kernel-fxtec-pro1x/sound/soc/atmel/atmel-classd.c
Quentin Schulz 61abce1312 ASoC: atmel-classd: sync regcache when resuming
The PM functions used in this driver are the ones defined in
sounc/soc/soc-core.c.

When suspending (using snd_soc_suspend), the regcache is marked dirty
but is never synced on resume.

Sync regcache on resume of Atmel ClassD device.

Signed-off-by: Quentin Schulz <quentin.schulz@free-electrons.com>
Acked-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2017-05-17 10:50:35 +01:00

695 lines
18 KiB
C

/* Atmel ALSA SoC Audio Class D Amplifier (CLASSD) driver
*
* Copyright (C) 2015 Atmel
*
* Author: Songjun Wu <songjun.wu@atmel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or later
* as published by the Free Software Foundation.
*/
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <sound/tlv.h>
#include "atmel-classd.h"
struct atmel_classd_pdata {
bool non_overlap_enable;
int non_overlap_time;
int pwm_type;
const char *card_name;
};
struct atmel_classd {
dma_addr_t phy_base;
struct regmap *regmap;
struct clk *pclk;
struct clk *gclk;
struct clk *aclk;
int irq;
const struct atmel_classd_pdata *pdata;
};
#ifdef CONFIG_OF
static const struct of_device_id atmel_classd_of_match[] = {
{
.compatible = "atmel,sama5d2-classd",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, atmel_classd_of_match);
static struct atmel_classd_pdata *atmel_classd_dt_init(struct device *dev)
{
struct device_node *np = dev->of_node;
struct atmel_classd_pdata *pdata;
const char *pwm_type;
int ret;
if (!np) {
dev_err(dev, "device node not found\n");
return ERR_PTR(-EINVAL);
}
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return ERR_PTR(-ENOMEM);
ret = of_property_read_string(np, "atmel,pwm-type", &pwm_type);
if ((ret == 0) && (strcmp(pwm_type, "diff") == 0))
pdata->pwm_type = CLASSD_MR_PWMTYP_DIFF;
else
pdata->pwm_type = CLASSD_MR_PWMTYP_SINGLE;
ret = of_property_read_u32(np,
"atmel,non-overlap-time", &pdata->non_overlap_time);
if (ret)
pdata->non_overlap_enable = false;
else
pdata->non_overlap_enable = true;
ret = of_property_read_string(np, "atmel,model", &pdata->card_name);
if (ret)
pdata->card_name = "CLASSD";
return pdata;
}
#else
static inline struct atmel_classd_pdata *
atmel_classd_dt_init(struct device *dev)
{
return ERR_PTR(-EINVAL);
}
#endif
#define ATMEL_CLASSD_RATES (SNDRV_PCM_RATE_8000 \
| SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 \
| SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 \
| SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 \
| SNDRV_PCM_RATE_96000)
static const struct snd_pcm_hardware atmel_classd_hw = {
.info = SNDRV_PCM_INFO_MMAP
| SNDRV_PCM_INFO_MMAP_VALID
| SNDRV_PCM_INFO_INTERLEAVED
| SNDRV_PCM_INFO_RESUME
| SNDRV_PCM_INFO_PAUSE,
.formats = (SNDRV_PCM_FMTBIT_S16_LE),
.rates = ATMEL_CLASSD_RATES,
.rate_min = 8000,
.rate_max = 96000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 64 * 1024,
.period_bytes_min = 256,
.period_bytes_max = 32 * 1024,
.periods_min = 2,
.periods_max = 256,
};
#define ATMEL_CLASSD_PREALLOC_BUF_SIZE (64 * 1024)
/* cpu dai component */
static int atmel_classd_cpu_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct atmel_classd *dd = snd_soc_card_get_drvdata(rtd->card);
regmap_write(dd->regmap, CLASSD_THR, 0x0);
return clk_prepare_enable(dd->pclk);
}
static void atmel_classd_cpu_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct atmel_classd *dd = snd_soc_card_get_drvdata(rtd->card);
