kernel-fxtec-pro1x/fs/jffs2/malloc.c
David Woodhouse c00c310eac [JFFS2] Tidy up licensing/copyright boilerplate.
In particular, remove the bit in the LICENCE file about contacting
Red Hat for alternative arrangements. Their errant IS department broke
that arrangement a long time ago -- the policy of collecting copyright
assignments from contributors came to an end when the plug was pulled on
the servers hosting the project, without notice or reason.

We do still dual-license it for use with eCos, with the GPL+exception
licence approved by the FSF as being GPL-compatible. It's just that nobody
has the right to license it differently.

Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2007-04-25 14:16:47 +01:00

320 lines
7.6 KiB
C

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright © 2001-2007 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/jffs2.h>
#include "nodelist.h"
/* These are initialised to NULL in the kernel startup code.
If you're porting to other operating systems, beware */
static struct kmem_cache *full_dnode_slab;
static struct kmem_cache *raw_dirent_slab;
static struct kmem_cache *raw_inode_slab;
static struct kmem_cache *tmp_dnode_info_slab;
static struct kmem_cache *raw_node_ref_slab;
static struct kmem_cache *node_frag_slab;
static struct kmem_cache *inode_cache_slab;
#ifdef CONFIG_JFFS2_FS_XATTR
static struct kmem_cache *xattr_datum_cache;
static struct kmem_cache *xattr_ref_cache;
#endif
int __init jffs2_create_slab_caches(void)
{
full_dnode_slab = kmem_cache_create("jffs2_full_dnode",
sizeof(struct jffs2_full_dnode),
0, 0, NULL, NULL);
if (!full_dnode_slab)
goto err;
raw_dirent_slab = kmem_cache_create("jffs2_raw_dirent",
sizeof(struct jffs2_raw_dirent),
0, 0, NULL, NULL);
if (!raw_dirent_slab)
goto err;
raw_inode_slab = kmem_cache_create("jffs2_raw_inode",
sizeof(struct jffs2_raw_inode),
0, 0, NULL, NULL);
if (!raw_inode_slab)
goto err;
tmp_dnode_info_slab = kmem_cache_create("jffs2_tmp_dnode",
sizeof(struct jffs2_tmp_dnode_info),
0, 0, NULL, NULL);
if (!tmp_dnode_info_slab)
goto err;
raw_node_ref_slab = kmem_cache_create("jffs2_refblock",
sizeof(struct jffs2_raw_node_ref) * (REFS_PER_BLOCK + 1),
0, 0, NULL, NULL);
if (!raw_node_ref_slab)
goto err;
node_frag_slab = kmem_cache_create("jffs2_node_frag",
sizeof(struct jffs2_node_frag),
0, 0, NULL, NULL);
if (!node_frag_slab)
goto err;
inode_cache_slab = kmem_cache_create("jffs2_inode_cache",
sizeof(struct jffs2_inode_cache),
0, 0, NULL, NULL);
if (!inode_cache_slab)
goto err;
#ifdef CONFIG_JFFS2_FS_XATTR
xattr_datum_cache = kmem_cache_create("jffs2_xattr_datum",
sizeof(struct jffs2_xattr_datum),
0, 0, NULL, NULL);
if (!xattr_datum_cache)
goto err;
xattr_ref_cache = kmem_cache_create("jffs2_xattr_ref",
sizeof(struct jffs2_xattr_ref),
0, 0, NULL, NULL);
if (!xattr_ref_cache)
goto err;
#endif
return 0;
err:
jffs2_destroy_slab_caches();
return -ENOMEM;
}
void jffs2_destroy_slab_caches(void)
{
if(full_dnode_slab)
kmem_cache_destroy(full_dnode_slab);
if(raw_dirent_slab)
kmem_cache_destroy(raw_dirent_slab);
if(raw_inode_slab)
kmem_cache_destroy(raw_inode_slab);
if(tmp_dnode_info_slab)
kmem_cache_destroy(tmp_dnode_info_slab);
if(raw_node_ref_slab)
kmem_cache_destroy(raw_node_ref_slab);
if(node_frag_slab)
kmem_cache_destroy(node_frag_slab);
if(inode_cache_slab)
kmem_cache_destroy(inode_cache_slab);
#ifdef CONFIG_JFFS2_FS_XATTR
if (xattr_datum_cache)
kmem_cache_destroy(xattr_datum_cache);
if (xattr_ref_cache)
kmem_cache_destroy(xattr_ref_cache);
#endif
}
struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize)
{
struct jffs2_full_dirent *ret;
ret = kmalloc(sizeof(struct jffs2_full_dirent) + namesize, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_full_dirent(struct jffs2_full_dirent *x)
{
dbg_memalloc("%p\n", x);
kfree(x);
}
struct jffs2_full_dnode *jffs2_alloc_full_dnode(void)
{
struct jffs2_full_dnode *ret;
