kernel-fxtec-pro1x/arch/ia64/sn/kernel/irq.c
Prarit Bhargava 53493dcf6e [IA64] Cleanup of arch/ia64/sn and include/asm-ia64/sn
Replace uintX_t declarations with uX declarations.
Replace intX_t declarations with sX declarations.

Signed-off-by: Prarit Bhargava <prarit@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-01-16 19:54:40 -08:00

438 lines
11 KiB
C

/*
* Platform dependent support for SGI SN
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
*/
#include <linux/irq.h>
#include <linux/spinlock.h>
#include <asm/sn/addrs.h>
#include <asm/sn/arch.h>
#include <asm/sn/intr.h>
#include <asm/sn/pcibr_provider.h>
#include <asm/sn/pcibus_provider_defs.h>
#include <asm/sn/pcidev.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/sn_sal.h>
static void force_interrupt(int irq);
static void register_intr_pda(struct sn_irq_info *sn_irq_info);
static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
int sn_force_interrupt_flag = 1;
extern int sn_ioif_inited;
static struct list_head **sn_irq_lh;
static spinlock_t sn_irq_info_lock = SPIN_LOCK_UNLOCKED; /* non-IRQ lock */
static inline u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
u64 sn_irq_info,
int req_irq, nasid_t req_nasid,
int req_slice)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
(u64) SAL_INTR_ALLOC, (u64) local_nasid,
(u64) local_widget, (u64) sn_irq_info, (u64) req_irq,
(u64) req_nasid, (u64) req_slice);
return ret_stuff.status;
}
static inline void sn_intr_free(nasid_t local_nasid, int local_widget,
struct sn_irq_info *sn_irq_info)
{
struct ia64_sal_retval ret_stuff;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
(u64) SAL_INTR_FREE, (u64) local_nasid,
(u64) local_widget, (u64) sn_irq_info->irq_irq,
(u64) sn_irq_info->irq_cookie, 0, 0);
}
static unsigned int sn_startup_irq(unsigned int irq)
{
return 0;
}
static void sn_shutdown_irq(unsigned int irq)
{
}
static void sn_disable_irq(unsigned int irq)
{
}
static void sn_enable_irq(unsigned int irq)
{
}
static void sn_ack_irq(unsigned int irq)
{
u64 event_occurred, mask = 0;
irq = irq & 0xff;
event_occurred =
HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
mask = event_occurred & SH_ALL_INT_MASK;
HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
mask);
__set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
move_irq(irq);
}
static void sn_end_irq(unsigned int irq)
{
int ivec;
u64 event_occurred;
ivec = irq & 0xff;
if (ivec == SGI_UART_VECTOR) {
event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
/* If the UART bit is set here, we may have received an
* interrupt from the UART that the driver missed. To
* make sure, we IPI ourselves to force us to look again.
*/
if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
IA64_IPI_DM_INT, 0);
}
}
__clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
if (sn_force_interrupt_flag)
force_interrupt(irq);
}
static void sn_irq_info_free(struct rcu_head *head);
static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
{
struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
int cpuid, cpuphys;
cpuid = first_cpu(mask);
cpuphys = cpu_physical_id(cpuid);
list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
sn_irq_lh[irq], list) {
u64 bridge;
int local_widget, status;
nasid_t local_nasid;
struct sn_irq_info *new_irq_info;
struct sn_pcibus_provider *pci_provider;
new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
if (new_irq_info == NULL)
break;
memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
bridge = (u64) new_irq_info->irq_bridge;
if (!bridge) {
kfree(new_irq_info);
break; /* irq is not a device interrupt */
}
local_nasid = NASID_GET(bridge);
if (local_nasid & 1)
local_widget = TIO_SWIN_WIDGETNUM(bridge);
else
local_widget = SWIN_WIDGETNUM(bridge);
/* Free the old PROM new_irq_info structure */
sn_intr_free(local_nasid, local_widget, new_irq_info);
/* Update kernels new_irq_info with new target info */
unregister_intr_pda(new_irq_info);
/* allocate a new PROM new_irq_info struct */
status = sn_intr_alloc(local_nasid, local_widget,
__pa(new_irq_info), irq,
cpuid_to_nasid(cpuid),
cpuid_to_slice(cpuid));
/* SAL call failed */
if (status) {
kfree(new_irq_info);
break;
}
new_irq_info->irq_cpuid = cpuid;
register_intr_pda(new_irq_info);
pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
if (pci_provider && pci_provider->target_interrupt)
(pci_provider->target_interrupt)(new_irq_info);
spin_lock(&sn_irq_info_lock);
list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
spin_unlock(&sn_irq_info_lock);
call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
#ifdef CONFIG_SMP
set_irq_affinity_info((irq & 0xff), cpuphys, 0);
#endif
}
}
struct hw_interrupt_type irq_type_sn = {
.typename = "SN hub",
.startup = sn_startup_irq,
.shutdown = sn_shutdown_irq,
.enable = sn_enable_irq,
.disable = sn_disable_irq,
.ack = sn_ack_irq,
.end = sn_end_irq,
.set_affinity = sn_set_affinity_irq
};
unsigned int sn_local_vector_to_irq(u8 vector)
{
return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
}
void sn_irq_init(void)
{
int i;
irq_desc_t *base_desc = irq_desc;
for (i = 0; i < NR_IRQS; i++) {
if (base_desc[i].handler == &no_irq_type) {
base_desc[i].handler = &irq_type_sn;