clk_disable_unprepare(dd->pclk);
}
static const struct snd_soc_dai_ops atmel_classd_cpu_dai_ops = {
.startup = atmel_classd_cpu_dai_startup,
.shutdown = atmel_classd_cpu_dai_shutdown,
};
static struct snd_soc_dai_driver atmel_classd_cpu_dai = {
.playback = {
.channels_min = 1,
.channels_max = 2,
.rates = ATMEL_CLASSD_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE,},
.ops = &atmel_classd_cpu_dai_ops,
};
static const struct snd_soc_component_driver atmel_classd_cpu_dai_component = {
.name = "atmel-classd",
};
/* platform */
static int
atmel_classd_platform_configure_dma(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct dma_slave_config *slave_config)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct atmel_classd *dd = snd_soc_card_get_drvdata(rtd->card);
if (params_physical_width(params) != 16) {
dev_err(rtd->platform->dev,
"only supports 16-bit audio data\n");
return -EINVAL;
}
if (params_channels(params) == 1)
slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
else
slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
slave_config->direction = DMA_MEM_TO_DEV;
slave_config->dst_addr = dd->phy_base + CLASSD_THR;
slave_config->dst_maxburst = 1;
slave_config->src_maxburst = 1;
slave_config->device_fc = false;
return 0;
}
static const struct snd_dmaengine_pcm_config
atmel_classd_dmaengine_pcm_config = {
.prepare_slave_config = atmel_classd_platform_configure_dma,
.pcm_hardware = &atmel_classd_hw,
.prealloc_buffer_size = ATMEL_CLASSD_PREALLOC_BUF_SIZE,
};
/* codec */
static const char * const mono_mode_text[] = {
"mix", "sat", "left", "right"
};
static SOC_ENUM_SINGLE_DECL(classd_mono_mode_enum,
CLASSD_INTPMR, CLASSD_INTPMR_MONO_MODE_SHIFT,
mono_mode_text);
static const char * const eqcfg_text[] = {
"Treble-12dB", "Treble-6dB",
"Medium-8dB", "Medium-3dB",
"Bass-12dB", "Bass-6dB",
"0 dB",
"Bass+6dB", "Bass+12dB",
"Medium+3dB", "Medium+8dB",
"Treble+6dB", "Treble+12dB",
};
static const unsigned int eqcfg_value[] = {
CLASSD_INTPMR_EQCFG_T_CUT_12, CLASSD_INTPMR_EQCFG_T_CUT_6,
CLASSD_INTPMR_EQCFG_M_CUT_8, CLASSD_INTPMR_EQCFG_M_CUT_3,
CLASSD_INTPMR_EQCFG_B_CUT_12, CLASSD_INTPMR_EQCFG_B_CUT_6,
CLASSD_INTPMR_EQCFG_FLAT,
CLASSD_INTPMR_EQCFG_B_BOOST_6, CLASSD_INTPMR_EQCFG_B_BOOST_12,
CLASSD_INTPMR_EQCFG_M_BOOST_3, CLASSD_INTPMR_EQCFG_M_BOOST_8,
CLASSD_INTPMR_EQCFG_T_BOOST_6, CLASSD_INTPMR_EQCFG_T_BOOST_12,
};
static SOC_VALUE_ENUM_SINGLE_DECL(classd_eqcfg_enum,
CLASSD_INTPMR, CLASSD_INTPMR_EQCFG_SHIFT, 0xf,
eqcfg_text, eqcfg_value);
static const DECLARE_TLV_DB_SCALE(classd_digital_tlv, -7800, 100, 1);
static const struct snd_kcontrol_new atmel_classd_snd_controls[] = {
SOC_DOUBLE_TLV("Playback Volume", CLASSD_INTPMR,
CLASSD_INTPMR_ATTL_SHIFT, CLASSD_INTPMR_ATTR_SHIFT,
78, 1, classd_digital_tlv),
SOC_SINGLE("Deemphasis Switch", CLASSD_INTPMR,
CLASSD_INTPMR_DEEMP_SHIFT, 1, 0),
SOC_SINGLE("Mono Switch", CLASSD_INTPMR, CLASSD_INTPMR_MONO_SHIFT, 1, 0),
SOC_SINGLE("Swap Switch", CLASSD_INTPMR, CLASSD_INTPMR_SWAP_SHIFT, 1, 0),
SOC_ENUM("Mono Mode", classd_mono_mode_enum),
SOC_ENUM("EQ", classd_eqcfg_enum),
};
static const char * const pwm_type[] = {
"Single ended", "Differential"
};
static int atmel_classd_codec_probe(struct snd_soc_codec *codec)
{
struct snd_soc_card *card = snd_soc_codec_get_drvdata(codec);
struct atmel_classd *dd = snd_soc_card_get_drvdata(card);
const struct atmel_classd_pdata *pdata = dd->pdata;
u32 mask, val;
mask = CLASSD_MR_PWMTYP_MASK;
val = pdata->pwm_type << CLASSD_MR_PWMTYP_SHIFT;
