2278e9dd27
There is a potential accounting issue during window size change, if the roll over is delayed such that the current task's mark start went past the new window start with the updated window size. For example, system is running with window size = 20 msec. So it would be like 20 | 40 | 60 | 80 | 100 | 120 At t= 98, the window size is changed to 8 msec. We expect this to be handled at the next window roll over i.e t = 100 For some reason 98 < t < 109, interrupts are blocked on a CPU on which roll over is supposed to happen. Now at t = 109, the window roll over happen in the IRQ work. First we roll over the window such that wallclock (wc) = 109, mark_start (ms) = 109, window_start (ws) = 100. New window size is set to 8 msec. At this point, we did not realize that the ms/wc is went past the next window i.e 100 + 8 = 108 msec. At t = 110, a task wakes up. We first call update_task_ravg() on the current, for which ms = 109. We detect the window roll over but fail to roll over the CPU busy time counters (prs/crs) since ms > ws. see update_cpu_busy_time() for new_window detection. Now the utra() is called for the waking task and its ms < ws and we roll over window for it. if it migrates to another CPU, we try to subtract this task prs from the CPU's prs which is not updated. This results in accounting issues. This problem can be fixed easily by detecting the delayed window roll over and deferring the window size update to next window roll over. Since this is a very rare event, we don't miss anything. Also this is more optimized compared to any changes in update_task_ravg() which is called many times compared to a window roll over with a window size update pending. Change-Id: Ia6e1750e632bf7594f0f83656986ad4393bfbe5a Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
3848 lines
100 KiB
C
3848 lines
100 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2016-2020, The Linux Foundation. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <trace/events/sched.h>
|
|
#include "sched.h"
|
|
#include "walt.h"
|
|
|
|
#include <trace/events/sched.h>
|
|
|
|
const char *task_event_names[] = {"PUT_PREV_TASK", "PICK_NEXT_TASK",
|
|
"TASK_WAKE", "TASK_MIGRATE", "TASK_UPDATE",
|
|
"IRQ_UPDATE"};
|
|
|
|
const char *migrate_type_names[] = {"GROUP_TO_RQ", "RQ_TO_GROUP",
|
|
"RQ_TO_RQ", "GROUP_TO_GROUP"};
|
|
|
|
#define SCHED_FREQ_ACCOUNT_WAIT_TIME 0
|
|
#define SCHED_ACCOUNT_WAIT_TIME 1
|
|
|
|
#define EARLY_DETECTION_DURATION 9500000
|
|
|
|
static ktime_t ktime_last;
|
|
static bool sched_ktime_suspended;
|
|
static struct cpu_cycle_counter_cb cpu_cycle_counter_cb;
|
|
static bool use_cycle_counter;
|
|
DEFINE_MUTEX(cluster_lock);
|
|
static atomic64_t walt_irq_work_lastq_ws;
|
|
static u64 walt_load_reported_window;
|
|
|
|
static struct irq_work walt_cpufreq_irq_work;
|
|
static struct irq_work walt_migration_irq_work;
|
|
|
|
u64 sched_ktime_clock(void)
|
|
{
|
|
if (unlikely(sched_ktime_suspended))
|
|
return ktime_to_ns(ktime_last);
|
|
return ktime_get_ns();
|
|
}
|
|
|
|
static void sched_resume(void)
|
|
{
|
|
sched_ktime_suspended = false;
|
|
}
|
|
|
|
static int sched_suspend(void)
|
|
{
|
|
ktime_last = ktime_get();
|
|
sched_ktime_suspended = true;
|
|
return 0;
|
|
}
