one segment. */
if (sysctl_tcp_app_win &&
tp->window_clamp > 2 * tp->advmss &&
tp->window_clamp + tp->advmss > maxwin)
tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
tp->snd_cwnd_stamp = tcp_time_stamp;
}
static void init_bictcp(struct tcp_sock *tp)
{
tp->bictcp.cnt = 0;
tp->bictcp.last_max_cwnd = 0;
tp->bictcp.last_cwnd = 0;
tp->bictcp.last_stamp = 0;
}
/* 5. Recalculate window clamp after socket hit its memory bounds. */
static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
{
struct sk_buff *skb;
unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
int ofo_win = 0;
tp->ack.quick = 0;
skb_queue_walk(&tp->out_of_order_queue, skb) {
ofo_win += skb->len;
}
/* If overcommit is due to out of order segments,
* do not clamp window. Try to expand rcvbuf instead.
*/
if (ofo_win) {
if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
!tcp_memory_pressure &&
atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
sysctl_tcp_rmem[2]);
}
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
app_win += ofo_win;
if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
app_win >>= 1;
if (app_win > tp->ack.rcv_mss)
app_win -= tp->ack.rcv_mss;
app_win = max(app_win, 2U*tp->advmss);
if (!ofo_win)
tp->window_clamp = min(tp->window_clamp, app_win);
tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
}
}
/* Receiver "autotuning" code.
*
* The algorithm for RTT estimation w/o timestamps is based on
* Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
* <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
*
* More detail on this code can be found at
* <http://www.psc.edu/~jheffner/senior_thesis.ps>,
* though this reference is out of date. A new paper
* is pending.
*/
static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
{
u32 new_sample = tp->rcv_rtt_est.rtt;
long m = sample;
if (m == 0)
m = 1;
if (new_sample != 0) {
/* If we sample in larger samples in the non-timestamp
* case, we could grossly overestimate the RTT especially
* with chatty applications or bulk transfer apps which
* are stalled on filesystem I/O.
*
* Also, since we are only going for a minimum in the
* non-timestamp case, we do not smoothe things out
* else with timestamps disabled convergance takes too
* long.
*/
if (!win_dep) {
m -= (new_sample >> 3);
new_sample += m;
} else if (m < new_sample)
new_sample = m << 3;
} else {
/* No previous mesaure. */
new_sample = m << 3;
}
if (tp->rcv_rtt_est.rtt != new_sample)
tp->rcv_rtt_est.rtt = new_sample;
}
static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
{
if (tp->rcv_rtt_est.time == 0)
goto new_measure;
if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
return;
tcp_rcv_rtt_update(tp,
jiffies - tp->rcv_rtt_est.time,
1);
new_measure:
tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
tp->rcv_rtt_est.time = tcp_time_stamp;
}
static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb)
{
if (tp->rx_opt.rcv_tsecr &&
(TCP_SKB_CB(skb)->end_seq -
TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss))
tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
}
/*
* This function should be called every time data is copied to user space.
* It calculates the appropriate TCP receive buffer space.
*/
void tcp_rcv_space_adjust(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
int time;
int space;
if (tp->rcvq_space.time == 0)
goto new_measure;
time = tcp_time_stamp - tp->rcvq_space.time;
if (time < (tp->rcv_rtt_est.rtt >> 3) ||
tp->rcv_rtt_est.rtt == 0)
return;
space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
space = max(tp->rcvq_space.space, space);
if (tp->rcvq_space.space != space) {
int rcvmem;
tp->rcvq_space.space = space;
if (sysctl_tcp_moderate_rcvbuf) {
int new_clamp = space;
/* Receive space grows, normalize in order to
* take into account packet headers and sk_buff
* structure overhead.
*/
space /= tp->advmss;
if (!space)
space = 1;
rcvmem = (tp->advmss + MAX_TCP_HEADER +
16 + sizeof(struct sk_buff));
while (tcp_win_from_space(rcvmem) < tp->advmss)
rcvmem += 128;
space *= rcvmem;
space = min(space, sysctl_tcp_rmem[2]);
if (space > sk->sk_rcvbuf) {
sk->sk_rcvbuf = space;
/* Make the window clamp follow along. */
tp->window_clamp = new_clamp;
}
}
}
new_measure:
tp->rcvq_space.seq = tp->copied_seq;
tp->rcvq_space.time = tcp_time_stamp;
}
/* There is something which you must keep in mind when you analyze the
* behavior of the tp->ato delayed ack timeout interval. When a
* connection starts up, we want to ack as quickly as possible. The
* problem is that "good" TCP's do slow start at the beginning of data
* transmission. The means that until we send the first few ACK's the
* sender will sit on his end and only queue most of his data, because
* he can only send snd_cwnd unacked packets at any given time. For
* each ACK we send, he increments snd_cwnd and transmits more of his
* queue. -DaveM
*/
static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
{
u32 now;
tcp_schedule_ack(tp);
tcp_measure_rcv_mss(tp, skb);
tcp_rcv_rtt_measure(tp);
now = tcp_time_stamp;
if (!tp->ack.ato) {
/* The _first_ data packet received, initialize
* delayed ACK engine.
*/
tcp_incr_quickack(tp);
tp->ack.ato = TCP_ATO_MIN;
} else {
int m = now - tp->ack.lrcvtime;
if (m <= TCP_ATO_MIN/2) {
/* The fastest case is the first. */
tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
} else if (m < tp->ack.ato) {
tp->ack.ato = (tp->ack.ato>>1) + m;
if (tp->ack.ato > tp->rto)
tp->ack.ato = tp->rto;
} else if (m > tp->rto) {
/* Too long gap. Apparently sender falled to
* restart window, so that we send ACKs quickly.
*/
tcp_incr_quickack(tp);
sk_stream_mem_reclaim(sk);
}
}
tp->ack.lrcvtime = now;
TCP_ECN_check_ce(tp, skb);
if (skb->len >= 128)
tcp_grow_window(sk, tp, skb);
}
/* When starting a new connection, pin down the current choice of
* congestion algorithm.
*/
void tcp_ca_init(struct tcp_sock *tp)
{
if (sysctl_tcp_westwood)
tp->adv_cong = TCP_WESTWOOD;
else if (sysctl_tcp_bic)
tp->adv_cong = TCP_BIC;
else if (sysctl_tcp_vegas_cong_avoid) {
tp->adv_cong = TCP_VEGAS;
tp->vegas.baseRTT = 0x7fffffff;
tcp_vegas_enable(tp);
}
}
/* Do RTT sampling needed for Vegas.
* Basically we:
* o min-filter RTT samples from within an RTT to get the current
* propagation delay + queuing delay (we are min-filtering to try to
* avoid the effects of delayed ACKs)
* o min-filter RTT samples from a much longer window (forever for now)
* to find the propagation delay (baseRTT)
*/
static inline void vegas_rtt_calc(struct tcp_sock *tp, __u32 rtt)
{
__u32 vrtt = rtt + 1; /* Never allow zero rtt or baseRTT */
/* Filter to find propagation delay: */
if (vrtt < tp->vegas.baseRTT)
tp->vegas.baseRTT = vrtt;
/* Find the min RTT during the last RTT to find
* the current prop. delay + queuing delay:
*/
tp->vegas.minRTT = min(tp->vegas.minRTT, vrtt);
tp->vegas.cntRTT++;
}
/* Called to compute a smoothed rtt estimate. The data fed to this
* routine either comes from timestamps, or from segments that were
* known _not_ to have been retransmitted [see Karn/Partridge
* Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
* piece by Van Jacobson.
* NOTE: the next three routines used to be one big routine.
* To save cycles in the RFC 1323 implementation it was better to break
* it up into three procedures. -- erics
*/
static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt)
{
long m = mrtt; /* RTT */
if (tcp_vegas_enabled(tp))
vegas_rtt_calc(tp, mrtt);
/* The following amusing code comes from Jacobson's
* article in SIGCOMM '88. Note that rtt and mdev
* are scaled versions of rtt and mean deviation.
* This is designed to be as fast as possible
* m stands for "measurement".
*
* On a 1990 paper the rto value is changed to:
* RTO = rtt + 4 * mdev
*
* Funny. This algorithm seems to be very broken.
* These formulae increase RTO, when it should be decreased, increase
* too slowly, when it should be incresed fastly, decrease too fastly
* etc. I guess in BSD RTO takes ONE value, so that it is absolutely
* does not matter how to _calculate_ it. Seems, it was trap
* that VJ failed to avoid. 8)
*/
if(m == 0)
m = 1;
if (tp->srtt != 0) {
m -= (tp->srtt >> 3); /* m is now error in rtt est */
tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
if (m < 0) {
m = -m; /* m is now abs(error) */
m -= (tp->mdev >> 2); /* similar update on mdev */
/* This is similar to one of Eifel findings.
* Eifel blocks mdev updates when rtt decreases.
* This solution is a bit different: we use finer gain
* for mdev in this case (alpha*beta).
* Like Eifel it also prevents growth of rto,
* but also it limits too fast rto decreases,
* happening in pure Eifel.
*/
if (m > 0)
m >>= 3;
} else {
m -= (tp->mdev >> 2); /* similar update on mdev */
}
tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
if (tp->mdev > tp->mdev_max) {
tp->mdev_max = tp->mdev;
if (tp->mdev_max > tp->rttvar)
tp->rttvar = tp->mdev_max;
}
if (after(tp->snd_una, tp->rtt_seq)) {
if (tp->mdev_max < tp->rttvar)
tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
tp->rtt_seq = tp->snd_nxt;
tp->mdev_max = TCP_RTO_MIN;
}
} else {
/* no previous measure. */
tp->srtt = m<<3; /* take the measured time to be rtt */
tp->mdev = m<<1; /* make sure rto = 3*rtt */
tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
tp->rtt_seq = tp->snd_nxt;
}
tcp_westwood_update_rtt(tp, tp->srtt >> 3);
}
/* Calculate rto without backoff. This is the second half of Van Jacobson's
* routine referred to above.
*/
static inline void tcp_set_rto(struct tcp_sock *tp)
{
/* Old crap is replaced with new one. 8)
*
* More seriously:
* 1. If rtt variance happened to be less 50msec, it is hallucination.
* It cannot be less due to utterly erratic ACK generation made
* at least by solaris and freebsd. "Erratic ACKs" has _nothing_
* to do with delayed acks, because at cwnd>2 true delack timeout
* is invisible. Actually, Linux-2.4 also generates erratic
* ACKs in some curcumstances.
*/
tp->rto = (tp->srtt >> 3) + tp->rttvar;
/* 2. Fixups made earlier cannot be right.
* If we do not estimate RTO correctly without them,
* all the algo is pure shit and should be replaced
* with correct one. It is exaclty, which we pretend to do.
*/
}
/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
* guarantees that rto is higher.
*/
static inline void tcp_bound_rto(struct tcp_sock *tp)
{
if (tp->rto > TCP_RTO_MAX)
tp->rto = TCP_RTO_MAX;
}
/* Save metrics learned by this TCP session.
This function is called only, when TCP finishes successfully
i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
*/
void tcp_update_metrics(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct dst_entry *dst = __sk_dst_get(sk);
if (sysctl_tcp_nometrics_save)
return;
dst_confirm(dst);
if (dst && (dst->flags&DST_HOST)) {
int m;
if (tp->backoff || !tp->srtt) {
/* This session failed to estimate rtt. Why?
* Probably, no packets returned in time.
* Reset our results.
*/
if (!(dst_metric_locked(dst, RTAX_RTT)))
dst->metrics[RTAX_RTT-1] = 0;
return;
}
m = dst_metric(dst, RTAX_RTT) - tp->srtt;
/* If newly calculated rtt larger than stored one,
* store new one. Otherwise, use EWMA. Remember,
* rtt overestimation is always better than underestimation.
*/
if (!(dst_metric_locked(dst, RTAX_RTT))) {
if (m <= 0)
dst->metrics[RTAX_RTT-1] = tp->srtt;
else
dst->metrics[RTAX_RTT-1] -= (m>>3);
}
if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
if (m < 0)
m = -m;
/* Scale deviation to rttvar fixed point */
m >>= 1;
if (m < tp->mdev)
m = tp->mdev;
if (m >= dst_metric(dst, RTAX_RTTVAR))
dst->metrics[RTAX_RTTVAR-1] = m;
else
dst->metrics[RTAX_RTTVAR-1] -=
(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
}
if (tp->snd_ssthresh >= 0xFFFF) {
/* Slow start still did not finish. */
if (dst_metric(dst, RTAX_SSTHRESH) &&
!dst_metric_locked(dst, RTAX_SSTHRESH) &&
(tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
if (!dst_metric_locked(dst, RTAX_CWND) &&
tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
} else if (tp->snd_cwnd > tp->snd_ssthresh &&
tp->ca_state == TCP_CA_Open) {
/* Cong. avoidance phase, cwnd is reliable. */
if (!dst_metric_locked(dst, RTAX_SSTHRESH))
dst->metrics[RTAX_SSTHRESH-1] =
max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
if (!dst_metric_locked(dst, RTAX_CWND))
dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
} else {
/* Else slow start did not finish, cwnd is non-sense,
ssthresh may be also invalid.
*/
if (!dst_metric_locked(dst, RTAX_CWND))
dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
if (dst->metrics[RTAX_SSTHRESH-1] &&
!dst_metric_locked(dst, RTAX_SSTHRESH) &&
tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
}
if (!dst_metric_locked(dst, RTAX_REORDERING)) {
if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
tp->reordering != sysctl_tcp_reordering)
dst->metrics[RTAX_REORDERING-1] = tp->reordering;
}
}
}
/* Numbers are taken from RFC2414. */
__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
{
__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
if (!cwnd) {
if (tp->mss_cache_std > 1460)
cwnd = 2;
else
cwnd = (tp->mss_cache_std > 1095) ? 3 : 4;
}
return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
}
/* Initialize metrics on socket. */
static void tcp_init_metrics(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct dst_entry *dst = __sk_dst_get(sk);
if (dst == NULL)
goto reset;
dst_confirm(dst);
if (dst_metric_locked(dst, RTAX_CWND))
tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
if (dst_metric(dst, RTAX_SSTHRESH)) {
tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
tp->snd_ssthresh = tp->snd_cwnd_clamp;
}
if (dst_metric(dst, RTAX_REORDERING) &&
tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
tp->rx_opt.sack_ok &= ~2;
tp->reordering = dst_metric(dst, RTAX_REORDERING);
}
if (dst_metric(dst, RTAX_RTT) == 0)
goto reset;
if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
goto reset;
/* Initial rtt is determined from SYN,SYN-ACK.
* The segment is small and rtt may appear much
* less than real one. Use per-dst memory
* to make it more realistic.
*
* A bit of theory. RTT is time passed after "normal" sized packet
* is sent until it is ACKed. In normal curcumstances sending small
* packets force peer to delay ACKs and calculation is correct too.
* The algorithm is adaptive and, provided we follow specs, it
* NEVER underestimate RTT. BUT! If peer tries to make some clever
* tricks sort of "quick acks" for time long enough to decrease RTT
* to low value, and then abruptly stops to do it and starts to delay
* ACKs, wait for troubles.