mask |= CLASSD_MR_NON_OVERLAP_MASK;
if (pdata->non_overlap_enable) {
val |= (CLASSD_MR_NON_OVERLAP_EN
<< CLASSD_MR_NON_OVERLAP_SHIFT);
mask |= CLASSD_MR_NOVR_VAL_MASK;
switch (pdata->non_overlap_time) {
case 5:
val |= (CLASSD_MR_NOVR_VAL_5NS
<< CLASSD_MR_NOVR_VAL_SHIFT);
break;
case 10:
val |= (CLASSD_MR_NOVR_VAL_10NS
<< CLASSD_MR_NOVR_VAL_SHIFT);
break;
case 15:
val |= (CLASSD_MR_NOVR_VAL_15NS
<< CLASSD_MR_NOVR_VAL_SHIFT);
break;
case 20:
val |= (CLASSD_MR_NOVR_VAL_20NS
<< CLASSD_MR_NOVR_VAL_SHIFT);
break;
default:
val |= (CLASSD_MR_NOVR_VAL_10NS
<< CLASSD_MR_NOVR_VAL_SHIFT);
dev_warn(codec->dev,
"non-overlapping value %d is invalid, the default value 10 is specified\n",
pdata->non_overlap_time);
break;
}
}
snd_soc_update_bits(codec, CLASSD_MR, mask, val);
dev_info(codec->dev,
"PWM modulation type is %s, non-overlapping is %s\n",
pwm_type[pdata->pwm_type],
pdata->non_overlap_enable?"enabled":"disabled");
return 0;
}
static int atmel_classd_codec_resume(struct snd_soc_codec *codec)
{
struct snd_soc_card *card = snd_soc_codec_get_drvdata(codec);
struct atmel_classd *dd = snd_soc_card_get_drvdata(card);
return regcache_sync(dd->regmap);
}
static struct regmap *atmel_classd_codec_get_remap(struct device *dev)
{
return dev_get_regmap(dev, NULL);
}
static struct snd_soc_codec_driver soc_codec_dev_classd = {
.probe = atmel_classd_codec_probe,
.resume = atmel_classd_codec_resume,
.get_regmap = atmel_classd_codec_get_remap,
.component_driver = {
.controls = atmel_classd_snd_controls,
.num_controls = ARRAY_SIZE(atmel_classd_snd_controls),
},
};
/* codec dai component */
static int atmel_classd_codec_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *codec_dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct atmel_classd *dd = snd_soc_card_get_drvdata(rtd->card);
int ret;
ret = clk_prepare_enable(dd->aclk);
if (ret)
return ret;
return clk_prepare_enable(dd->gclk);
}
static int atmel_classd_codec_dai_digital_mute(struct snd_soc_dai *codec_dai,
int mute)
{
struct snd_soc_codec *codec = codec_dai->codec;
u32 mask, val;
mask = CLASSD_MR_LMUTE_MASK | CLASSD_MR_RMUTE_MASK;
if (mute)
val = mask;
else
val = 0;
snd_soc_update_bits(codec, CLASSD_MR, mask, val);
return 0;
}
#define CLASSD_ACLK_RATE_11M2896_MPY_8 (112896 * 100 * 8)
#define CLASSD_ACLK_RATE_12M288_MPY_8 (12288 * 1000 * 8)
static struct {
int rate;
int sample_rate;
int dsp_clk;
unsigned long aclk_rate;
} const sample_rates[] = {
{ 8000, CLASSD_INTPMR_FRAME_8K,
CLASSD_INTPMR_DSP_CLK_FREQ_12M288, CLASSD_ACLK_RATE_12M288_MPY_8 },
{ 16000, CLASSD_INTPMR_FRAME_16K,
CLASSD_INTPMR_DSP_CLK_FREQ_12M288, CLASSD_ACLK_RATE_12M288_MPY_8 },
{ 32000, CLASSD_INTPMR_FRAME_32K,
CLASSD_INTPMR_DSP_CLK_FREQ_12M288, CLASSD_ACLK_RATE_12M288_MPY_8 },
{ 48000, CLASSD_INTPMR_FRAME_48K,
CLASSD_INTPMR_DSP_CLK_FREQ_12M288, CLASSD_ACLK_RATE_12M288_MPY_8 },
{ 96000, CLASSD_INTPMR_FRAME_96K,
CLASSD_INTPMR_DSP_CLK_FREQ_12M288, CLASSD_ACLK_RATE_12M288_MPY_8 },
{ 22050, CLASSD_INTPMR_FRAME_22K,
CLASSD_INTPMR_DSP_CLK_FREQ_11M2896, CLASSD_ACLK_RATE_11M2896_MPY_8 },
{ 44100, CLASSD_INTPMR_FRAME_44K,
CLASSD_INTPMR_DSP_CLK_FREQ_11M2896, CLASSD_ACLK_RATE_11M2896_MPY_8 },
{ 88200, CLASSD_INTPMR_FRAME_88K,
CLASSD_INTPMR_DSP_CLK_FREQ_11M2896, CLASSD_ACLK_RATE_11M2896_MPY_8 },
};
static int
atmel_classd_codec_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *codec_dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct atmel_classd *dd = snd_soc_card_get_drvdata(rtd->card);