|
|
|
|
static struct syscore_ops sched_syscore_ops = {
|
|
.resume = sched_resume,
|
|
.suspend = sched_suspend
|
|
};
|
|
|
|
static int __init sched_init_ops(void)
|
|
{
|
|
register_syscore_ops(&sched_syscore_ops);
|
|
return 0;
|
|
}
|
|
late_initcall(sched_init_ops);
|
|
|
|
static void acquire_rq_locks_irqsave(const cpumask_t *cpus,
|
|
unsigned long *flags)
|
|
{
|
|
int cpu;
|
|
int level = 0;
|
|
|
|
local_irq_save(*flags);
|
|
for_each_cpu(cpu, cpus) {
|
|
if (level == 0)
|
|
raw_spin_lock(&cpu_rq(cpu)->lock);
|
|
else
|
|
raw_spin_lock_nested(&cpu_rq(cpu)->lock, level);
|
|
level++;
|
|
}
|
|
}
|
|
|
|
static void release_rq_locks_irqrestore(const cpumask_t *cpus,
|
|
unsigned long *flags)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, cpus)
|
|
raw_spin_unlock(&cpu_rq(cpu)->lock);
|
|
local_irq_restore(*flags);
|
|
}
|
|
|
|
__read_mostly unsigned int sysctl_sched_cpu_high_irqload = TICK_NSEC;
|
|
|
|
unsigned int sysctl_sched_walt_rotate_big_tasks;
|
|
unsigned int walt_rotation_enabled;
|
|
|
|
__read_mostly unsigned int sysctl_sched_asym_cap_sibling_freq_match_pct = 100;
|
|
__read_mostly unsigned int sched_ravg_hist_size = 5;
|
|
|
|
static __read_mostly unsigned int sched_io_is_busy = 1;
|
|
|
|
__read_mostly unsigned int sysctl_sched_window_stats_policy =
|
|
WINDOW_STATS_MAX_RECENT_AVG;
|
|
|
|
unsigned int sysctl_sched_ravg_window_nr_ticks = (HZ / NR_WINDOWS_PER_SEC);
|
|
|
|
static unsigned int display_sched_ravg_window_nr_ticks =
|
|
(HZ / NR_WINDOWS_PER_SEC);
|
|
|
|
unsigned int sysctl_sched_dynamic_ravg_window_enable = (HZ == 250);
|
|
|
|
/* Window size (in ns) */
|
|
__read_mostly unsigned int sched_ravg_window = DEFAULT_SCHED_RAVG_WINDOW;
|
|
__read_mostly unsigned int new_sched_ravg_window = DEFAULT_SCHED_RAVG_WINDOW;
|
|
|
|
static DEFINE_SPINLOCK(sched_ravg_window_lock);
|
|
u64 sched_ravg_window_change_time;
|
|
/*
|
|
* A after-boot constant divisor for cpu_util_freq_walt() to apply the load
|
|
* boost.
|
|
*/
|
|
static __read_mostly unsigned int walt_cpu_util_freq_divisor;
|
|
|
|
/* Initial task load. Newly created tasks are assigned this load. */
|
|
unsigned int __read_mostly sched_init_task_load_windows;
|
|
unsigned int __read_mostly sched_init_task_load_windows_scaled;
|
|
unsigned int __read_mostly sysctl_sched_init_task_load_pct = 15;
|
|
|
|
/*
|
|
* Maximum possible frequency across all cpus. Task demand and cpu
|
|
* capacity (cpu_power) metrics are scaled in reference to it.
|
|
*/
|
|
unsigned int max_possible_freq = 1;
|
|
|
|
/*
|
|
* Minimum possible max_freq across all cpus. This will be same as
|
|
* max_possible_freq on homogeneous systems and could be different from
|
|
* max_possible_freq on heterogenous systems. min_max_freq is used to derive
|
|
* capacity (cpu_power) of cpus.
|
|
*/
|
|
unsigned int min_max_freq = 1;
|
|
unsigned int max_possible_capacity = 1024; /* max(rq->max_possible_capacity) */
|
|
unsigned int
|
|
min_max_possible_capacity = 1024; /* min(rq->max_possible_capacity) */
|
|
|
|
/* Temporarily disable window-stats activity on all cpus */
|
|
unsigned int __read_mostly sched_disable_window_stats;
|
|
|
|
/*
|
|
* Task load is categorized into buckets for the purpose of top task tracking.