ret = kmem_cache_alloc(full_dnode_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_full_dnode(struct jffs2_full_dnode *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(full_dnode_slab, x);
}
struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void)
{
struct jffs2_raw_dirent *ret;
ret = kmem_cache_alloc(raw_dirent_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_raw_dirent(struct jffs2_raw_dirent *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(raw_dirent_slab, x);
}
struct jffs2_raw_inode *jffs2_alloc_raw_inode(void)
{
struct jffs2_raw_inode *ret;
ret = kmem_cache_alloc(raw_inode_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_raw_inode(struct jffs2_raw_inode *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(raw_inode_slab, x);
}
struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void)
{
struct jffs2_tmp_dnode_info *ret;
ret = kmem_cache_alloc(tmp_dnode_info_slab, GFP_KERNEL);
dbg_memalloc("%p\n",
ret);
return ret;
}
void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(tmp_dnode_info_slab, x);
}
static struct jffs2_raw_node_ref *jffs2_alloc_refblock(void)
{
struct jffs2_raw_node_ref *ret;
ret = kmem_cache_alloc(raw_node_ref_slab, GFP_KERNEL);
if (ret) {
int i = 0;
for (i=0; i < REFS_PER_BLOCK; i++) {
ret[i].flash_offset = REF_EMPTY_NODE;
ret[i].next_in_ino = NULL;
}
ret[i].flash_offset = REF_LINK_NODE;
ret[i].next_in_ino = NULL;
}
return ret;
}
int jffs2_prealloc_raw_node_refs(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb, int nr)
{
struct jffs2_raw_node_ref **p, *ref;
int i = nr;
dbg_memalloc("%d\n", nr);
p = &jeb->last_node;
ref = *p;
dbg_memalloc("Reserving %d refs for block @0x%08x\n", nr, jeb->offset);
/* If jeb->last_node is really a valid node then skip over it */
if (ref && ref->flash_offset != REF_EMPTY_NODE)
ref++;
while (i) {
if (!ref) {
dbg_memalloc("Allocating new refblock linked from %p\n", p);
ref = *p = jffs2_alloc_refblock();
if (!ref)
return -ENOMEM;
}
if (ref->flash_offset == REF_LINK_NODE) {
p = &ref->next_in_ino;
ref = *p;
continue;
}
i--;
ref++;
}
jeb->allocated_refs = nr;
dbg_memalloc("Reserved %d refs for block @0x%08x, last_node is %p (%08x,%p)\n",
nr, jeb->offset, jeb->last_node, jeb->last_node->flash_offset,
jeb->last_node->next_in_ino);
return 0;
}
void jffs2_free_refblock(struct jffs2_raw_node_ref *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(raw_node_ref_slab, x);
}
struct jffs2_node_frag *jffs2_alloc_node_frag(void)
{
struct jffs2_node_frag *ret;
ret = kmem_cache_alloc(node_frag_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_node_frag(struct jffs2_node_frag *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(node_frag_slab, x);
}
struct jffs2_inode_cache *jffs2_alloc_inode_cache(void)
{
struct jffs2_inode_cache *ret;
ret = kmem_cache_alloc(inode_cache_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_inode_cache(struct jffs2_inode_cache *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(inode_cache_slab, x);
}
#ifdef CONFIG_JFFS2_FS_XATTR
struct jffs2_xattr_datum *jffs2_alloc_xattr_datum(void)
{
struct jffs2_xattr_datum *xd;
xd = kmem_cache_alloc(xattr_datum_cache, GFP_KERNEL);
dbg_memalloc("%p\n", xd);
memset(xd, 0, sizeof(struct jffs2_xattr_datum));
xd->class = RAWNODE_CLASS_XATTR_DATUM;
xd->node = (void *)xd;
INIT_LIST_HEAD(&xd->xindex);
return xd;
}
void jffs2_free_xattr_datum(struct jffs2_xattr_datum *xd)
{
dbg_memalloc("%p\n", xd);
kmem_cache_free(xattr_datum_cache, xd);
}
struct jffs2_xattr_ref *jffs2_alloc_xattr_ref(void)
{
struct jffs2_xattr_ref *ref;
ref = kmem_cache_alloc(xattr_ref_cache, GFP_KERNEL);
dbg_memalloc("%p\n", ref);
memset(ref, 0, sizeof(struct jffs2_xattr_ref));
ref->class = RAWNODE_CLASS_XATTR_REF;
ref->node = (void *)ref;
return ref;
}
void jffs2_free_xattr_ref(struct jffs2_xattr_ref *ref)
{
dbg_memalloc("%p\n", ref);
kmem_cache_free(xattr_ref_cache, ref);
}
#endif