struct snd_soc_codec *codec = codec_dai->codec;
int fs;
int i, best, best_val, cur_val, ret;
u32 mask, val;
fs = params_rate(params);
best = 0;
best_val = abs(fs - sample_rates[0].rate);
for (i = 1; i < ARRAY_SIZE(sample_rates); i++) {
/* Closest match */
cur_val = abs(fs - sample_rates[i].rate);
if (cur_val < best_val) {
best = i;
best_val = cur_val;
}
}
dev_dbg(codec->dev,
"Selected SAMPLE_RATE of %dHz, ACLK_RATE of %ldHz\n",
sample_rates[best].rate, sample_rates[best].aclk_rate);
clk_disable_unprepare(dd->gclk);
clk_disable_unprepare(dd->aclk);
ret = clk_set_rate(dd->aclk, sample_rates[best].aclk_rate);
if (ret)
return ret;
mask = CLASSD_INTPMR_DSP_CLK_FREQ_MASK | CLASSD_INTPMR_FRAME_MASK;
val = (sample_rates[best].dsp_clk << CLASSD_INTPMR_DSP_CLK_FREQ_SHIFT)
| (sample_rates[best].sample_rate << CLASSD_INTPMR_FRAME_SHIFT);
snd_soc_update_bits(codec, CLASSD_INTPMR, mask, val);
ret = clk_prepare_enable(dd->aclk);
if (ret)
return ret;
return clk_prepare_enable(dd->gclk);
}
static void
atmel_classd_codec_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *codec_dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct atmel_classd *dd = snd_soc_card_get_drvdata(rtd->card);
clk_disable_unprepare(dd->gclk);
clk_disable_unprepare(dd->aclk);
}
static int atmel_classd_codec_dai_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *codec_dai)
{
struct snd_soc_codec *codec = codec_dai->codec;
snd_soc_update_bits(codec, CLASSD_MR,
CLASSD_MR_LEN_MASK | CLASSD_MR_REN_MASK,
(CLASSD_MR_LEN_DIS << CLASSD_MR_LEN_SHIFT)
|(CLASSD_MR_REN_DIS << CLASSD_MR_REN_SHIFT));
return 0;
}
static int atmel_classd_codec_dai_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *codec_dai)
{
struct snd_soc_codec *codec = codec_dai->codec;
u32 mask, val;
mask = CLASSD_MR_LEN_MASK | CLASSD_MR_REN_MASK;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
val = mask;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
val = (CLASSD_MR_LEN_DIS << CLASSD_MR_LEN_SHIFT)
| (CLASSD_MR_REN_DIS << CLASSD_MR_REN_SHIFT);
break;
default:
return -EINVAL;
}
snd_soc_update_bits(codec, CLASSD_MR, mask, val);
return 0;
}
static const struct snd_soc_dai_ops atmel_classd_codec_dai_ops = {
.digital_mute = atmel_classd_codec_dai_digital_mute,
.startup = atmel_classd_codec_dai_startup,
.shutdown = atmel_classd_codec_dai_shutdown,
.hw_params = atmel_classd_codec_dai_hw_params,
.prepare = atmel_classd_codec_dai_prepare,
.trigger = atmel_classd_codec_dai_trigger,
};
#define ATMEL_CLASSD_CODEC_DAI_NAME "atmel-classd-hifi"
static struct snd_soc_dai_driver atmel_classd_codec_dai = {
.name = ATMEL_CLASSD_CODEC_DAI_NAME,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = ATMEL_CLASSD_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &atmel_classd_codec_dai_ops,
};
/* ASoC sound card */
static int atmel_classd_asoc_card_init(struct device *dev,
struct snd_soc_card *card)
{
struct snd_soc_dai_link *dai_link;
struct atmel_classd *dd = snd_soc_card_get_drvdata(card);
dai_link = devm_kzalloc(dev, sizeof(*dai_link), GFP_KERNEL);
if (!dai_link)
return -ENOMEM;
dai_link->name = "CLASSD";
dai_link->stream_name = "CLASSD PCM";
dai_link->codec_dai_name = ATMEL_CLASSD_CODEC_DAI_NAME;
dai_link->cpu_dai_name = dev_name(dev);
dai_link->codec_name = dev_name(dev);
dai_link->platform_name = dev_name(dev);
card->dai_link = dai_link;
card->num_links = 1;
card->name = dd->pdata->card_name;
card->dev = dev;
return 0;
};
/* regmap configuration */
static const struct reg_default atmel_classd_reg_defaults[] = {