|
|
* The entire range of load from 0 to sched_ravg_window needs to be covered
|
|
* in NUM_LOAD_INDICES number of buckets. Therefore the size of each bucket
|
|
* is given by sched_ravg_window / NUM_LOAD_INDICES. Since the default value
|
|
* of sched_ravg_window is DEFAULT_SCHED_RAVG_WINDOW, use that to compute
|
|
* sched_load_granule.
|
|
*/
|
|
__read_mostly unsigned int sched_load_granule =
|
|
DEFAULT_SCHED_RAVG_WINDOW / NUM_LOAD_INDICES;
|
|
/* Size of bitmaps maintained to track top tasks */
|
|
static const unsigned int top_tasks_bitmap_size =
|
|
BITS_TO_LONGS(NUM_LOAD_INDICES + 1) * sizeof(unsigned long);
|
|
|
|
/*
|
|
* This governs what load needs to be used when reporting CPU busy time
|
|
* to the cpufreq governor.
|
|
*/
|
|
__read_mostly unsigned int sysctl_sched_freq_reporting_policy;
|
|
|
|
static int __init set_sched_ravg_window(char *str)
|
|
{
|
|
unsigned int window_size;
|
|
|
|
get_option(&str, &window_size);
|
|
|
|
if (window_size < DEFAULT_SCHED_RAVG_WINDOW ||
|
|
window_size > MAX_SCHED_RAVG_WINDOW) {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sched_ravg_window = window_size;
|
|
return 0;
|
|
}
|
|
|
|
early_param("sched_ravg_window", set_sched_ravg_window);
|
|
|
|
static int __init set_sched_predl(char *str)
|
|
{
|
|
unsigned int predl;
|
|
|
|
get_option(&str, &predl);
|
|
sched_predl = !!predl;
|
|
return 0;
|
|
}
|
|
early_param("sched_predl", set_sched_predl);
|
|
|
|
__read_mostly unsigned int walt_scale_demand_divisor;
|
|
#define scale_demand(d) ((d)/walt_scale_demand_divisor)
|
|
|
|
static inline void walt_irq_work_queue(struct irq_work *work)
|
|
{
|
|
if (likely(cpu_online(raw_smp_processor_id())))
|
|
irq_work_queue(work);
|
|
else
|
|
irq_work_queue_on(work, cpumask_any(cpu_online_mask));
|
|
}
|
|
|
|
void inc_rq_walt_stats(struct rq *rq, struct task_struct *p)
|
|
{
|
|
inc_nr_big_task(&rq->walt_stats, p);
|
|
walt_inc_cumulative_runnable_avg(rq, p);
|
|
|
|
p->rtg_high_prio = task_rtg_high_prio(p);
|
|
if (p->rtg_high_prio)
|
|
rq->walt_stats.nr_rtg_high_prio_tasks++;
|
|
|
|
}
|
|
|
|
void dec_rq_walt_stats(struct rq *rq, struct task_struct *p)
|
|
{
|
|
dec_nr_big_task(&rq->walt_stats, p);
|
|
walt_dec_cumulative_runnable_avg(rq, p);
|
|
if (p->rtg_high_prio)
|
|
rq->walt_stats.nr_rtg_high_prio_tasks--;
|
|
}
|
|
|
|
void fixup_walt_sched_stats_common(struct rq *rq, struct task_struct *p,
|
|
u16 updated_demand_scaled,
|
|
u16 updated_pred_demand_scaled)
|
|
{
|
|
s64 task_load_delta = (s64)updated_demand_scaled -
|
|
p->ravg.demand_scaled;
|
|
s64 pred_demand_delta = (s64)updated_pred_demand_scaled -
|
|
p->ravg.pred_demand_scaled;
|
|
|
|
fixup_cumulative_runnable_avg(&rq->walt_stats, task_load_delta,
|
|
pred_demand_delta);
|
|
|
|
walt_fixup_cum_window_demand(rq, task_load_delta);
|
|
}
|
|
|
|
/*
|
|
* Demand aggregation for frequency purpose:
|
|
*
|
|
* CPU demand of tasks from various related groups is aggregated per-cluster and
|
|
* added to the "max_busy_cpu" in that cluster, where max_busy_cpu is determined
|
|
* by just rq->prev_runnable_sum.