}
}
}
static void register_intr_pda(struct sn_irq_info *sn_irq_info)
{
int irq = sn_irq_info->irq_irq;
int cpu = sn_irq_info->irq_cpuid;
if (pdacpu(cpu)->sn_last_irq < irq) {
pdacpu(cpu)->sn_last_irq = irq;
}
if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq) {
pdacpu(cpu)->sn_first_irq = irq;
}
}
static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
{
int irq = sn_irq_info->irq_irq;
int cpu = sn_irq_info->irq_cpuid;
struct sn_irq_info *tmp_irq_info;
int i, foundmatch;
rcu_read_lock();
if (pdacpu(cpu)->sn_last_irq == irq) {
foundmatch = 0;
for (i = pdacpu(cpu)->sn_last_irq - 1;
i && !foundmatch; i--) {
list_for_each_entry_rcu(tmp_irq_info,
sn_irq_lh[i],
list) {
if (tmp_irq_info->irq_cpuid == cpu) {
foundmatch = 1;
break;
}
}
}
pdacpu(cpu)->sn_last_irq = i;
}
if (pdacpu(cpu)->sn_first_irq == irq) {
foundmatch = 0;
for (i = pdacpu(cpu)->sn_first_irq + 1;
i < NR_IRQS && !foundmatch; i++) {
list_for_each_entry_rcu(tmp_irq_info,
sn_irq_lh[i],
list) {
if (tmp_irq_info->irq_cpuid == cpu) {
foundmatch = 1;
break;
}
}
}
pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
}
rcu_read_unlock();
}
static void sn_irq_info_free(struct rcu_head *head)
{
struct sn_irq_info *sn_irq_info;
sn_irq_info = container_of(head, struct sn_irq_info, rcu);
kfree(sn_irq_info);
}
void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
{
nasid_t nasid = sn_irq_info->irq_nasid;
int slice = sn_irq_info->irq_slice;
int cpu = nasid_slice_to_cpuid(nasid, slice);
pci_dev_get(pci_dev);
sn_irq_info->irq_cpuid = cpu;
sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
/* link it into the sn_irq[irq] list */
spin_lock(&sn_irq_info_lock);
list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
spin_unlock(&sn_irq_info_lock);
(void)register_intr_pda(sn_irq_info);
}
void sn_irq_unfixup(struct pci_dev *pci_dev)
{
struct sn_irq_info *sn_irq_info;
/* Only cleanup IRQ stuff if this device has a host bus context */
if (!SN_PCIDEV_BUSSOFT(pci_dev))
return;
sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
if (!sn_irq_info || !sn_irq_info->irq_irq) {
kfree(sn_irq_info);
return;
}
unregister_intr_pda(sn_irq_info);
spin_lock(&sn_irq_info_lock);
list_del_rcu(&sn_irq_info->list);
spin_unlock(&sn_irq_info_lock);
call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
pci_dev_put(pci_dev);
}
static inline void
sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
{
struct sn_pcibus_provider *pci_provider;
pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
if (pci_provider && pci_provider->force_interrupt)
(*pci_provider->force_interrupt)(sn_irq_info);
}
static void force_interrupt(int irq)
{
struct sn_irq_info *sn_irq_info;
if (!sn_ioif_inited)
return;
rcu_read_lock();
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
sn_call_force_intr_provider(sn_irq_info);
rcu_read_unlock();
}
/*
* Check for lost interrupts. If the PIC int_status reg. says that
* an interrupt has been sent, but not handled, and the interrupt
* is not pending in either the cpu irr regs or in the soft irr regs,
* and the interrupt is not in service, then the interrupt may have
* been lost. Force an interrupt on that pin. It is possible that
* the interrupt is in flight, so we may generate a spurious interrupt,
* but we should never miss a real lost interrupt.
*/
static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
{
u64 regval;
int irr_reg_num;
int irr_bit;
u64 irr_reg;
struct pcidev_info *pcidev_info;
struct pcibus_info *pcibus_info;
/*
* Bridge types attached to TIO (anything but PIC) do not need this WAR
* since they do not target Shub II interrupt registers. If that
* ever changes, this check needs to accomodate.
*/
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
return;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (!pcidev_info)
return;
pcibus_info =
(struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
pdi_pcibus_info;
regval = pcireg_intr_status_get(pcibus_info);
irr_reg_num = irq_to_vector(irq) / 64;
irr_bit = irq_to_vector(irq) % 64;
switch (irr_reg_num) {
case 0:
irr_reg = ia64_getreg(_IA64_REG_CR_IRR0);
break;
case 1:
irr_reg = ia64_getreg(_IA64_REG_CR_IRR1);
break;
case 2:
irr_reg = ia64_getreg(_IA64_REG_CR_IRR2);
break;
case 3:
irr_reg = ia64_getreg(_IA64_REG_CR_IRR3);
break;
}
if (!test_bit(irr_bit, &irr_reg)) {
if (!test_bit(irq, pda->sn_in_service_ivecs)) {
regval &= 0xff;
if (sn_irq_info->irq_int_bit & regval &
sn_irq_info->irq_last_intr) {
regval &= ~(sn_irq_info->irq_int_bit & regval);
sn_call_force_intr_provider(sn_irq_info);
}
}
}
sn_irq_info->irq_last_intr = regval;
}
void sn_lb_int_war_check(void)
{
struct sn_irq_info *sn_irq_info;
int i;
if (!sn_ioif_inited || pda->sn_first_irq == 0)
return;
rcu_read_lock();
for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
sn_check_intr(i, sn_irq_info);
}
}
rcu_read_unlock();
}
void sn_irq_lh_init(void)
{
int i;
sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
if (!sn_irq_lh)
panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
for (i = 0; i < NR_IRQS; i++) {
sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
if (!sn_irq_lh[i])
panic("SN PCI INIT: Failed IRQ memory allocation\n");
INIT_LIST_HEAD(sn_irq_lh[i]);
}
}