*/
if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
tp->srtt = dst_metric(dst, RTAX_RTT);
tp->rtt_seq = tp->snd_nxt;
}
if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
tp->mdev = dst_metric(dst, RTAX_RTTVAR);
tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
}
tcp_set_rto(tp);
tcp_bound_rto(tp);
if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
goto reset;
tp->snd_cwnd = tcp_init_cwnd(tp, dst);
tp->snd_cwnd_stamp = tcp_time_stamp;
return;
reset:
/* Play conservative. If timestamps are not
* supported, TCP will fail to recalculate correct
* rtt, if initial rto is too small. FORGET ALL AND RESET!
*/
if (!tp->rx_opt.saw_tstamp && tp->srtt) {
tp->srtt = 0;
tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
tp->rto = TCP_TIMEOUT_INIT;
}
}
static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
{
if (metric > tp->reordering) {
tp->reordering = min(TCP_MAX_REORDERING, metric);
/* This exciting event is worth to be remembered. 8) */
if (ts)
NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
else if (IsReno(tp))
NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
else if (IsFack(tp))
NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
else
NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
#if FASTRETRANS_DEBUG > 1
printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
tp->rx_opt.sack_ok, tp->ca_state,
tp->reordering,
tp->fackets_out,
tp->sacked_out,
tp->undo_marker ? tp->undo_retrans : 0);
#endif
/* Disable FACK yet. */
tp->rx_opt.sack_ok &= ~2;
}
}
/* This procedure tags the retransmission queue when SACKs arrive.
*
* We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
* Packets in queue with these bits set are counted in variables
* sacked_out, retrans_out and lost_out, correspondingly.
*
* Valid combinations are:
* Tag InFlight Description
* 0 1 - orig segment is in flight.
* S 0 - nothing flies, orig reached receiver.
* L 0 - nothing flies, orig lost by net.
* R 2 - both orig and retransmit are in flight.
* L|R 1 - orig is lost, retransmit is in flight.
* S|R 1 - orig reached receiver, retrans is still in flight.
* (L|S|R is logically valid, it could occur when L|R is sacked,
* but it is equivalent to plain S and code short-curcuits it to S.
* L|S is logically invalid, it would mean -1 packet in flight 8))
*
* These 6 states form finite state machine, controlled by the following events:
* 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
* 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
* 3. Loss detection event of one of three flavors:
* A. Scoreboard estimator decided the packet is lost.
* A'. Reno "three dupacks" marks head of queue lost.
* A''. Its FACK modfication, head until snd.fack is lost.
* B. SACK arrives sacking data transmitted after never retransmitted
* hole was sent out.
* C. SACK arrives sacking SND.NXT at the moment, when the
* segment was retransmitted.
* 4. D-SACK added new rule: D-SACK changes any tag to S.
*
* It is pleasant to note, that state diagram turns out to be commutative,
* so that we are allowed not to be bothered by order of our actions,
* when multiple events arrive simultaneously. (see the function below).
*
* Reordering detection.
* --------------------
* Reordering metric is maximal distance, which a packet can be displaced
* in packet stream. With SACKs we can estimate it:
*
* 1. SACK fills old hole and the corresponding segment was not
* ever retransmitted -> reordering. Alas, we cannot use it
* when segment was retransmitted.
* 2. The last flaw is solved with D-SACK. D-SACK arrives
* for retransmitted and already SACKed segment -> reordering..
* Both of these heuristics are not used in Loss state, when we cannot
* account for retransmits accurately.
*/
static int
tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
{
struct tcp_sock *tp = tcp_sk(sk);
unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
int reord = tp->packets_out;
int prior_fackets;
u32 lost_retrans = 0;
int flag = 0;
int i;
/* So, SACKs for already sent large segments will be lost.
* Not good, but alternative is to resegment the queue. */
if (sk->sk_route_caps & NETIF_F_TSO) {
sk->sk_route_caps &= ~NETIF_F_TSO;
sock_set_flag(sk, SOCK_NO_LARGESEND);
tp->mss_cache = tp->mss_cache_std;
}
if (!tp->sacked_out)
tp->fackets_out = 0;
prior_fackets = tp->fackets_out;
for (i=0; i<num_sacks; i++, sp++) {
struct sk_buff *skb;
__u32 start_seq = ntohl(sp->start_seq);
__u32 end_seq = ntohl(sp->end_seq);
int fack_count = 0;
int dup_sack = 0;
/* Check for D-SACK. */
if (i == 0) {
u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
if (before(start_seq, ack)) {
dup_sack = 1;
tp->rx_opt.sack_ok |= 4;
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
} else if (num_sacks > 1 &&
!after(end_seq, ntohl(sp[1].end_seq)) &&
!before(start_seq, ntohl(sp[1].start_seq))) {
dup_sack = 1;
tp->rx_opt.sack_ok |= 4;
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
}
/* D-SACK for already forgotten data...
* Do dumb counting. */
if (dup_sack &&
!after(end_seq, prior_snd_una) &&
after(end_seq, tp->undo_marker))
tp->undo_retrans--;
/* Eliminate too old ACKs, but take into
* account more or less fresh ones, they can
* contain valid SACK info.
*/
if (before(ack, prior_snd_una - tp->max_window))
return 0;
}
/* Event "B" in the comment above. */
if (after(end_seq, tp->high_seq))
flag |= FLAG_DATA_LOST;
sk_stream_for_retrans_queue(skb, sk) {
u8 sacked = TCP_SKB_CB(skb)->sacked;
int in_sack;
/* The retransmission queue is always in order, so
* we can short-circuit the walk early.
*/
if(!before(TCP_SKB_CB(skb)->seq, end_seq))
break;
fack_count += tcp_skb_pcount(skb);
in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
!before(end_seq, TCP_SKB_CB(skb)->end_seq);
/* Account D-SACK for retransmitted packet. */
if ((dup_sack && in_sack) &&
(sacked & TCPCB_RETRANS) &&
after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
tp->undo_retrans--;
/* The frame is ACKed. */
if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
if (sacked&TCPCB_RETRANS) {
if ((dup_sack && in_sack) &&
(sacked&TCPCB_SACKED_ACKED))
reord = min(fack_count, reord);
} else {
/* If it was in a hole, we detected reordering. */
if (fack_count < prior_fackets &&
!(sacked&TCPCB_SACKED_ACKED))
reord = min(fack_count, reord);
}
/* Nothing to do; acked frame is about to be dropped. */
continue;
}
if ((sacked&TCPCB_SACKED_RETRANS) &&
after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
(!lost_retrans || after(end_seq, lost_retrans)))
lost_retrans = end_seq;
if (!in_sack)
continue;
if (!(sacked&TCPCB_SACKED_ACKED)) {
if (sacked & TCPCB_SACKED_RETRANS) {
/* If the segment is not tagged as lost,
* we do not clear RETRANS, believing
* that retransmission is still in flight.
*/
if (sacked & TCPCB_LOST) {
TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
tp->lost_out -= tcp_skb_pcount(skb);
tp->retrans_out -= tcp_skb_pcount(skb);
}
} else {
/* New sack for not retransmitted frame,
* which was in hole. It is reordering.
*/
if (!(sacked & TCPCB_RETRANS) &&
fack_count < prior_fackets)
reord = min(fack_count, reord);
if (sacked & TCPCB_LOST) {
TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
tp->lost_out -= tcp_skb_pcount(skb);
}
}
TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
flag |= FLAG_DATA_SACKED;
tp->sacked_out += tcp_skb_pcount(skb);
if (fack_count > tp->fackets_out)
tp->fackets_out = fack_count;
} else {
if (dup_sack && (sacked&TCPCB_RETRANS))
reord = min(fack_count, reord);
}
/* D-SACK. We can detect redundant retransmission
* in S|R and plain R frames and clear it.
* undo_retrans is decreased above, L|R frames
* are accounted above as well.
*/
if (dup_sack &&
(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
tp->retrans_out -= tcp_skb_pcount(skb);
}
}
}
/* Check for lost retransmit. This superb idea is
* borrowed from "ratehalving". Event "C".
* Later note: FACK people cheated me again 8),
* we have to account for reordering! Ugly,
* but should help.
*/
if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
struct sk_buff *skb;
sk_stream_for_retrans_queue(skb, sk) {
if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
break;
if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
continue;
if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
(IsFack(tp) ||
!before(lost_retrans,
TCP_SKB_CB(skb)->ack_seq + tp->reordering *
tp->mss_cache_std))) {
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
tp->retrans_out -= tcp_skb_pcount(skb);
if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
tp->lost_out += tcp_skb_pcount(skb);
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
flag |= FLAG_DATA_SACKED;
NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
}
}
}
}
tp->left_out = tp->sacked_out + tp->lost_out;
if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
#if FASTRETRANS_DEBUG > 0
BUG_TRAP((int)tp->sacked_out >= 0);
BUG_TRAP((int)tp->lost_out >= 0);
BUG_TRAP((int)tp->retrans_out >= 0);
BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
#endif
return flag;
}
/* RTO occurred, but do not yet enter loss state. Instead, transmit two new
* segments to see from the next ACKs whether any data was really missing.
* If the RTO was spurious, new ACKs should arrive.
*/
void tcp_enter_frto(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
tp->frto_counter = 1;
if (tp->ca_state <= TCP_CA_Disorder ||
tp->snd_una == tp->high_seq ||
(tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
tp->prior_ssthresh = tcp_current_ssthresh(tp);
if (!tcp_westwood_ssthresh(tp))
tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
}
/* Have to clear retransmission markers here to keep the bookkeeping
* in shape, even though we are not yet in Loss state.
* If something was really lost, it is eventually caught up
* in tcp_enter_frto_loss.
*/
tp->retrans_out = 0;
tp->undo_marker = tp->snd_una;
tp->undo_retrans = 0;
sk_stream_for_retrans_queue(skb, sk) {
TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
}
tcp_sync_left_out(tp);
tcp_set_ca_state(tp, TCP_CA_Open);
tp->frto_highmark = tp->snd_nxt;
}
/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
* which indicates that we should follow the traditional RTO recovery,
* i.e. mark everything lost and do go-back-N retransmission.
*/
static void tcp_enter_frto_loss(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
int cnt = 0;
tp->sacked_out = 0;
tp->lost_out = 0;
tp->fackets_out = 0;
sk_stream_for_retrans_queue(skb, sk) {
cnt += tcp_skb_pcount(skb);
TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
/* Do not mark those segments lost that were
* forward transmitted after RTO
*/
if (!after(TCP_SKB_CB(skb)->end_seq,
tp->frto_highmark)) {
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
tp->lost_out += tcp_skb_pcount(skb);
}
} else {
tp->sacked_out += tcp_skb_pcount(skb);
tp->fackets_out = cnt;
}
}
tcp_sync_left_out(tp);
tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
tp->snd_cwnd_cnt = 0;
tp->snd_cwnd_stamp = tcp_time_stamp;
tp->undo_marker = 0;
tp->frto_counter = 0;
tp->reordering = min_t(unsigned int, tp->reordering,
sysctl_tcp_reordering);
tcp_set_ca_state(tp, TCP_CA_Loss);
tp->high_seq = tp->frto_highmark;
TCP_ECN_queue_cwr(tp);
init_bictcp(tp);
}
void tcp_clear_retrans(struct tcp_sock *tp)
{
tp->left_out = 0;
tp->retrans_out = 0;
tp->fackets_out = 0;
tp->sacked_out = 0;
tp->lost_out = 0;
tp->undo_marker = 0;
tp->undo_retrans = 0;
}
/* Enter Loss state. If "how" is not zero, forget all SACK information
* and reset tags completely, otherwise preserve SACKs. If receiver
* dropped its ofo queue, we will know this due to reneging detection.
*/
void tcp_enter_loss(struct sock *sk, int how)
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
int cnt = 0;
/* Reduce ssthresh if it has not yet been made inside this window. */
if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
(tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
tp->prior_ssthresh = tcp_current_ssthresh(tp);
tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
}
tp->snd_cwnd = 1;
tp->snd_cwnd_cnt = 0;
tp->snd_cwnd_stamp = tcp_time_stamp;
tcp_clear_retrans(tp);
/* Push undo marker, if it was plain RTO and nothing
* was retransmitted. */
if (!how)
tp->undo_marker = tp->snd_una;
sk_stream_for_retrans_queue(skb, sk) {
cnt += tcp_skb_pcount(skb);
if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
tp->undo_marker = 0;
TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
tp->lost_out += tcp_skb_pcount(skb);
} else {
tp->sacked_out += tcp_skb_pcount(skb);
tp->fackets_out = cnt;
}
}
tcp_sync_left_out(tp);
tp->reordering = min_t(unsigned int, tp->reordering,
sysctl_tcp_reordering);
tcp_set_ca_state(tp, TCP_CA_Loss);
tp->high_seq = tp->snd_nxt;
TCP_ECN_queue_cwr(tp);
}
static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp)
{
struct sk_buff *skb;
/* If ACK arrived pointing to a remembered SACK,
* it means that our remembered SACKs do not reflect
* real state of receiver i.e.
* receiver _host_ is heavily congested (or buggy).
* Do processing similar to RTO timeout.
*/
if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
tcp_enter_loss(sk, 1);
tp->retransmits++;
tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
return 1;
}
return 0;
}
static inline int tcp_fackets_out(struct tcp_sock *tp)
{
return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
}
static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb)
{
return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
}
static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
{
return tp->packets_out &&
tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue));
}
/* Linux NewReno/SACK/FACK/ECN state machine.
* --------------------------------------
*
* "Open" Normal state, no dubious events, fast path.
* "Disorder" In all the respects it is "Open",
* but requires a bit more attention. It is entered when
* we see some SACKs or dupacks. It is split of "Open"
* mainly to move some processing from fast path to slow one.
* "CWR" CWND was reduced due to some Congestion Notification event.
* It can be ECN, ICMP source quench, local device congestion.
* "Recovery" CWND was reduced, we are fast-retransmitting.
* "Loss" CWND was reduced due to RTO timeout or SACK reneging.
*
* tcp_fastretrans_alert() is entered:
* - each incoming ACK, if state is not "Open"
* - when arrived ACK is unusual, namely:
* * SACK
* * Duplicate ACK.
* * ECN ECE.
*
* Counting packets in flight is pretty simple.
*
* in_flight = packets_out - left_out + retrans_out
*
* packets_out is SND.NXT-SND.UNA counted in packets.
*
* retrans_out is number of retransmitted segments.
*
* left_out is number of segments left network, but not ACKed yet.
*
* left_out = sacked_out + lost_out
*
* sacked_out: Packets, which arrived to receiver out of order
* and hence not ACKed. With SACKs this number is simply
* amount of SACKed data. Even without SACKs
* it is easy to give pretty reliable estimate of this number,
* counting duplicate ACKs.
*
* lost_out: Packets lost by network. TCP has no explicit
* "loss notification" feedback from network (for now).
* It means that this number can be only _guessed_.
* Actually, it is the heuristics to predict lossage that
* distinguishes different algorithms.
*
* F.e. after RTO, when all the queue is considered as lost,
* lost_out = packets_out and in_flight = retrans_out.
*
* Essentially, we have now two algorithms counting
* lost packets.
*
* FACK: It is the simplest heuristics. As soon as we decided
* that something is lost, we decide that _all_ not SACKed
* packets until the most forward SACK are lost. I.e.
* lost_out = fackets_out - sacked_out and left_out = fackets_out.