{ CLASSD_INTPMR, 0x00301212 },
};
#define ATMEL_CLASSD_REG_MAX 0xE4
static const struct regmap_config atmel_classd_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = ATMEL_CLASSD_REG_MAX,
.cache_type = REGCACHE_FLAT,
.reg_defaults = atmel_classd_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(atmel_classd_reg_defaults),
};
static int atmel_classd_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct atmel_classd *dd;
struct resource *res;
void __iomem *io_base;
const struct atmel_classd_pdata *pdata;
struct snd_soc_card *card;
int ret;
pdata = dev_get_platdata(dev);
if (!pdata) {
pdata = atmel_classd_dt_init(dev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
}
dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL);
if (!dd)
return -ENOMEM;
dd->pdata = pdata;
dd->irq = platform_get_irq(pdev, 0);
if (dd->irq < 0) {
ret = dd->irq;
dev_err(dev, "failed to could not get irq: %d\n", ret);
return ret;
}
dd->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(dd->pclk)) {
ret = PTR_ERR(dd->pclk);
dev_err(dev, "failed to get peripheral clock: %d\n", ret);
return ret;
}
dd->gclk = devm_clk_get(dev, "gclk");
if (IS_ERR(dd->gclk)) {
ret = PTR_ERR(dd->gclk);
dev_err(dev, "failed to get GCK clock: %d\n", ret);
return ret;
}
dd->aclk = devm_clk_get(dev, "aclk");
if (IS_ERR(dd->aclk)) {
ret = PTR_ERR(dd->aclk);
dev_err(dev, "failed to get audio clock: %d\n", ret);
return ret;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
io_base = devm_ioremap_resource(dev, res);
if (IS_ERR(io_base)) {
ret = PTR_ERR(io_base);
dev_err(dev, "failed to remap register memory: %d\n", ret);
return ret;
}
dd->phy_base = res->start;
dd->regmap = devm_regmap_init_mmio(dev, io_base,
&atmel_classd_regmap_config);
if (IS_ERR(dd->regmap)) {
ret = PTR_ERR(dd->regmap);
dev_err(dev, "failed to init register map: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(dev,
&atmel_classd_cpu_dai_component,
&atmel_classd_cpu_dai, 1);
if (ret) {
dev_err(dev, "could not register CPU DAI: %d\n", ret);
return ret;
}
ret = devm_snd_dmaengine_pcm_register(dev,
&atmel_classd_dmaengine_pcm_config,
0);
if (ret) {
dev_err(dev, "could not register platform: %d\n", ret);
return ret;
}
ret = snd_soc_register_codec(dev, &soc_codec_dev_classd,
&atmel_classd_codec_dai, 1);
if (ret) {
dev_err(dev, "could not register codec: %d\n", ret);
return ret;
}
/* register sound card */
card = devm_kzalloc(dev, sizeof(*card), GFP_KERNEL);
if (!card) {
ret = -ENOMEM;
goto unregister_codec;
}
snd_soc_card_set_drvdata(card, dd);
platform_set_drvdata(pdev, card);
ret = atmel_classd_asoc_card_init(dev, card);
if (ret) {
dev_err(dev, "failed to init sound card\n");
goto unregister_codec;
}
ret = devm_snd_soc_register_card(dev, card);
if (ret) {
dev_err(dev, "failed to register sound card: %d\n", ret);
goto unregister_codec;
}
return 0;
unregister_codec:
snd_soc_unregister_codec(dev);
return ret;
}
static int atmel_classd_remove(struct platform_device *pdev)
{
snd_soc_unregister_codec(&pdev->dev);
return 0;
}
static struct platform_driver atmel_classd_driver = {
.driver = {
.name = "atmel-classd",
.of_match_table = of_match_ptr(atmel_classd_of_match),
.pm = &snd_soc_pm_ops,
},
.probe = atmel_classd_probe,
.remove = atmel_classd_remove,
};
module_platform_driver(atmel_classd_driver);
MODULE_DESCRIPTION("Atmel ClassD driver under ALSA SoC architecture");
MODULE_AUTHOR("Songjun Wu <songjun.wu@atmel.com>");
MODULE_LICENSE("GPL");