* It is absolutely correct estimate, if network does not reorder
* packets. And it loses any connection to reality when reordering
* takes place. We use FACK by default until reordering
* is suspected on the path to this destination.
*
* NewReno: when Recovery is entered, we assume that one segment
* is lost (classic Reno). While we are in Recovery and
* a partial ACK arrives, we assume that one more packet
* is lost (NewReno). This heuristics are the same in NewReno
* and SACK.
*
* Imagine, that's all! Forget about all this shamanism about CWND inflation
* deflation etc. CWND is real congestion window, never inflated, changes
* only according to classic VJ rules.
*
* Really tricky (and requiring careful tuning) part of algorithm
* is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
* The first determines the moment _when_ we should reduce CWND and,
* hence, slow down forward transmission. In fact, it determines the moment
* when we decide that hole is caused by loss, rather than by a reorder.
*
* tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
* holes, caused by lost packets.
*
* And the most logically complicated part of algorithm is undo
* heuristics. We detect false retransmits due to both too early
* fast retransmit (reordering) and underestimated RTO, analyzing
* timestamps and D-SACKs. When we detect that some segments were
* retransmitted by mistake and CWND reduction was wrong, we undo
* window reduction and abort recovery phase. This logic is hidden
* inside several functions named tcp_try_undo_<something>.
*/
/* This function decides, when we should leave Disordered state
* and enter Recovery phase, reducing congestion window.
*
* Main question: may we further continue forward transmission
* with the same cwnd?
*/
static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
{
__u32 packets_out;
/* Trick#1: The loss is proven. */
if (tp->lost_out)
return 1;
/* Not-A-Trick#2 : Classic rule... */
if (tcp_fackets_out(tp) > tp->reordering)
return 1;
/* Trick#3 : when we use RFC2988 timer restart, fast
* retransmit can be triggered by timeout of queue head.
*/
if (tcp_head_timedout(sk, tp))
return 1;
/* Trick#4: It is still not OK... But will it be useful to delay
* recovery more?
*/
packets_out = tp->packets_out;
if (packets_out <= tp->reordering &&
tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
!tcp_may_send_now(sk, tp)) {
/* We have nothing to send. This connection is limited
* either by receiver window or by application.
*/
return 1;
}
return 0;
}
/* If we receive more dupacks than we expected counting segments
* in assumption of absent reordering, interpret this as reordering.
* The only another reason could be bug in receiver TCP.
*/
static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
{
u32 holes;
holes = max(tp->lost_out, 1U);
holes = min(holes, tp->packets_out);
if ((tp->sacked_out + holes) > tp->packets_out) {
tp->sacked_out = tp->packets_out - holes;
tcp_update_reordering(tp, tp->packets_out+addend, 0);
}
}
/* Emulate SACKs for SACKless connection: account for a new dupack. */
static void tcp_add_reno_sack(struct tcp_sock *tp)
{
tp->sacked_out++;
tcp_check_reno_reordering(tp, 0);
tcp_sync_left_out(tp);
}
/* Account for ACK, ACKing some data in Reno Recovery phase. */
static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
{
if (acked > 0) {
/* One ACK acked hole. The rest eat duplicate ACKs. */
if (acked-1 >= tp->sacked_out)
tp->sacked_out = 0;
else
tp->sacked_out -= acked-1;
}
tcp_check_reno_reordering(tp, acked);
tcp_sync_left_out(tp);
}
static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
{
tp->sacked_out = 0;
tp->left_out = tp->lost_out;
}
/* Mark head of queue up as lost. */
static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
int packets, u32 high_seq)
{
struct sk_buff *skb;
int cnt = packets;
BUG_TRAP(cnt <= tp->packets_out);
sk_stream_for_retrans_queue(skb, sk) {
cnt -= tcp_skb_pcount(skb);
if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
break;
if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
tp->lost_out += tcp_skb_pcount(skb);
}
}
tcp_sync_left_out(tp);
}
/* Account newly detected lost packet(s) */
static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
{
if (IsFack(tp)) {
int lost = tp->fackets_out - tp->reordering;
if (lost <= 0)
lost = 1;
tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
} else {
tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
}
/* New heuristics: it is possible only after we switched
* to restart timer each time when something is ACKed.
* Hence, we can detect timed out packets during fast
* retransmit without falling to slow start.
*/
if (tcp_head_timedout(sk, tp)) {
struct sk_buff *skb;
sk_stream_for_retrans_queue(skb, sk) {
if (tcp_skb_timedout(tp, skb) &&
!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
tp->lost_out += tcp_skb_pcount(skb);
}
}
tcp_sync_left_out(tp);
}
}
/* CWND moderation, preventing bursts due to too big ACKs
* in dubious situations.
*/
static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
{
tp->snd_cwnd = min(tp->snd_cwnd,
tcp_packets_in_flight(tp)+tcp_max_burst(tp));
tp->snd_cwnd_stamp = tcp_time_stamp;
}
/* Decrease cwnd each second ack. */
static void tcp_cwnd_down(struct tcp_sock *tp)
{
int decr = tp->snd_cwnd_cnt + 1;
__u32 limit;
/*
* TCP Westwood
* Here limit is evaluated as BWestimation*RTTmin (for obtaining it
* in packets we use mss_cache). If sysctl_tcp_westwood is off
* tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is
* still used as usual. It prevents other strange cases in which
* BWE*RTTmin could assume value 0. It should not happen but...
*/
if (!(limit = tcp_westwood_bw_rttmin(tp)))
limit = tp->snd_ssthresh/2;
tp->snd_cwnd_cnt = decr&1;
decr >>= 1;
if (decr && tp->snd_cwnd > limit)
tp->snd_cwnd -= decr;
tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
tp->snd_cwnd_stamp = tcp_time_stamp;
}
/* Nothing was retransmitted or returned timestamp is less
* than timestamp of the first retransmission.
*/
static inline int tcp_packet_delayed(struct tcp_sock *tp)
{
return !tp->retrans_stamp ||
(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
(__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
}
/* Undo procedures. */
#if FASTRETRANS_DEBUG > 1
static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
{
struct inet_sock *inet = inet_sk(sk);
printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
msg,
NIPQUAD(inet->daddr), ntohs(inet->dport),
tp->snd_cwnd, tp->left_out,
tp->snd_ssthresh, tp->prior_ssthresh,
tp->packets_out);
}
#else
#define DBGUNDO(x...) do { } while (0)
#endif
static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
{
if (tp->prior_ssthresh) {
if (tcp_is_bic(tp))
tp->snd_cwnd = max(tp->snd_cwnd, tp->bictcp.last_max_cwnd);
else
tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
tp->snd_ssthresh = tp->prior_ssthresh;
TCP_ECN_withdraw_cwr(tp);
}
} else {
tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
}
tcp_moderate_cwnd(tp);
tp->snd_cwnd_stamp = tcp_time_stamp;
}
static inline int tcp_may_undo(struct tcp_sock *tp)
{
return tp->undo_marker &&
(!tp->undo_retrans || tcp_packet_delayed(tp));
}
/* People celebrate: "We love our President!" */
static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
{
if (tcp_may_undo(tp)) {
/* Happy end! We did not retransmit anything
* or our original transmission succeeded.
*/
DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
tcp_undo_cwr(tp, 1);
if (tp->ca_state == TCP_CA_Loss)
NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
else
NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
tp->undo_marker = 0;
}
if (tp->snd_una == tp->high_seq && IsReno(tp)) {
/* Hold old state until something *above* high_seq
* is ACKed. For Reno it is MUST to prevent false
* fast retransmits (RFC2582). SACK TCP is safe. */
tcp_moderate_cwnd(tp);
return 1;
}
tcp_set_ca_state(tp, TCP_CA_Open);
return 0;
}
/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
{
if (tp->undo_marker && !tp->undo_retrans) {
DBGUNDO(sk, tp, "D-SACK");
tcp_undo_cwr(tp, 1);
tp->undo_marker = 0;
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
}
}
/* Undo during fast recovery after partial ACK. */
static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
int acked)
{
/* Partial ACK arrived. Force Hoe's retransmit. */
int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
if (tcp_may_undo(tp)) {
/* Plain luck! Hole if filled with delayed
* packet, rather than with a retransmit.
*/
if (tp->retrans_out == 0)
tp->retrans_stamp = 0;
tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
DBGUNDO(sk, tp, "Hoe");
tcp_undo_cwr(tp, 0);
NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
/* So... Do not make Hoe's retransmit yet.
* If the first packet was delayed, the rest
* ones are most probably delayed as well.
*/
failed = 0;
}
return failed;
}
/* Undo during loss recovery after partial ACK. */
static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
{
if (tcp_may_undo(tp)) {
struct sk_buff *skb;
sk_stream_for_retrans_queue(skb, sk) {
TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
}
DBGUNDO(sk, tp, "partial loss");
tp->lost_out = 0;
tp->left_out = tp->sacked_out;
tcp_undo_cwr(tp, 1);
NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
tp->retransmits = 0;
tp->undo_marker = 0;
if (!IsReno(tp))
tcp_set_ca_state(tp, TCP_CA_Open);
return 1;
}
return 0;
}
static inline void tcp_complete_cwr(struct tcp_sock *tp)
{
if (tcp_westwood_cwnd(tp))
tp->snd_ssthresh = tp->snd_cwnd;
else
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
tp->snd_cwnd_stamp = tcp_time_stamp;
}
static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
{
tp->left_out = tp->sacked_out;
if (tp->retrans_out == 0)
tp->retrans_stamp = 0;
if (flag&FLAG_ECE)
tcp_enter_cwr(tp);
if (tp->ca_state != TCP_CA_CWR) {
int state = TCP_CA_Open;
if (tp->left_out || tp->retrans_out || tp->undo_marker)
state = TCP_CA_Disorder;
if (tp->ca_state != state) {
tcp_set_ca_state(tp, state);
tp->high_seq = tp->snd_nxt;
}
tcp_moderate_cwnd(tp);
} else {
tcp_cwnd_down(tp);
}
}
/* Process an event, which can update packets-in-flight not trivially.
* Main goal of this function is to calculate new estimate for left_out,
* taking into account both packets sitting in receiver's buffer and
* packets lost by network.
*
* Besides that it does CWND reduction, when packet loss is detected
* and changes state of machine.
*
* It does _not_ decide what to send, it is made in function
* tcp_xmit_retransmit_queue().
*/
static void
tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
int prior_packets, int flag)
{
struct tcp_sock *tp = tcp_sk(sk);
int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
/* Some technical things:
* 1. Reno does not count dupacks (sacked_out) automatically. */
if (!tp->packets_out)
tp->sacked_out = 0;
/* 2. SACK counts snd_fack in packets inaccurately. */
if (tp->sacked_out == 0)
tp->fackets_out = 0;
/* Now state machine starts.
* A. ECE, hence prohibit cwnd undoing, the reduction is required. */
if (flag&FLAG_ECE)
tp->prior_ssthresh = 0;
/* B. In all the states check for reneging SACKs. */
if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
return;
/* C. Process data loss notification, provided it is valid. */
if ((flag&FLAG_DATA_LOST) &&
before(tp->snd_una, tp->high_seq) &&
tp->ca_state != TCP_CA_Open &&
tp->fackets_out > tp->reordering) {
tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
}
/* D. Synchronize left_out to current state. */
tcp_sync_left_out(tp);
/* E. Check state exit conditions. State can be terminated
* when high_seq is ACKed. */
if (tp->ca_state == TCP_CA_Open) {
if (!sysctl_tcp_frto)
BUG_TRAP(tp->retrans_out == 0);
tp->retrans_stamp = 0;
} else if (!before(tp->snd_una, tp->high_seq)) {
switch (tp->ca_state) {
case TCP_CA_Loss:
tp->retransmits = 0;
if (tcp_try_undo_recovery(sk, tp))
return;
break;
case TCP_CA_CWR:
/* CWR is to be held something *above* high_seq
* is ACKed for CWR bit to reach receiver. */
if (tp->snd_una != tp->high_seq) {
tcp_complete_cwr(tp);
tcp_set_ca_state(tp, TCP_CA_Open);
}
break;
case TCP_CA_Disorder:
tcp_try_undo_dsack(sk, tp);
if (!tp->undo_marker ||
/* For SACK case do not Open to allow to undo
* catching for all duplicate ACKs. */
IsReno(tp) || tp->snd_una != tp->high_seq) {
tp->undo_marker = 0;
tcp_set_ca_state(tp, TCP_CA_Open);
}
break;
case TCP_CA_Recovery:
if (IsReno(tp))
tcp_reset_reno_sack(tp);
if (tcp_try_undo_recovery(sk, tp))
return;
tcp_complete_cwr(tp);
break;
}
}
/* F. Process state. */
switch (tp->ca_state) {
case TCP_CA_Recovery:
if (prior_snd_una == tp->snd_una) {
if (IsReno(tp) && is_dupack)
tcp_add_reno_sack(tp);
} else {
int acked = prior_packets - tp->packets_out;
if (IsReno(tp))
tcp_remove_reno_sacks(sk, tp, acked);
is_dupack = tcp_try_undo_partial(sk, tp, acked);
}
break;
case TCP_CA_Loss:
if (flag&FLAG_DATA_ACKED)
tp->retransmits = 0;
if (!tcp_try_undo_loss(sk, tp)) {
tcp_moderate_cwnd(tp);
tcp_xmit_retransmit_queue(sk);
return;
}
if (tp->ca_state != TCP_CA_Open)
return;
/* Loss is undone; fall through to processing in Open state. */
default:
if (IsReno(tp)) {
if (tp->snd_una != prior_snd_una)
tcp_reset_reno_sack(tp);
if (is_dupack)
tcp_add_reno_sack(tp);
}
if (tp->ca_state == TCP_CA_Disorder)
tcp_try_undo_dsack(sk, tp);
if (!tcp_time_to_recover(sk, tp)) {
tcp_try_to_open(sk, tp, flag);
return;
}
/* Otherwise enter Recovery state */
if (IsReno(tp))
NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
else
NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
tp->high_seq = tp->snd_nxt;
tp->prior_ssthresh = 0;
tp->undo_marker = tp->snd_una;
tp->undo_retrans = tp->retrans_out;
if (tp->ca_state < TCP_CA_CWR) {
if (!(flag&FLAG_ECE))
tp->prior_ssthresh = tcp_current_ssthresh(tp);
tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
TCP_ECN_queue_cwr(tp);
}
tp->snd_cwnd_cnt = 0;
tcp_set_ca_state(tp, TCP_CA_Recovery);
}
if (is_dupack || tcp_head_timedout(sk, tp))
tcp_update_scoreboard(sk, tp);
tcp_cwnd_down(tp);
tcp_xmit_retransmit_queue(sk);
}
/* Read draft-ietf-tcplw-high-performance before mucking
* with this code. (Superceeds RFC1323)
*/
static void tcp_ack_saw_tstamp(struct tcp_sock *tp, int flag)
{
__u32 seq_rtt;
/* RTTM Rule: A TSecr value received in a segment is used to
* update the averaged RTT measurement only if the segment
* acknowledges some new data, i.e., only if it advances the
* left edge of the send window.
*
* See draft-ietf-tcplw-high-performance-00, section 3.3.
* 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
*
* Changed: reset backoff as soon as we see the first valid sample.
* If we do not, we get strongly overstimated rto. With timestamps
* samples are accepted even from very old segments: f.e., when rtt=1
* increases to 8, we retransmit 5 times and after 8 seconds delayed
* answer arrives rto becomes 120 seconds! If at least one of segments
* in window is lost... Voila. --ANK (010210)
*/
seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
tcp_rtt_estimator(tp, seq_rtt);
tcp_set_rto(tp);
tp->backoff = 0;
tcp_bound_rto(tp);
}
static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, int flag)
{
/* We don't have a timestamp. Can only use
* packets that are not retransmitted to determine
* rtt estimates. Also, we must not reset the
* backoff for rto until we get a non-retransmitted
* packet. This allows us to deal with a situation
* where the network delay has increased suddenly.
* I.e. Karn's algorithm. (SIGCOMM '87, p5.)
*/
if (flag & FLAG_RETRANS_DATA_ACKED)
return;
tcp_rtt_estimator(tp, seq_rtt);
tcp_set_rto(tp);
tp->backoff = 0;
tcp_bound_rto(tp);
}
static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
int flag, s32 seq_rtt)
{
/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
tcp_ack_saw_tstamp(tp, flag);
else if (seq_rtt >= 0)
tcp_ack_no_tstamp(tp, seq_rtt, flag);
}
/*
* Compute congestion window to use.
*
* This is from the implementation of BICTCP in
* Lison-Xu, Kahaled Harfoush, and Injog Rhee.
* "Binary Increase Congestion Control for Fast, Long Distance
* Networks" in InfoComm 2004
* Available from:
* http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
*
* Unless BIC is enabled and congestion window is large
* this behaves the same as the original Reno.
*/
static inline __u32 bictcp_cwnd(struct tcp_sock *tp)
{
/* orignal Reno behaviour */
if (!tcp_is_bic(tp))
return tp->snd_cwnd;
if (tp->bictcp.last_cwnd == tp->snd_cwnd &&
(s32)(tcp_time_stamp - tp->bictcp.last_stamp) <= (HZ>>5))
return tp->bictcp.cnt;
tp->bictcp.last_cwnd = tp->snd_cwnd;
tp->bictcp.last_stamp = tcp_time_stamp;
/* start off normal */
if (tp->snd_cwnd <= sysctl_tcp_bic_low_window)
tp->bictcp.cnt = tp->snd_cwnd;
/* binary increase */
else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd) {
__u32 dist = (tp->bictcp.last_max_cwnd - tp->snd_cwnd)
/ BICTCP_B;
if (dist > BICTCP_MAX_INCREMENT)
/* linear increase */
tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
else if (dist <= 1U)
/* binary search increase */
tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
/ BICTCP_B;
else
/* binary search increase */
tp->bictcp.cnt = tp->snd_cwnd / dist;
} else {
/* slow start amd linear increase */
if (tp->snd_cwnd < tp->bictcp.last_max_cwnd + BICTCP_B)
/* slow start */
tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
/ BICTCP_B;
else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd
+ BICTCP_MAX_INCREMENT*(BICTCP_B-1))
/* slow start */
tp->bictcp.cnt = tp->snd_cwnd * (BICTCP_B-1)
/ (tp->snd_cwnd-tp->bictcp.last_max_cwnd);
else
/* linear increase */
tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
}
return tp->bictcp.cnt;
}
/* This is Jacobson's slow start and congestion avoidance.
* SIGCOMM '88, p. 328.
*/
static inline void reno_cong_avoid(struct tcp_sock *tp)
{
if (tp->snd_cwnd <= tp->snd_ssthresh) {
/* In "safe" area, increase. */
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
tp->snd_cwnd++;
} else {
/* In dangerous area, increase slowly.
* In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
*/
if (tp->snd_cwnd_cnt >= bictcp_cwnd(tp)) {
if (tp->snd_cwnd < tp->snd_cwnd_clamp)
tp->snd_cwnd++;
tp->snd_cwnd_cnt=0;
} else
tp->snd_cwnd_cnt++;
}
tp->snd_cwnd_stamp = tcp_time_stamp;
}
/* This is based on the congestion detection/avoidance scheme described in
* Lawrence S. Brakmo and Larry L. Peterson.
* "TCP Vegas: End to end congestion avoidance on a global internet."
* IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
* October 1995. Available from:
* ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
*
* See http://www.cs.arizona.edu/xkernel/ for their implementation.
* The main aspects that distinguish this implementation from the
* Arizona Vegas implementation are:
* o We do not change the loss detection or recovery mechanisms of
* Linux in any way. Linux already recovers from losses quite well,
* using fine-grained timers, NewReno, and FACK.
* o To avoid the performance penalty imposed by increasing cwnd
* only every-other RTT during slow start, we increase during
* every RTT during slow start, just like Reno.
* o Largely to allow continuous cwnd growth during slow start,
* we use the rate at which ACKs come back as the "actual"
* rate, rather than the rate at which data is sent.
* o To speed convergence to the right rate, we set the cwnd
* to achieve the right ("actual") rate when we exit slow start.
* o To filter out the noise caused by delayed ACKs, we use the
* minimum RTT sample observed during the last RTT to calculate
* the actual rate.
* o When the sender re-starts from idle, it waits until it has
* received ACKs for an entire flight of new data before making
* a cwnd adjustment decision. The original Vegas implementation
* assumed senders never went idle.
*/
static void vegas_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
{
/* The key players are v_beg_snd_una and v_beg_snd_nxt.
*
* These are so named because they represent the approximate values
* of snd_una and snd_nxt at the beginning of the current RTT. More
* precisely, they represent the amount of data sent during the RTT.
* At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
* we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
* bytes of data have been ACKed during the course of the RTT, giving
* an "actual" rate of:
*
* (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
*
* Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
* because delayed ACKs can cover more than one segment, so they
* don't line up nicely with the boundaries of RTTs.
*
* Another unfortunate fact of life is that delayed ACKs delay the
* advance of the left edge of our send window, so that the number
* of bytes we send in an RTT is often less than our cwnd will allow.
* So we keep track of our cwnd separately, in v_beg_snd_cwnd.
*/
if (after(ack, tp->vegas.beg_snd_nxt)) {
/* Do the Vegas once-per-RTT cwnd adjustment. */
u32 old_wnd, old_snd_cwnd;
/* Here old_wnd is essentially the window of data that was
* sent during the previous RTT, and has all
* been acknowledged in the course of the RTT that ended
* with the ACK we just received. Likewise, old_snd_cwnd
* is the cwnd during the previous RTT.
*/
old_wnd = (tp->vegas.beg_snd_nxt - tp->vegas.beg_snd_una) /
tp->mss_cache_std;
old_snd_cwnd = tp->vegas.beg_snd_cwnd;
/* Save the extent of the current window so we can use this
* at the end of the next RTT.
*/
tp->vegas.beg_snd_una = tp->vegas.beg_snd_nxt;
tp->vegas.beg_snd_nxt = tp->snd_nxt;
tp->vegas.beg_snd_cwnd = tp->snd_cwnd;
/* Take into account the current RTT sample too, to
* decrease the impact of delayed acks. This double counts
* this sample since we count it for the next window as well,
* but that's not too awful, since we're taking the min,
* rather than averaging.
*/
vegas_rtt_calc(tp, seq_rtt);
/* We do the Vegas calculations only if we got enough RTT
* samples that we can be reasonably sure that we got
* at least one RTT sample that wasn't from a delayed ACK.
* If we only had 2 samples total,
* then that means we're getting only 1 ACK per RTT, which
* means they're almost certainly delayed ACKs.
* If we have 3 samples, we should be OK.
*/
if (tp->vegas.cntRTT <= 2) {
/* We don't have enough RTT samples to do the Vegas
* calculation, so we'll behave like Reno.
*/
if (tp->snd_cwnd > tp->snd_ssthresh)
tp->snd_cwnd++;
} else {
u32 rtt, target_cwnd, diff;
/* We have enough RTT samples, so, using the Vegas
* algorithm, we determine if we should increase or
* decrease cwnd, and by how much.
*/
/* Pluck out the RTT we are using for the Vegas
* calculations. This is the min RTT seen during the
* last RTT. Taking the min filters out the effects
* of delayed ACKs, at the cost of noticing congestion
* a bit later.
*/
rtt = tp->vegas.minRTT;
/* Calculate the cwnd we should have, if we weren't
* going too fast.
*
* This is:
* (actual rate in segments) * baseRTT
* We keep it as a fixed point number with
* V_PARAM_SHIFT bits to the right of the binary point.
*/
target_cwnd = ((old_wnd * tp->vegas.baseRTT)
<< V_PARAM_SHIFT) / rtt;
/* Calculate the difference between the window we had,
* and the window we would like to have. This quantity
* is the "Diff" from the Arizona Vegas papers.
*
* Again, this is a fixed point number with
* V_PARAM_SHIFT bits to the right of the binary
* point.
*/
diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
if (tp->snd_cwnd < tp->snd_ssthresh) {
/* Slow start. */
if (diff > sysctl_tcp_vegas_gamma) {
/* Going too fast. Time to slow down
* and switch to congestion avoidance.
*/
tp->snd_ssthresh = 2;
/* Set cwnd to match the actual rate
* exactly:
* cwnd = (actual rate) * baseRTT
* Then we add 1 because the integer
* truncation robs us of full link
* utilization.
*/
tp->snd_cwnd = min(tp->snd_cwnd,
(target_cwnd >>
V_PARAM_SHIFT)+1);
}
} else {
/* Congestion avoidance. */
u32 next_snd_cwnd;
/* Figure out where we would like cwnd
* to be.
*/
if (diff > sysctl_tcp_vegas_beta) {
/* The old window was too fast, so
* we slow down.
*/
next_snd_cwnd = old_snd_cwnd - 1;
} else if (diff < sysctl_tcp_vegas_alpha) {
/* We don't have enough extra packets
* in the network, so speed up.
*/
next_snd_cwnd = old_snd_cwnd + 1;
} else {
/* Sending just as fast as we
* should be.
*/
next_snd_cwnd = old_snd_cwnd;
}
/* Adjust cwnd upward or downward, toward the
* desired value.
*/
if (next_snd_cwnd > tp->snd_cwnd)
tp->snd_cwnd++;
else if (next_snd_cwnd < tp->snd_cwnd)
tp->snd_cwnd--;
}
}
/* Wipe the slate clean for the next RTT. */
tp->vegas.cntRTT = 0;
tp->vegas.minRTT = 0x7fffffff;
}
/* The following code is executed for every ack we receive,
* except for conditions checked in should_advance_cwnd()
* before the call to tcp_cong_avoid(). Mainly this means that
* we only execute this code if the ack actually acked some
* data.
*/
/* If we are in slow start, increase our cwnd in response to this ACK.
* (If we are not in slow start then we are in congestion avoidance,
* and adjust our congestion window only once per RTT. See the code
* above.)
*/
if (tp->snd_cwnd <= tp->snd_ssthresh)
tp->snd_cwnd++;
/* to keep cwnd from growing without bound */
tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);
/* Make sure that we are never so timid as to reduce our cwnd below
* 2 MSS.
*
* Going below 2 MSS would risk huge delayed ACKs from our receiver.
*/
tp->snd_cwnd = max(tp->snd_cwnd, 2U);
tp->snd_cwnd_stamp = tcp_time_stamp;
}
static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
{
if (tcp_vegas_enabled(tp))
vegas_cong_avoid(tp, ack, seq_rtt);
else
reno_cong_avoid(tp);
}
/* Restart timer after forward progress on connection.
* RFC2988 recommends to restart timer to now+rto.
*/
static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
{
if (!tp->packets_out) {
tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
} else {
tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
}
}
/* There is one downside to this scheme. Although we keep the
* ACK clock ticking, adjusting packet counters and advancing
* congestion window, we do not liberate socket send buffer
* space.
*
* Mucking with skb->truesize and sk->sk_wmem_alloc et al.
* then making a write space wakeup callback is a possible
* future enhancement. WARNING: it is not trivial to make.
*/
static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
__u32 now, __s32 *seq_rtt)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
__u32 seq = tp->snd_una;
__u32 packets_acked;
int acked = 0;
/* If we get here, the whole TSO packet has not been
* acked.
*/
BUG_ON(!after(scb->end_seq, seq));
packets_acked = tcp_skb_pcount(skb);
if (tcp_trim_head(sk, skb, seq - scb->seq))
return 0;
packets_acked -= tcp_skb_pcount(skb);
if (packets_acked) {
__u8 sacked = scb->sacked;
acked |= FLAG_DATA_ACKED;
if (sacked) {
if (sacked & TCPCB_RETRANS) {
if (sacked & TCPCB_SACKED_RETRANS)
tp->retrans_out -= packets_acked;
acked |= FLAG_RETRANS_DATA_ACKED;
*seq_rtt = -1;
} else if (*seq_rtt < 0)
*seq_rtt = now - scb->when;
if (sacked & TCPCB_SACKED_ACKED)
tp->sacked_out -= packets_acked;
if (sacked & TCPCB_LOST)
tp->lost_out -= packets_acked;
if (sacked & TCPCB_URG) {
if (tp->urg_mode &&
!before(seq, tp->snd_up))
tp->urg_mode = 0;
}
} else if (*seq_rtt < 0)
*seq_rtt = now - scb->when;
if (tp->fackets_out) {
__u32 dval = min(tp->fackets_out, packets_acked);
tp->fackets_out -= dval;
}
tp->packets_out -= packets_acked;
BUG_ON(tcp_skb_pcount(skb) == 0);
BUG_ON(!before(scb->seq, scb->end_seq));
}
return acked;
}
/* Remove acknowledged frames from the retransmission queue. */
static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
__u32 now = tcp_time_stamp;
int acked = 0;
__s32 seq_rtt = -1;
while ((skb = skb_peek(&sk->sk_write_queue)) &&
skb != sk->sk_send_head) {
struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
__u8 sacked = scb->sacked;
/* If our packet is before the ack sequence we can
* discard it as it's confirmed to have arrived at
* the other end.
*/
if (after(scb->end_seq, tp->snd_una)) {
if (tcp_skb_pcount(skb) > 1)
acked |= tcp_tso_acked(sk, skb,
now, &seq_rtt);
break;
}
/* Initial outgoing SYN's get put onto the write_queue
* just like anything else we transmit. It is not
* true data, and if we misinform our callers that
* this ACK acks real data, we will erroneously exit
* connection startup slow start one packet too
* quickly. This is severely frowned upon behavior.
*/
if (!(scb->flags & TCPCB_FLAG_SYN)) {
acked |= FLAG_DATA_ACKED;
} else {
acked |= FLAG_SYN_ACKED;
tp->retrans_stamp = 0;
}
if (sacked) {
if (sacked & TCPCB_RETRANS) {
if(sacked & TCPCB_SACKED_RETRANS)
tp->retrans_out -= tcp_skb_pcount(skb);
acked |= FLAG_RETRANS_DATA_ACKED;
seq_rtt = -1;
} else if (seq_rtt < 0)
seq_rtt = now - scb->when;
if (sacked & TCPCB_SACKED_ACKED)
tp->sacked_out -= tcp_skb_pcount(skb);
if (sacked & TCPCB_LOST)
tp->lost_out -= tcp_skb_pcount(skb);
if (sacked & TCPCB_URG) {
if (tp->urg_mode &&
!before(scb->end_seq, tp->snd_up))
tp->urg_mode = 0;
}
} else if (seq_rtt < 0)
seq_rtt = now - scb->when;
tcp_dec_pcount_approx(&tp->fackets_out, skb);
tcp_packets_out_dec(tp, skb);
__skb_unlink(skb, skb->list);
sk_stream_free_skb(sk, skb);
}
if (acked&FLAG_ACKED) {
tcp_ack_update_rtt(tp, acked, seq_rtt);
tcp_ack_packets_out(sk, tp);
}
#if FASTRETRANS_DEBUG > 0
BUG_TRAP((int)tp->sacked_out >= 0);
BUG_TRAP((int)tp->lost_out >= 0);
BUG_TRAP((int)tp->retrans_out >= 0);
if (!tp->packets_out && tp->rx_opt.sack_ok) {
if (tp->lost_out) {
printk(KERN_DEBUG "Leak l=%u %d\n",
tp->lost_out, tp->ca_state);
tp->lost_out = 0;
}
if (tp->sacked_out) {
printk(KERN_DEBUG "Leak s=%u %d\n",
tp->sacked_out, tp->ca_state);
tp->sacked_out = 0;
}
if (tp->retrans_out) {
printk(KERN_DEBUG "Leak r=%u %d\n",
tp->retrans_out, tp->ca_state);
tp->retrans_out = 0;
}
}
#endif
*seq_rtt_p = seq_rtt;
return acked;
}
static void tcp_ack_probe(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
/* Was it a usable window open? */
if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
tp->snd_una + tp->snd_wnd)) {
tp->backoff = 0;
tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
/* Socket must be waked up by subsequent tcp_data_snd_check().
* This function is not for random using!
*/
} else {
tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
min(tp->rto << tp->backoff, TCP_RTO_MAX));
}
}
static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
{
return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
tp->ca_state != TCP_CA_Open);
}
static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
{
return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
!((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
}
/* Check that window update is acceptable.
* The function assumes that snd_una<=ack<=snd_next.
*/
static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack,
u32 ack_seq, u32 nwin)
{
return (after(ack, tp->snd_una) ||
after(ack_seq, tp->snd_wl1) ||
(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
}
/* Update our send window.
*
* Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
* and in FreeBSD. NetBSD's one is even worse.) is wrong.
*/
static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
struct sk_buff *skb, u32 ack, u32 ack_seq)
{
int flag = 0;
u32 nwin = ntohs(skb->h.th->window);
if (likely(!skb->h.th->syn))
nwin <<= tp->rx_opt.snd_wscale;
if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
flag |= FLAG_WIN_UPDATE;
tcp_update_wl(tp, ack, ack_seq);
if (tp->snd_wnd != nwin) {
tp->snd_wnd = nwin;
/* Note, it is the only place, where
* fast path is recovered for sending TCP.
*/
tcp_fast_path_check(sk, tp);
if (nwin > tp->max_window) {
tp->max_window = nwin;
tcp_sync_mss(sk, tp->pmtu_cookie);
}
}
}
tp->snd_una = ack;
return flag;
}
static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
{
struct tcp_sock *tp = tcp_sk(sk);
tcp_sync_left_out(tp);
if (tp->snd_una == prior_snd_una ||
!before(tp->snd_una, tp->frto_highmark)) {
/* RTO was caused by loss, start retransmitting in
* go-back-N slow start
*/
tcp_enter_frto_loss(sk);
return;
}
if (tp->frto_counter == 1) {
/* First ACK after RTO advances the window: allow two new
* segments out.
*/
tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
} else {
/* Also the second ACK after RTO advances the window.
* The RTO was likely spurious. Reduce cwnd and continue
* in congestion avoidance
*/
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
tcp_moderate_cwnd(tp);
}
/* F-RTO affects on two new ACKs following RTO.
* At latest on third ACK the TCP behavor is back to normal.
*/
tp->frto_counter = (tp->frto_counter + 1) % 3;
}
/*
* TCP Westwood+
*/
/*
* @init_westwood
* This function initializes fields used in TCP Westwood+. We can't
* get no information about RTTmin at this time so we simply set it to
* TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative
* since in this way we're sure it will be updated in a consistent
* way as soon as possible. It will reasonably happen within the first
* RTT period of the connection lifetime.
*/
static void init_westwood(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
tp->westwood.bw_ns_est = 0;
tp->westwood.bw_est = 0;
tp->westwood.accounted = 0;
tp->westwood.cumul_ack = 0;
tp->westwood.rtt_win_sx = tcp_time_stamp;
tp->westwood.rtt = TCP_WESTWOOD_INIT_RTT;
tp->westwood.rtt_min = TCP_WESTWOOD_INIT_RTT;
tp->westwood.snd_una = tp->snd_una;
}
/*
* @westwood_do_filter
* Low-pass filter. Implemented using constant coeffients.
*/
static inline __u32 westwood_do_filter(__u32 a, __u32 b)
{
return (((7 * a) + b) >> 3);
}
static void westwood_filter(struct sock *sk, __u32 delta)
{
struct tcp_sock *tp = tcp_sk(sk);
tp->westwood.bw_ns_est =
westwood_do_filter(tp->westwood.bw_ns_est,
tp->westwood.bk / delta);
tp->westwood.bw_est =
westwood_do_filter(tp->westwood.bw_est,
tp->westwood.bw_ns_est);
}
/*
* @westwood_update_rttmin
* It is used to update RTTmin. In this case we MUST NOT use
* WESTWOOD_RTT_MIN minimum bound since we could be on a LAN!
*/
static inline __u32 westwood_update_rttmin(const struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
__u32 rttmin = tp->westwood.rtt_min;
if (tp->westwood.rtt != 0 &&
(tp->westwood.rtt < tp->westwood.rtt_min || !rttmin))
rttmin = tp->westwood.rtt;
return rttmin;
}
/*
* @westwood_acked
* Evaluate increases for dk.
*/
static inline __u32 westwood_acked(const struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
return tp->snd_una - tp->westwood.snd_una;
}
/*
* @westwood_new_window
* It evaluates if we are receiving data inside the same RTT window as
* when we started.
* Return value:
* It returns 0 if we are still evaluating samples in the same RTT
* window, 1 if the sample has to be considered in the next window.
*/
static int westwood_new_window(const struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
__u32 left_bound;
__u32 rtt;
int ret = 0;
left_bound = tp->westwood.rtt_win_sx;
rtt = max(tp->westwood.rtt, (u32) TCP_WESTWOOD_RTT_MIN);
/*
* A RTT-window has passed. Be careful since if RTT is less than
* 50ms we don't filter but we continue 'building the sample'.
* This minimum limit was choosen since an estimation on small
* time intervals is better to avoid...
* Obvioulsy on a LAN we reasonably will always have
* right_bound = left_bound + WESTWOOD_RTT_MIN
*/
if ((left_bound + rtt) < tcp_time_stamp)
ret = 1;
return ret;
}
/*
* @westwood_update_window
* It updates RTT evaluation window if it is the right moment to do
* it. If so it calls filter for evaluating bandwidth.
*/
static void __westwood_update_window(struct sock *sk, __u32 now)
{
struct tcp_sock *tp = tcp_sk(sk);
__u32 delta = now - tp->westwood.rtt_win_sx;
if (delta) {
if (tp->westwood.rtt)
westwood_filter(sk, delta);
tp->westwood.bk = 0;
tp->westwood.rtt_win_sx = tcp_time_stamp;
}
}
static void westwood_update_window(struct sock *sk, __u32 now)
{
if (westwood_new_window(sk))
__westwood_update_window(sk, now);
}
/*
* @__tcp_westwood_fast_bw
* It is called when we are in fast path. In particular it is called when
* header prediction is successfull. In such case infact update is
* straight forward and doesn't need any particular care.
*/
static void __tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
westwood_update_window(sk, tcp_time_stamp);
tp->westwood.bk += westwood_acked(sk);
tp->westwood.snd_una = tp->snd_una;
tp->westwood.rtt_min = westwood_update_rttmin(sk);
}
static inline void tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
{
if (tcp_is_westwood(tcp_sk(sk)))
__tcp_westwood_fast_bw(sk, skb);
}
/*
* @westwood_dupack_update
* It updates accounted and cumul_ack when receiving a dupack.
*/
static void westwood_dupack_update(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
tp->westwood.accounted += tp->mss_cache_std;
tp->westwood.cumul_ack = tp->mss_cache_std;
}
static inline int westwood_may_change_cumul(struct tcp_sock *tp)
{
return (tp->westwood.cumul_ack > tp->mss_cache_std);
}
static inline void westwood_partial_update(struct tcp_sock *tp)
{
tp->westwood.accounted -= tp->westwood.cumul_ack;
tp->westwood.cumul_ack = tp->mss_cache_std;
}
static inline void westwood_complete_update(struct tcp_sock *tp)
{
tp->westwood.cumul_ack -= tp->westwood.accounted;
tp->westwood.accounted = 0;
}
/*
* @westwood_acked_count
* This function evaluates cumul_ack for evaluating dk in case of
* delayed or partial acks.
*/
static inline __u32 westwood_acked_count(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
tp->westwood.cumul_ack = westwood_acked(sk);
/* If cumul_ack is 0 this is a dupack since it's not moving
* tp->snd_una.
*/
if (!(tp->westwood.cumul_ack))
westwood_dupack_update(sk);
if (westwood_may_change_cumul(tp)) {
/* Partial or delayed ack */
if (tp->westwood.accounted >= tp->westwood.cumul_ack)
westwood_partial_update(tp);
else
westwood_complete_update(tp);
}
tp->westwood.snd_una = tp->snd_una;
return tp->westwood.cumul_ack;
}
/*
* @__tcp_westwood_slow_bw
* It is called when something is going wrong..even if there could
* be no problems! Infact a simple delayed packet may trigger a
* dupack. But we need to be careful in such case.
*/
static void __tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
westwood_update_window(sk, tcp_time_stamp);
tp->westwood.bk += westwood_acked_count(sk);
tp->westwood.rtt_min = westwood_update_rttmin(sk);
}
static inline void tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
{
if (tcp_is_westwood(tcp_sk(sk)))
__tcp_westwood_slow_bw(sk, skb);
}
/* This routine deals with incoming acks, but not outgoing ones. */
static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 prior_snd_una = tp->snd_una;
u32 ack_seq = TCP_SKB_CB(skb)->seq;
u32 ack = TCP_SKB_CB(skb)->ack_seq;
u32 prior_in_flight;
s32 seq_rtt;
int prior_packets;
/* If the ack is newer than sent or older than previous acks
* then we can probably ignore it.
*/
if (after(ack, tp->snd_nxt))
goto uninteresting_ack;
if (before(ack, prior_snd_una))
goto old_ack;
if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
/* Window is constant, pure forward advance.
* No more checks are required.
* Note, we use the fact that SND.UNA>=SND.WL2.
*/
tcp_update_wl(tp, ack, ack_seq);
tp->snd_una = ack;
tcp_westwood_fast_bw(sk, skb);
flag |= FLAG_WIN_UPDATE;
NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
} else {
if (ack_seq != TCP_SKB_CB(skb)->end_seq)
flag |= FLAG_DATA;
else
NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
if (TCP_SKB_CB(skb)->sacked)
flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
flag |= FLAG_ECE;
tcp_westwood_slow_bw(sk,skb);
}
/* We passed data and got it acked, remove any soft error
* log. Something worked...
*/
sk->sk_err_soft = 0;
tp->rcv_tstamp = tcp_time_stamp;
prior_packets = tp->packets_out;
if (!prior_packets)
goto no_queue;
prior_in_flight = tcp_packets_in_flight(tp);
/* See if we can take anything off of the retransmit queue. */
flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
if (tp->frto_counter)
tcp_process_frto(sk, prior_snd_una);
if (tcp_ack_is_dubious(tp, flag)) {
/* Advanve CWND, if state allows this. */
if ((flag & FLAG_DATA_ACKED) &&
(tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd) &&
tcp_may_raise_cwnd(tp, flag))
tcp_cong_avoid(tp, ack, seq_rtt);
tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
} else {
if ((flag & FLAG_DATA_ACKED) &&
(tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd))
tcp_cong_avoid(tp, ack, seq_rtt);
}
if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
dst_confirm(sk->sk_dst_cache);
return 1;
no_queue:
tp->probes_out = 0;
/* If this ack opens up a zero window, clear backoff. It was
* being used to time the probes, and is probably far higher than
* it needs to be for normal retransmission.
*/
if (sk->sk_send_head)
tcp_ack_probe(sk);
return 1;
old_ack:
if (TCP_SKB_CB(skb)->sacked)
tcp_sacktag_write_queue(sk, skb, prior_snd_una);
uninteresting_ack:
SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
return 0;
}
/* Look for tcp options. Normally only called on SYN and SYNACK packets.
* But, this can also be called on packets in the established flow when
* the fast version below fails.
*/
void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
{
unsigned char *ptr;
struct tcphdr *th = skb->h.th;
int length=(th->doff*4)-sizeof(struct tcphdr);
ptr = (unsigned char *)(th + 1);
opt_rx->saw_tstamp = 0;
while(length>0) {
int opcode=*ptr++;
int opsize;
switch (opcode) {
case TCPOPT_EOL:
return;
case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
length--;
continue;
default:
opsize=*ptr++;
if (opsize < 2) /* "silly options" */
return;
if (opsize > length)
return; /* don't parse partial options */
switch(opcode) {
case TCPOPT_MSS:
if(opsize==TCPOLEN_MSS && th->syn && !estab) {
u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
if (in_mss) {
if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
in_mss = opt_rx->user_mss;
opt_rx->mss_clamp = in_mss;
}
}
break;
case TCPOPT_WINDOW:
if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
if (sysctl_tcp_window_scaling) {
__u8 snd_wscale = *(__u8 *) ptr;
opt_rx->wscale_ok = 1;
if (snd_wscale > 14) {
if(net_ratelimit())
printk(KERN_INFO "tcp_parse_options: Illegal window "
"scaling value %d >14 received.\n",
snd_wscale);
snd_wscale = 14;
}
opt_rx->snd_wscale = snd_wscale;
}
break;
case TCPOPT_TIMESTAMP:
if(opsize==TCPOLEN_TIMESTAMP) {
if ((estab && opt_rx->tstamp_ok) ||
(!estab && sysctl_tcp_timestamps)) {
opt_rx->saw_tstamp = 1;
opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
}
}
break;
case TCPOPT_SACK_PERM:
if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
if (sysctl_tcp_sack) {
opt_rx->sack_ok = 1;
tcp_sack_reset(opt_rx);
}
}
break;
case TCPOPT_SACK:
if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
!((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
opt_rx->sack_ok) {
TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
}
};
ptr+=opsize-2;
length-=opsize;
};
}
}
/* Fast parse options. This hopes to only see timestamps.
* If it is wrong it falls back on tcp_parse_options().
*/
static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
struct tcp_sock *tp)
{
if (th->doff == sizeof(struct tcphdr)>>2) {
tp->rx_opt.saw_tstamp = 0;
return 0;
} else if (tp->rx_opt.tstamp_ok &&
th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
__u32 *ptr = (__u32 *)(th + 1);
if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
| (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
tp->rx_opt.saw_tstamp = 1;
++ptr;
tp->rx_opt.rcv_tsval = ntohl(*ptr);
++ptr;
tp->rx_opt.rcv_tsecr = ntohl(*ptr);
return 1;
}
}
tcp_parse_options(skb, &tp->rx_opt, 1);
return 1;
}
static inline void tcp_store_ts_recent(struct tcp_sock *tp)
{
tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
}
static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
{
if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
/* PAWS bug workaround wrt. ACK frames, the PAWS discard
* extra check below makes sure this can only happen
* for pure ACK frames. -DaveM
*
* Not only, also it occurs for expired timestamps.
*/
if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
tcp_store_ts_recent(tp);
}
}
/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
*
* It is not fatal. If this ACK does _not_ change critical state (seqs, window)
* it can pass through stack. So, the following predicate verifies that
* this segment is not used for anything but congestion avoidance or
* fast retransmit. Moreover, we even are able to eliminate most of such
* second order effects, if we apply some small "replay" window (~RTO)
* to timestamp space.
*
* All these measures still do not guarantee that we reject wrapped ACKs
* on networks with high bandwidth, when sequence space is recycled fastly,
* but it guarantees that such events will be very rare and do not affect
* connection seriously. This doesn't look nice, but alas, PAWS is really
* buggy extension.
*
* [ Later note. Even worse! It is buggy for segments _with_ data. RFC
* states that events when retransmit arrives after original data are rare.
* It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
* the biggest problem on large power networks even with minor reordering.
* OK, let's give it small replay window. If peer clock is even 1hz, it is safe
* up to bandwidth of 18Gigabit/sec. 8) ]
*/
static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb)
{
struct tcphdr *th = skb->h.th;
u32 seq = TCP_SKB_CB(skb)->seq;
u32 ack = TCP_SKB_CB(skb)->ack_seq;
return (/* 1. Pure ACK with correct sequence number. */
(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
/* 2. ... and duplicate ACK. */
ack == tp->snd_una &&
/* 3. ... and does not update window. */
!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
/* 4. ... and sits in replay window. */
(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ);
}
static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb)
{
return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
!tcp_disordered_ack(tp, skb));
}
/* Check segment sequence number for validity.
*
* Segment controls are considered valid, if the segment
* fits to the window after truncation to the window. Acceptability
* of data (and SYN, FIN, of course) is checked separately.
* See tcp_data_queue(), for example.
*
* Also, controls (RST is main one) are accepted using RCV.WUP instead
* of RCV.NXT. Peer still did not advance his SND.UNA when we
* delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
* (borrowed from freebsd)
*/
static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
{
return !before(end_seq, tp->rcv_wup) &&
!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
}
/* When we get a reset we do this. */
static void tcp_reset(struct sock *sk)
{
/* We want the right error as BSD sees it (and indeed as we do). */
switch (sk->sk_state) {
case TCP_SYN_SENT:
sk->sk_err = ECONNREFUSED;
break;
case TCP_CLOSE_WAIT:
sk->sk_err = EPIPE;
break;
case TCP_CLOSE:
return;
default:
sk->sk_err = ECONNRESET;
}
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_error_report(sk);
tcp_done(sk);
}
/*
* Process the FIN bit. This now behaves as it is supposed to work
* and the FIN takes effect when it is validly part of sequence
* space. Not before when we get holes.
*
* If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
* (and thence onto LAST-ACK and finally, CLOSE, we never enter
* TIME-WAIT)
*
* If we are in FINWAIT-1, a received FIN indicates simultaneous
* close and we go into CLOSING (and later onto TIME-WAIT)
*
* If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
*/
static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
{
struct tcp_sock *tp = tcp_sk(sk);
tcp_schedule_ack(tp);
sk->sk_shutdown |= RCV_SHUTDOWN;
sock_set_flag(sk, SOCK_DONE);
switch (sk->sk_state) {
case TCP_SYN_RECV:
case TCP_ESTABLISHED:
/* Move to CLOSE_WAIT */
tcp_set_state(sk, TCP_CLOSE_WAIT);
tp->ack.pingpong = 1;
break;
case TCP_CLOSE_WAIT:
case TCP_CLOSING:
/* Received a retransmission of the FIN, do
* nothing.
*/
break;
case TCP_LAST_ACK:
/* RFC793: Remain in the LAST-ACK state. */
break;
case TCP_FIN_WAIT1:
/* This case occurs when a simultaneous close
* happens, we must ack the received FIN and
* enter the CLOSING state.
*/
tcp_send_ack(sk);
tcp_set_state(sk, TCP_CLOSING);
break;
case TCP_FIN_WAIT2:
/* Received a FIN -- send ACK and enter TIME_WAIT. */
tcp_send_ack(sk);
tcp_time_wait(sk, TCP_TIME_WAIT, 0);
break;
default:
/* Only TCP_LISTEN and TCP_CLOSE are left, in these
* cases we should never reach this piece of code.
*/
printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
__FUNCTION__, sk->sk_state);
break;
};
/* It _is_ possible, that we have something out-of-order _after_ FIN.
* Probably, we should reset in this case. For now drop them.
*/
__skb_queue_purge(&tp->out_of_order_queue);
if (tp->rx_opt.sack_ok)
tcp_sack_reset(&tp->rx_opt);
sk_stream_mem_reclaim(sk);
if (!sock_flag(sk, SOCK_DEAD)) {
sk->sk_state_change(sk);
/* Do not send POLL_HUP for half duplex close. */
if (sk->sk_shutdown == SHUTDOWN_MASK ||
sk->sk_state == TCP_CLOSE)
sk_wake_async(sk, 1, POLL_HUP);
else
sk_wake_async(sk, 1, POLL_IN);
}
}
static __inline__ int
tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
{
if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
if (before(seq, sp->start_seq))
sp->start_seq = seq;
if (after(end_seq, sp->end_seq))
sp->end_seq = end_seq;
return 1;
}
return 0;
}
static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
{
if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
if (before(seq, tp->rcv_nxt))
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
else
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
tp->rx_opt.dsack = 1;
tp->duplicate_sack[0].start_seq = seq;
tp->duplicate_sack[0].end_seq = end_seq;
tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
}
}
static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
{
if (!tp->rx_opt.dsack)
tcp_dsack_set(tp, seq, end_seq);
else
tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
}
static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
tcp_enter_quickack_mode(tp);
if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
u32 end_seq = TCP_SKB_CB(skb)->end_seq;
if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
end_seq = tp->rcv_nxt;
tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
}
}
tcp_send_ack(sk);
}
/* These routines update the SACK block as out-of-order packets arrive or
* in-order packets close up the sequence space.
*/
static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
{
int this_sack;
struct tcp_sack_block *sp = &tp->selective_acks[0];
struct tcp_sack_block *swalk = sp+1;
/* See if the recent change to the first SACK eats into
* or hits the sequence space of other SACK blocks, if so coalesce.
*/
for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
int i;
/* Zap SWALK, by moving every further SACK up by one slot.
* Decrease num_sacks.
*/
tp->rx_opt.num_sacks--;
tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
sp[i] = sp[i+1];
continue;
}
this_sack++, swalk++;
}
}
static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
{
__u32 tmp;
tmp = sack1->start_seq;
sack1->start_seq = sack2->start_seq;
sack2->start_seq = tmp;
tmp = sack1->end_seq;
sack1->end_seq = sack2->end_seq;
sack2->end_seq = tmp;
}
static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_sack_block *sp = &tp->selective_acks[0];
int cur_sacks = tp->rx_opt.num_sacks;
int this_sack;
if (!cur_sacks)
goto new_sack;
for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
if (tcp_sack_extend(sp, seq, end_seq)) {
/* Rotate this_sack to the first one. */
for (; this_sack>0; this_sack--, sp--)
tcp_sack_swap(sp, sp-1);
if (cur_sacks > 1)
tcp_sack_maybe_coalesce(tp);
return;
}
}
/* Could not find an adjacent existing SACK, build a new one,
* put it at the front, and shift everyone else down. We
* always know there is at least one SACK present already here.
*
* If the sack array is full, forget about the last one.
*/
if (this_sack >= 4) {
this_sack--;
tp->rx_opt.num_sacks--;
sp--;
}
for(; this_sack > 0; this_sack--, sp--)
*sp = *(sp-1);
new_sack:
/* Build the new head SACK, and we're done. */
sp->start_seq = seq;
sp->end_seq = end_seq;
tp->rx_opt.num_sacks++;
tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
}
/* RCV.NXT advances, some SACKs should be eaten. */
static void tcp_sack_remove(struct tcp_sock *tp)
{
struct tcp_sack_block *sp = &tp->selective_acks[0];
int num_sacks = tp->rx_opt.num_sacks;
int this_sack;
/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
if (skb_queue_len(&tp->out_of_order_queue) == 0) {
tp->rx_opt.num_sacks = 0;
tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
return;
}
for(this_sack = 0; this_sack < num_sacks; ) {
/* Check if the start of the sack is covered by RCV.NXT. */
if (!before(tp->rcv_nxt, sp->start_seq)) {
int i;
/* RCV.NXT must cover all the block! */
BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
/* Zap this SACK, by moving forward any other SACKS. */
for (i=this_sack+1; i < num_sacks; i++)
tp->selective_acks[i-1] = tp->selective_acks[i];
num_sacks--;
continue;
}
this_sack++;
sp++;
}
if (num_sacks != tp->rx_opt.num_sacks) {
tp->rx_opt.num_sacks = num_sacks;
tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
}
}
/* This one checks to see if we can put data from the
* out_of_order queue into the receive_queue.
*/
static void tcp_ofo_queue(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
__u32 dsack_high = tp->rcv_nxt;
struct sk_buff *skb;
while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
break;
if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
__u32 dsack = dsack_high;
if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
dsack_high = TCP_SKB_CB(skb)->end_seq;
tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
}
if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
SOCK_DEBUG(sk, "ofo packet was already received \n");
__skb_unlink(skb, skb->list);
__kfree_skb(skb);
continue;
}
SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
TCP_SKB_CB(skb)->end_seq);
__skb_unlink(skb, skb->list);
__skb_queue_tail(&sk->sk_receive_queue, skb);
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
if(skb->h.th->fin)
tcp_fin(skb, sk, skb->h.th);
}
}
static int tcp_prune_queue(struct sock *sk);
static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
{
struct tcphdr *th = skb->h.th;
struct tcp_sock *tp = tcp_sk(sk);
int eaten = -1;
if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
goto drop;
__skb_pull(skb, th->doff*4);
TCP_ECN_accept_cwr(tp, skb);
if (tp->rx_opt.dsack) {
tp->rx_opt.dsack = 0;
tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
4 - tp->rx_opt.tstamp_ok);
}
/* Queue data for delivery to the user.
* Packets in sequence go to the receive queue.
* Out of sequence packets to the out_of_order_queue.
*/
if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
if (tcp_receive_window(tp) == 0)
goto out_of_window;
/* Ok. In sequence. In window. */
if (tp->ucopy.task == current &&
tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
sock_owned_by_user(sk) && !tp->urg_data) {
int chunk = min_t(unsigned int, skb->len,
tp->ucopy.len);
__set_current_state(TASK_RUNNING);
local_bh_enable();
if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
tp->ucopy.len -= chunk;
tp->copied_seq += chunk;
eaten = (chunk == skb->len && !th->fin);
tcp_rcv_space_adjust(sk);
}
local_bh_disable();
}
if (eaten <= 0) {
queue_and_out:
if (eaten < 0 &&
(atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
!sk_stream_rmem_schedule(sk, skb))) {
if (tcp_prune_queue(sk) < 0 ||
!sk_stream_rmem_schedule(sk, skb))
goto drop;
}
sk_stream_set_owner_r(skb, sk);
__skb_queue_tail(&sk->sk_receive_queue, skb);
}
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
if(skb->len)
tcp_event_data_recv(sk, tp, skb);
if(th->fin)
tcp_fin(skb, sk, th);
if (skb_queue_len(&tp->out_of_order_queue)) {
tcp_ofo_queue(sk);
/* RFC2581. 4.2. SHOULD send immediate ACK, when
* gap in queue is filled.
*/
if (!skb_queue_len(&tp->out_of_order_queue))
tp->ack.pingpong = 0;
}
if (tp->rx_opt.num_sacks)
tcp_sack_remove(tp);
tcp_fast_path_check(sk, tp);
if (eaten > 0)
__kfree_skb(skb);
else if (!sock_flag(sk, SOCK_DEAD))
sk->sk_data_ready(sk, 0);
return;
}
if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
/* A retransmit, 2nd most common case. Force an immediate ack. */
NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
out_of_window:
tcp_enter_quickack_mode(tp);
tcp_schedule_ack(tp);
drop:
__kfree_skb(skb);
return;
}
/* Out of window. F.e. zero window probe. */
if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
goto out_of_window;
tcp_enter_quickack_mode(tp);
if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
/* Partial packet, seq < rcv_next < end_seq */
SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
TCP_SKB_CB(skb)->end_seq);
tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
/* If window is closed, drop tail of packet. But after
* remembering D-SACK for its head made in previous line.
*/
if (!tcp_receive_window(tp))
goto out_of_window;
goto queue_and_out;
}
TCP_ECN_check_ce(tp, skb);
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
!sk_stream_rmem_schedule(sk, skb)) {
if (tcp_prune_queue(sk) < 0 ||
!sk_stream_rmem_schedule(sk, skb))
goto drop;
}
/* Disable header prediction. */
tp->pred_flags = 0;
tcp_schedule_ack(tp);
SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
sk_stream_set_owner_r(skb, sk);
if (!skb_peek(&tp->out_of_order_queue)) {
/* Initial out of order segment, build 1 SACK. */
if (tp->rx_opt.sack_ok) {
tp->rx_opt.num_sacks = 1;
tp->rx_opt.dsack = 0;
tp->rx_opt.eff_sacks = 1;
tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
tp->selective_acks[0].end_seq =
TCP_SKB_CB(skb)->end_seq;
}
__skb_queue_head(&tp->out_of_order_queue,skb);
} else {
struct sk_buff *skb1 = tp->out_of_order_queue.prev;
u32 seq = TCP_SKB_CB(skb)->seq;
u32 end_seq = TCP_SKB_CB(skb)->end_seq;
if (seq == TCP_SKB_CB(skb1)->end_seq) {
__skb_append(skb1, skb);
if (!tp->rx_opt.num_sacks ||
tp->selective_acks[0].end_seq != seq)
goto add_sack;
/* Common case: data arrive in order after hole. */
tp->selective_acks[0].end_seq = end_seq;
return;
}
/* Find place to insert this segment. */
do {
if (!after(TCP_SKB_CB(skb1)->seq, seq))
break;
} while ((skb1 = skb1->prev) !=
(struct sk_buff*)&tp->out_of_order_queue);
/* Do skb overlap to previous one? */
if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
before(seq, TCP_SKB_CB(skb1)->end_seq)) {
if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
/* All the bits are present. Drop. */
__kfree_skb(skb);
tcp_dsack_set(tp, seq, end_seq);
goto add_sack;
}
if (after(seq, TCP_SKB_CB(skb1)->seq)) {
/* Partial overlap. */
tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
} else {
skb1 = skb1->prev;
}
}
__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
/* And clean segments covered by new one as whole. */
while ((skb1 = skb->next) !=
(struct sk_buff*)&tp->out_of_order_queue &&
after(end_seq, TCP_SKB_CB(skb1)->seq)) {
if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
break;
}
__skb_unlink(skb1, skb1->list);
tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
__kfree_skb(skb1);
}
add_sack:
if (tp->rx_opt.sack_ok)
tcp_sack_new_ofo_skb(sk, seq, end_seq);
}
}
/* Collapse contiguous sequence of skbs head..tail with
* sequence numbers start..end.
* Segments with FIN/SYN are not collapsed (only because this
* simplifies code)
*/
static void
tcp_collapse(struct sock *sk, struct sk_buff *head,
struct sk_buff *tail, u32 start, u32 end)
{
struct sk_buff *skb;
/* First, check that queue is collapsable and find
* the point where collapsing can be useful. */
for (skb = head; skb != tail; ) {
/* No new bits? It is possible on ofo queue. */
if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
struct sk_buff *next = skb->next;
__skb_unlink(skb, skb->list);
__kfree_skb(skb);
NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
skb = next;
continue;
}
/* The first skb to collapse is:
* - not SYN/FIN and
* - bloated or contains data before "start" or
* overlaps to the next one.
*/
if (!skb->h.th->syn && !skb->h.th->fin &&
(tcp_win_from_space(skb->truesize) > skb->len ||
before(TCP_SKB_CB(skb)->seq, start) ||
(skb->next != tail &&
TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
break;
/* Decided to skip this, advance start seq. */
start = TCP_SKB_CB(skb)->end_seq;
skb = skb->next;
}
if (skb == tail || skb->h.th->syn || skb->h.th->fin)
return;
while (before(start, end)) {
struct sk_buff *nskb;
int header = skb_headroom(skb);
int copy = SKB_MAX_ORDER(header, 0);
/* Too big header? This can happen with IPv6. */
if (copy < 0)
return;
if (end-start < copy)
copy = end-start;
nskb = alloc_skb(copy+header, GFP_ATOMIC);
if (!nskb)
return;
skb_reserve(nskb, header);
memcpy(nskb->head, skb->head, header);
nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
__skb_insert(nskb, skb->prev, skb, skb->list);
sk_stream_set_owner_r(nskb, sk);
/* Copy data, releasing collapsed skbs. */
while (copy > 0) {
int offset = start - TCP_SKB_CB(skb)->seq;
int size = TCP_SKB_CB(skb)->end_seq - start;
if (offset < 0) BUG();
if (size > 0) {
size = min(copy, size);
if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
BUG();
TCP_SKB_CB(nskb)->end_seq += size;
copy -= size;
start += size;
}
if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
struct sk_buff *next = skb->next;
__skb_unlink(skb, skb->list);
__kfree_skb(skb);
NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
skb = next;
if (skb == tail || skb->h.th->syn || skb->h.th->fin)
return;
}
}
}
}
/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
* and tcp_collapse() them until all the queue is collapsed.
*/
static void tcp_collapse_ofo_queue(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
struct sk_buff *head;
u32 start, end;
if (skb == NULL)
return;
start = TCP_SKB_CB(skb)->seq;
end = TCP_SKB_CB(skb)->end_seq;
head = skb;
for (;;) {
skb = skb->next;
/* Segment is terminated when we see gap or when
* we are at the end of all the queue. */
if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
after(TCP_SKB_CB(skb)->seq, end) ||
before(TCP_SKB_CB(skb)->end_seq, start)) {
tcp_collapse(sk, head, skb, start, end);
head = skb;
if (skb == (struct sk_buff *)&tp->out_of_order_queue)
break;
/* Start new segment */
start = TCP_SKB_CB(skb)->seq;
end = TCP_SKB_CB(skb)->end_seq;
} else {
if (before(TCP_SKB_CB(skb)->seq, start))
start = TCP_SKB_CB(skb)->seq;
if (after(TCP_SKB_CB(skb)->end_seq, end))
end = TCP_SKB_CB(skb)->end_seq;
}
}
}
/* Reduce allocated memory if we can, trying to get
* the socket within its memory limits again.
*
* Return less than zero if we should start dropping frames
* until the socket owning process reads some of the data
* to stabilize the situation.
*/
static int tcp_prune_queue(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
tcp_clamp_window(sk, tp);
else if (tcp_memory_pressure)
tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
tcp_collapse_ofo_queue(sk);
tcp_collapse(sk, sk->sk_receive_queue.next,
(struct sk_buff*)&sk->sk_receive_queue,
tp->copied_seq, tp->rcv_nxt);
sk_stream_mem_reclaim(sk);
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
return 0;
/* Collapsing did not help, destructive actions follow.
* This must not ever occur. */
/* First, purge the out_of_order queue. */
if (skb_queue_len(&tp->out_of_order_queue)) {
NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED,
skb_queue_len(&tp->out_of_order_queue));
__skb_queue_purge(&tp->out_of_order_queue);
/* Reset SACK state. A conforming SACK implementation will
* do the same at a timeout based retransmit. When a connection
* is in a sad state like this, we care only about integrity
* of the connection not performance.
*/
if (tp->rx_opt.sack_ok)
tcp_sack_reset(&tp->rx_opt);
sk_stream_mem_reclaim(sk);
}
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
return 0;
/* If we are really being abused, tell the caller to silently
* drop receive data on the floor. It will get retransmitted
* and hopefully then we'll have sufficient space.
*/
NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
/* Massive buffer overcommit. */
tp->pred_flags = 0;
return -1;
}
/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
* As additional protections, we do not touch cwnd in retransmission phases,
* and if application hit its sndbuf limit recently.
*/
void tcp_cwnd_application_limited(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tp->ca_state == TCP_CA_Open &&
sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
/* Limited by application or receiver window. */
u32 win_used = max(tp->snd_cwnd_used, 2U);
if (win_used < tp->snd_cwnd) {
tp->snd_ssthresh = tcp_current_ssthresh(tp);
tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
}
tp->snd_cwnd_used = 0;
}
tp->snd_cwnd_stamp = tcp_time_stamp;
}
/* When incoming ACK allowed to free some skb from write_queue,
* we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
* on the exit from tcp input handler.
*
* PROBLEM: sndbuf expansion does not work well with largesend.
*/
static void tcp_new_space(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
if (tp->packets_out < tp->snd_cwnd &&
!(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
!tcp_memory_pressure &&
atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) +
MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
demanded = max_t(unsigned int, tp->snd_cwnd,
tp->reordering + 1);
sndmem *= 2*demanded;
if (sndmem > sk->sk_sndbuf)
sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
tp->snd_cwnd_stamp = tcp_time_stamp;
}
sk->sk_write_space(sk);
}
static inline void tcp_check_space(struct sock *sk)
{
if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
if (sk->sk_socket &&
test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
tcp_new_space(sk);
}
}
static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
tcp_write_xmit(sk, tp->nonagle))
tcp_check_probe_timer(sk, tp);
}
static __inline__ void tcp_data_snd_check(struct sock *sk)
{
struct sk_buff *skb = sk->sk_send_head;
if (skb != NULL)
__tcp_data_snd_check(sk, skb);
tcp_check_space(sk);
}
/*
* Check if sending an ack is needed.
*/
static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
{
struct tcp_sock *tp = tcp_sk(sk);
/* More than one full frame received... */
if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
/* ... and right edge of window advances far enough.
* (tcp_recvmsg() will send ACK otherwise). Or...
*/
&& __tcp_select_window(sk) >= tp->rcv_wnd) ||
/* We ACK each frame or... */
tcp_in_quickack_mode(tp) ||
/* We have out of order data. */
(ofo_possible &&
skb_peek(&tp->out_of_order_queue))) {
/* Then ack it now */
tcp_send_ack(sk);
} else {
/* Else, send delayed ack. */
tcp_send_delayed_ack(sk);
}
}
static __inline__ void tcp_ack_snd_check(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
if (!tcp_ack_scheduled(tp)) {
/* We sent a data segment already. */
return;
}
__tcp_ack_snd_check(sk, 1);
}
/*
* This routine is only called when we have urgent data
* signalled. Its the 'slow' part of tcp_urg. It could be
* moved inline now as tcp_urg is only called from one
* place. We handle URGent data wrong. We have to - as
* BSD still doesn't use the correction from RFC961.
* For 1003.1g we should support a new option TCP_STDURG to permit
* either form (or just set the sysctl tcp_stdurg).
*/
static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 ptr = ntohs(th->urg_ptr);
if (ptr && !sysctl_tcp_stdurg)
ptr--;
ptr += ntohl(th->seq);
/* Ignore urgent data that we've already seen and read. */
if (after(tp->copied_seq, ptr))
return;
/* Do not replay urg ptr.
*
* NOTE: interesting situation not covered by specs.
* Misbehaving sender may send urg ptr, pointing to segment,
* which we already have in ofo queue. We are not able to fetch
* such data and will stay in TCP_URG_NOTYET until will be eaten
* by recvmsg(). Seems, we are not obliged to handle such wicked
* situations. But it is worth to think about possibility of some
* DoSes using some hypothetical application level deadlock.
*/
if (before(ptr, tp->rcv_nxt))
return;
/* Do we already have a newer (or duplicate) urgent pointer? */
if (tp->urg_data && !after(ptr, tp->urg_seq))
return;
/* Tell the world about our new urgent pointer. */
sk_send_sigurg(sk);
/* We may be adding urgent data when the last byte read was
* urgent. To do this requires some care. We cannot just ignore
* tp->copied_seq since we would read the last urgent byte again
* as data, nor can we alter copied_seq until this data arrives
* or we break the sematics of SIOCATMARK (and thus sockatmark())
*
* NOTE. Double Dutch. Rendering to plain English: author of comment
* above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
* and expect that both A and B disappear from stream. This is _wrong_.
* Though this happens in BSD with high probability, this is occasional.
* Any application relying on this is buggy. Note also, that fix "works"
* only in this artificial test. Insert some normal data between A and B and we will
* decline of BSD again. Verdict: it is better to remove to trap
* buggy users.
*/
if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
!sock_flag(sk, SOCK_URGINLINE) &&
tp->copied_seq != tp->rcv_nxt) {
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
tp->copied_seq++;
if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
__skb_unlink(skb, skb->list);
__kfree_skb(skb);
}
}
tp->urg_data = TCP_URG_NOTYET;
tp->urg_seq = ptr;
/* Disable header prediction. */
tp->pred_flags = 0;
}
/* This is the 'fast' part of urgent handling. */
static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
{
struct tcp_sock *tp = tcp_sk(sk);
/* Check if we get a new urgent pointer - normally not. */
if (th->urg)
tcp_check_urg(sk,th);
/* Do we wait for any urgent data? - normally not... */
if (tp->urg_data == TCP_URG_NOTYET) {
u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
th->syn;
/* Is the urgent pointer pointing into this packet? */
if (ptr < skb->len) {
u8 tmp;
if (skb_copy_bits(skb, ptr, &tmp, 1))
BUG();
tp->urg_data = TCP_URG_VALID | tmp;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_data_ready(sk, 0);
}
}
}
static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
{
struct tcp_sock *tp = tcp_sk(sk);
int chunk = skb->len - hlen;
int err;
local_bh_enable();
if (skb->ip_summed==CHECKSUM_UNNECESSARY)
err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
else
err = skb_copy_and_csum_datagram_iovec(skb, hlen,
tp->ucopy.iov);
if (!err) {
tp->ucopy.len -= chunk;
tp->copied_seq += chunk;
tcp_rcv_space_adjust(sk);
}
local_bh_disable();
return err;
}
static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
{
int result;
if (sock_owned_by_user(sk)) {
local_bh_enable();
result = __tcp_checksum_complete(skb);
local_bh_disable();
} else {
result = __tcp_checksum_complete(skb);
}
return result;
}
static __inline__ int
tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
{
return skb->ip_summed != CHECKSUM_UNNECESSARY &&
__tcp_checksum_complete_user(sk, skb);
}
/*
* TCP receive function for the ESTABLISHED state.
*
* It is split into a fast path and a slow path. The fast path is
* disabled when:
* - A zero window was announced from us - zero window probing
* is only handled properly in the slow path.
* - Out of order segments arrived.
* - Urgent data is expected.
* - There is no buffer space left
* - Unexpected TCP flags/window values/header lengths are received
* (detected by checking the TCP header against pred_flags)
* - Data is sent in both directions. Fast path only supports pure senders
* or pure receivers (this means either the sequence number or the ack
* value must stay constant)
* - Unexpected TCP option.
*
* When these conditions are not satisfied it drops into a standard
* receive procedure patterned after RFC793 to handle all cases.
* The first three cases are guaranteed by proper pred_flags setting,
* the rest is checked inline. Fast processing is turned on in
* tcp_data_queue when everything is OK.
*/
int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
struct tcphdr *th, unsigned len)
{
struct tcp_sock *tp = tcp_sk(sk);
/*
* Header prediction.
* The code loosely follows the one in the famous
* "30 instruction TCP receive" Van Jacobson mail.
*
* Van's trick is to deposit buffers into socket queue
* on a device interrupt, to call tcp_recv function
* on the receive process context and checksum and copy
* the buffer to user space. smart...
*
* Our current scheme is not silly either but we take the
* extra cost of the net_bh soft interrupt processing...
* We do checksum and copy also but from device to kernel.
*/
tp->rx_opt.saw_tstamp = 0;
/* pred_flags is 0xS?10 << 16 + snd_wnd
* if header_predition is to be made
* 'S' will always be tp->tcp_header_len >> 2
* '?' will be 0 for the fast path, otherwise pred_flags is 0 to
* turn it off (when there are holes in the receive
* space for instance)
* PSH flag is ignored.
*/
if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
int tcp_header_len = tp->tcp_header_len;
/* Timestamp header prediction: tcp_header_len
* is automatically equal to th->doff*4 due to pred_flags
* match.
*/
/* Check timestamp */
if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
__u32 *ptr = (__u32 *)(th + 1);
/* No? Slow path! */
if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
| (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
goto slow_path;
tp->rx_opt.saw_tstamp = 1;
++ptr;
tp->rx_opt.rcv_tsval = ntohl(*ptr);
++ptr;
tp->rx_opt.rcv_tsecr = ntohl(*ptr);
/* If PAWS failed, check it more carefully in slow path */
if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
goto slow_path;
/* DO NOT update ts_recent here, if checksum fails
* and timestamp was corrupted part, it will result
* in a hung connection since we will drop all
* future packets due to the PAWS test.
*/
}
if (len <= tcp_header_len) {
/* Bulk data transfer: sender */
if (len == tcp_header_len) {
/* Predicted packet is in window by definition.
* seq == rcv_nxt and rcv_wup <= rcv_nxt.
* Hence, check seq<=rcv_wup reduces to:
*/
if (tcp_header_len ==
(sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
tp->rcv_nxt == tp->rcv_wup)
tcp_store_ts_recent(tp);
tcp_rcv_rtt_measure_ts(tp, skb);
/* We know that such packets are checksummed
* on entry.
*/
tcp_ack(sk, skb, 0);
__kfree_skb(skb);
tcp_data_snd_check(sk);
return 0;
} else { /* Header too small */
TCP_INC_STATS_BH(TCP_MIB_INERRS);
goto discard;
}
} else {
int eaten = 0;
if (tp->ucopy.task == current &&
tp->copied_seq == tp->rcv_nxt &&
len - tcp_header_len <= tp->ucopy.len &&
sock_owned_by_user(sk)) {
__set_current_state(TASK_RUNNING);
if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
/* Predicted packet is in window by definition.
* seq == rcv_nxt and rcv_wup <= rcv_nxt.
* Hence, check seq<=rcv_wup reduces to:
*/
if (tcp_header_len ==
(sizeof(struct tcphdr) +
TCPOLEN_TSTAMP_ALIGNED) &&
tp->rcv_nxt == tp->rcv_wup)
tcp_store_ts_recent(tp);
tcp_rcv_rtt_measure_ts(tp, skb);
__skb_pull(skb, tcp_header_len);
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
eaten = 1;
}
}
if (!eaten) {
if (tcp_checksum_complete_user(sk, skb))
goto csum_error;
/* Predicted packet is in window by definition.
* seq == rcv_nxt and rcv_wup <= rcv_nxt.
* Hence, check seq<=rcv_wup reduces to:
*/
if (tcp_header_len ==
(sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
tp->rcv_nxt == tp->rcv_wup)
tcp_store_ts_recent(tp);
tcp_rcv_rtt_measure_ts(tp, skb);
if ((int)skb->truesize > sk->sk_forward_alloc)
goto step5;
NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
/* Bulk data transfer: receiver */
__skb_pull(skb,tcp_header_len);
__skb_queue_tail(&sk->sk_receive_queue, skb);
sk_stream_set_owner_r(skb, sk);
tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
}
tcp_event_data_recv(sk, tp, skb);
if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
/* Well, only one small jumplet in fast path... */
tcp_ack(sk, skb, FLAG_DATA);
tcp_data_snd_check(sk);
if (!tcp_ack_scheduled(tp))
goto no_ack;
}
__tcp_ack_snd_check(sk, 0);
no_ack:
if (eaten)
__kfree_skb(skb);
else
sk->sk_data_ready(sk, 0);
return 0;
}
}
slow_path:
if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
goto csum_error;
/*
* RFC1323: H1. Apply PAWS check first.
*/
if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
tcp_paws_discard(tp, skb)) {
if (!th->rst) {
NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
tcp_send_dupack(sk, skb);
goto discard;
}
/* Resets are accepted even if PAWS failed.
ts_recent update must be made after we are sure
that the packet is in window.
*/
}
/*
* Standard slow path.
*/
if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
/* RFC793, page 37: "In all states except SYN-SENT, all reset
* (RST) segments are validated by checking their SEQ-fields."
* And page 69: "If an incoming segment is not acceptable,
* an acknowledgment should be sent in reply (unless the RST bit
* is set, if so drop the segment and return)".
*/
if (!th->rst)
tcp_send_dupack(sk, skb);
goto discard;
}
if(th->rst) {
tcp_reset(sk);
goto discard;
}
tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
TCP_INC_STATS_BH(TCP_MIB_INERRS);
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
tcp_reset(sk);
return 1;
}
step5:
if(th->ack)
tcp_ack(sk, skb, FLAG_SLOWPATH);
tcp_rcv_rtt_measure_ts(tp, skb);
/* Process urgent data. */
tcp_urg(sk, skb, th);
/* step 7: process the segment text */
tcp_data_queue(sk, skb);
tcp_data_snd_check(sk);
tcp_ack_snd_check(sk);
return 0;
csum_error:
TCP_INC_STATS_BH(TCP_MIB_INERRS);
discard:
__kfree_skb(skb);
return 0;
}
static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
struct tcphdr *th, unsigned len)
{
struct tcp_sock *tp = tcp_sk(sk);
int saved_clamp = tp->rx_opt.mss_clamp;
tcp_parse_options(skb, &tp->rx_opt, 0);
if (th->ack) {
/* rfc793:
* "If the state is SYN-SENT then
* first check the ACK bit
* If the ACK bit is set
* If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
* a reset (unless the RST bit is set, if so drop
* the segment and return)"
*
* We do not send data with SYN, so that RFC-correct
* test reduces to:
*/
if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
goto reset_and_undo;
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
!between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
tcp_time_stamp)) {
NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
goto reset_and_undo;
}
/* Now ACK is acceptable.
*
* "If the RST bit is set
* If the ACK was acceptable then signal the user "error:
* connection reset", drop the segment, enter CLOSED state,
* delete TCB, and return."
*/
if (th->rst) {
tcp_reset(sk);
goto discard;
}
/* rfc793:
* "fifth, if neither of the SYN or RST bits is set then
* drop the segment and return."
*
* See note below!
* --ANK(990513)
*/
if (!th->syn)
goto discard_and_undo;
/* rfc793:
* "If the SYN bit is on ...
* are acceptable then ...
* (our SYN has been ACKed), change the connection
* state to ESTABLISHED..."
*/
TCP_ECN_rcv_synack(tp, th);
if (tp->ecn_flags&TCP_ECN_OK)
sock_set_flag(sk, SOCK_NO_LARGESEND);
tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
tcp_ack(sk, skb, FLAG_SLOWPATH);
/* Ok.. it's good. Set up sequence numbers and
* move to established.
*/
tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
/* RFC1323: The window in SYN & SYN/ACK segments is
* never scaled.
*/
tp->snd_wnd = ntohs(th->window);
tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
if (!tp->rx_opt.wscale_ok) {
tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
tp->window_clamp = min(tp->window_clamp, 65535U);
}
if (tp->rx_opt.saw_tstamp) {
tp->rx_opt.tstamp_ok = 1;
tp->tcp_header_len =
sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
tcp_store_ts_recent(tp);
} else {
tp->tcp_header_len = sizeof(struct tcphdr);
}
if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
tp->rx_opt.sack_ok |= 2;
tcp_sync_mss(sk, tp->pmtu_cookie);
tcp_initialize_rcv_mss(sk);
/* Remember, tcp_poll() does not lock socket!
* Change state from SYN-SENT only after copied_seq
* is initialized. */
tp->copied_seq = tp->rcv_nxt;
mb();
tcp_set_state(sk, TCP_ESTABLISHED);
/* Make sure socket is routed, for correct metrics. */
tp->af_specific->rebuild_header(sk);
tcp_init_metrics(sk);
/* Prevent spurious tcp_cwnd_restart() on first data
* packet.
*/
tp->lsndtime = tcp_time_stamp;
tcp_init_buffer_space(sk);
if (sock_flag(sk, SOCK_KEEPOPEN))
tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
if (!tp->rx_opt.snd_wscale)
__tcp_fast_path_on(tp, tp->snd_wnd);
else
tp->pred_flags = 0;
if (!sock_flag(sk, SOCK_DEAD)) {
sk->sk_state_change(sk);
sk_wake_async(sk, 0, POLL_OUT);
}
if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) {
/* Save one ACK. Data will be ready after
* several ticks, if write_pending is set.
*
* It may be deleted, but with this feature tcpdumps
* look so _wonderfully_ clever, that I was not able
* to stand against the temptation 8) --ANK
*/
tcp_schedule_ack(tp);
tp->ack.lrcvtime = tcp_time_stamp;
tp->ack.ato = TCP_ATO_MIN;
tcp_incr_quickack(tp);
tcp_enter_quickack_mode(tp);
tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
discard:
__kfree_skb(skb);
return 0;
} else {
tcp_send_ack(sk);
}
return -1;
}
/* No ACK in the segment */
if (th->rst) {
/* rfc793:
* "If the RST bit is set
*
* Otherwise (no ACK) drop the segment and return."
*/
goto discard_and_undo;
}
/* PAWS check. */
if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
goto discard_and_undo;
if (th->syn) {
/* We see SYN without ACK. It is attempt of
* simultaneous connect with crossed SYNs.
* Particularly, it can be connect to self.
*/
tcp_set_state(sk, TCP_SYN_RECV);
if (tp->rx_opt.saw_tstamp) {
tp->rx_opt.tstamp_ok = 1;
tcp_store_ts_recent(tp);
tp->tcp_header_len =
sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
} else {
tp->tcp_header_len = sizeof(struct tcphdr);
}
tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
/* RFC1323: The window in SYN & SYN/ACK segments is
* never scaled.
*/
tp->snd_wnd = ntohs(th->window);
tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
tp->max_window = tp->snd_wnd;
TCP_ECN_rcv_syn(tp, th);
if (tp->ecn_flags&TCP_ECN_OK)
sock_set_flag(sk, SOCK_NO_LARGESEND);
tcp_sync_mss(sk, tp->pmtu_cookie);
tcp_initialize_rcv_mss(sk);
tcp_send_synack(sk);
#if 0
/* Note, we could accept data and URG from this segment.
* There are no obstacles to make this.
*
* However, if we ignore data in ACKless segments sometimes,
* we have no reasons to accept it sometimes.
* Also, seems the code doing it in step6 of tcp_rcv_state_process
* is not flawless. So, discard packet for sanity.
* Uncomment this return to process the data.
*/
return -1;
#else
goto discard;
#endif
}
/* "fifth, if neither of the SYN or RST bits is set then
* drop the segment and return."
*/
discard_and_undo:
tcp_clear_options(&tp->rx_opt);
tp->rx_opt.mss_clamp = saved_clamp;
goto discard;
reset_and_undo:
tcp_clear_options(&tp->rx_opt);
tp->rx_opt.mss_clamp = saved_clamp;
return 1;
}
/*
* This function implements the receiving procedure of RFC 793 for
* all states except ESTABLISHED and TIME_WAIT.
* It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
* address independent.
*/
int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
struct tcphdr *th, unsigned len)
{
struct tcp_sock *tp = tcp_sk(sk);
int queued = 0;
tp->rx_opt.saw_tstamp = 0;
switch (sk->sk_state) {
case TCP_CLOSE:
goto discard;
case TCP_LISTEN:
if(th->ack)
return 1;
if(th->rst)
goto discard;
if(th->syn) {
if(tp->af_specific->conn_request(sk, skb) < 0)
return 1;
init_westwood(sk);
init_bictcp(tp);
/* Now we have several options: In theory there is
* nothing else in the frame. KA9Q has an option to
* send data with the syn, BSD accepts data with the
* syn up to the [to be] advertised window and
* Solaris 2.1 gives you a protocol error. For now
* we just ignore it, that fits the spec precisely
* and avoids incompatibilities. It would be nice in
* future to drop through and process the data.
*
* Now that TTCP is starting to be used we ought to
* queue this data.
* But, this leaves one open to an easy denial of
* service attack, and SYN cookies can't defend
* against this problem. So, we drop the data
* in the interest of security over speed.
*/
goto discard;
}
goto discard;
case TCP_SYN_SENT:
init_westwood(sk);
init_bictcp(tp);
queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
if (queued >= 0)
return queued;
/* Do step6 onward by hand. */
tcp_urg(sk, skb, th);
__kfree_skb(skb);
tcp_data_snd_check(sk);
return 0;
}
if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
tcp_paws_discard(tp, skb)) {
if (!th->rst) {
NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
tcp_send_dupack(sk, skb);
goto discard;
}
/* Reset is accepted even if it did not pass PAWS. */
}
/* step 1: check sequence number */
if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
if (!th->rst)
tcp_send_dupack(sk, skb);
goto discard;
}
/* step 2: check RST bit */
if(th->rst) {
tcp_reset(sk);
goto discard;
}
tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
/* step 3: check security and precedence [ignored] */
/* step 4:
*
* Check for a SYN in window.
*/
if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
tcp_reset(sk);
return 1;
}
/* step 5: check the ACK field */
if (th->ack) {
int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
switch(sk->sk_state) {
case TCP_SYN_RECV:
if (acceptable) {
tp->copied_seq = tp->rcv_nxt;
mb();
tcp_set_state(sk, TCP_ESTABLISHED);
sk->sk_state_change(sk);
/* Note, that this wakeup is only for marginal
* crossed SYN case. Passively open sockets
* are not waked up, because sk->sk_sleep ==
* NULL and sk->sk_socket == NULL.
*/
if (sk->sk_socket) {
sk_wake_async(sk,0,POLL_OUT);
}
tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
tp->snd_wnd = ntohs(th->window) <<
tp->rx_opt.snd_wscale;
tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
TCP_SKB_CB(skb)->seq);
/* tcp_ack considers this ACK as duplicate
* and does not calculate rtt.
* Fix it at least with timestamps.
*/
if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
!tp->srtt)
tcp_ack_saw_tstamp(tp, 0);
if (tp->rx_opt.tstamp_ok)
tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
/* Make sure socket is routed, for
* correct metrics.
*/
tp->af_specific->rebuild_header(sk);
tcp_init_metrics(sk);
/* Prevent spurious tcp_cwnd_restart() on
* first data packet.
*/
tp->lsndtime = tcp_time_stamp;
tcp_initialize_rcv_mss(sk);
tcp_init_buffer_space(sk);
tcp_fast_path_on(tp);
} else {
return 1;
}
break;
case TCP_FIN_WAIT1:
if (tp->snd_una == tp->write_seq) {
tcp_set_state(sk, TCP_FIN_WAIT2);
sk->sk_shutdown |= SEND_SHUTDOWN;
dst_confirm(sk->sk_dst_cache);
if (!sock_flag(sk, SOCK_DEAD))
/* Wake up lingering close() */
sk->sk_state_change(sk);
else {
int tmo;
if (tp->linger2 < 0 ||
(TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
tcp_done(sk);
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
return 1;
}
tmo = tcp_fin_time(tp);
if (tmo > TCP_TIMEWAIT_LEN) {
tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
} else if (th->fin || sock_owned_by_user(sk)) {
/* Bad case. We could lose such FIN otherwise.
* It is not a big problem, but it looks confusing
* and not so rare event. We still can lose it now,
* if it spins in bh_lock_sock(), but it is really
* marginal case.
*/
tcp_reset_keepalive_timer(sk, tmo);
} else {
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
goto discard;
}
}
}
break;
case TCP_CLOSING:
if (tp->snd_una == tp->write_seq) {
tcp_time_wait(sk, TCP_TIME_WAIT, 0);
goto discard;
}
break;
case TCP_LAST_ACK:
if (tp->snd_una == tp->write_seq) {
tcp_update_metrics(sk);
tcp_done(sk);
goto discard;
}
break;
}
} else
goto discard;
/* step 6: check the URG bit */
tcp_urg(sk, skb, th);
/* step 7: process the segment text */
switch (sk->sk_state) {
case TCP_CLOSE_WAIT:
case TCP_CLOSING:
case TCP_LAST_ACK:
if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
break;
case TCP_FIN_WAIT1:
case TCP_FIN_WAIT2:
/* RFC 793 says to queue data in these states,
* RFC 1122 says we MUST send a reset.
* BSD 4.4 also does reset.
*/
if (sk->sk_shutdown & RCV_SHUTDOWN) {
if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
tcp_reset(sk);
return 1;
}
}
/* Fall through */
case TCP_ESTABLISHED:
tcp_data_queue(sk, skb);
queued = 1;
break;
}
/* tcp_data could move socket to TIME-WAIT */
if (sk->sk_state != TCP_CLOSE) {
tcp_data_snd_check(sk);
tcp_ack_snd_check(sk);
}
if (!queued) {
discard:
__kfree_skb(skb);
}
return 0;
}
EXPORT_SYMBOL(sysctl_tcp_ecn);
EXPORT_SYMBOL(sysctl_tcp_reordering);
EXPORT_SYMBOL(tcp_parse_options);
EXPORT_SYMBOL(tcp_rcv_established);
EXPORT_SYMBOL(tcp_rcv_state_process);