|
|
*
|
|
* Some examples follow, which assume:
|
|
* Cluster0 = CPU0-3, Cluster1 = CPU4-7
|
|
* One related thread group A that has tasks A0, A1, A2
|
|
*
|
|
* A->cpu_time[X].curr/prev_sum = counters in which cpu execution stats of
|
|
* tasks belonging to group A are accumulated when they run on cpu X.
|
|
*
|
|
* CX->curr/prev_sum = counters in which cpu execution stats of all tasks
|
|
* not belonging to group A are accumulated when they run on cpu X
|
|
*
|
|
* Lets say the stats for window M was as below:
|
|
*
|
|
* C0->prev_sum = 1ms, A->cpu_time[0].prev_sum = 5ms
|
|
* Task A0 ran 5ms on CPU0
|
|
* Task B0 ran 1ms on CPU0
|
|
*
|
|
* C1->prev_sum = 5ms, A->cpu_time[1].prev_sum = 6ms
|
|
* Task A1 ran 4ms on CPU1
|
|
* Task A2 ran 2ms on CPU1
|
|
* Task B1 ran 5ms on CPU1
|
|
*
|
|
* C2->prev_sum = 0ms, A->cpu_time[2].prev_sum = 0
|
|
* CPU2 idle
|
|
*
|
|
* C3->prev_sum = 0ms, A->cpu_time[3].prev_sum = 0
|
|
* CPU3 idle
|
|
*
|
|
* In this case, CPU1 was most busy going by just its prev_sum counter. Demand
|
|
* from all group A tasks are added to CPU1. IOW, at end of window M, cpu busy
|
|
* time reported to governor will be:
|
|
*
|
|
*
|
|
* C0 busy time = 1ms
|
|
* C1 busy time = 5 + 5 + 6 = 16ms
|
|
*
|
|
*/
|
|
__read_mostly bool sched_freq_aggr_en;
|
|
|
|
static u64
|
|
update_window_start(struct rq *rq, u64 wallclock, int event)
|
|
{
|
|
s64 delta;
|
|
int nr_windows;
|
|
u64 old_window_start = rq->window_start;
|
|
|
|
delta = wallclock - rq->window_start;
|
|
if (delta < 0) {
|
|
printk_deferred("WALT-BUG CPU%d; wallclock=%llu is lesser than window_start=%llu",
|
|
rq->cpu, wallclock, rq->window_start);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
if (delta < sched_ravg_window)
|
|
return old_window_start;
|
|
|
|
nr_windows = div64_u64(delta, sched_ravg_window);
|
|
rq->window_start += (u64)nr_windows * (u64)sched_ravg_window;
|
|
|
|
rq->cum_window_demand_scaled =
|
|
rq->walt_stats.cumulative_runnable_avg_scaled;
|
|
rq->prev_window_size = sched_ravg_window;
|
|
|
|
return old_window_start;
|
|
}
|
|
|
|
/*
|
|
* Assumes rq_lock is held and wallclock was recorded in the same critical
|
|
* section as this function's invocation.
|
|
*/
|
|
static inline u64 read_cycle_counter(int cpu, u64 wallclock)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
if (rq->last_cc_update != wallclock) {
|
|
rq->cycles = cpu_cycle_counter_cb.get_cpu_cycle_counter(cpu);
|
|
rq->last_cc_update = wallclock;
|
|
}
|
|
|
|
return rq->cycles;
|
|
}
|
|
|
|
static void update_task_cpu_cycles(struct task_struct *p, int cpu,
|
|
u64 wallclock)
|
|
{
|
|
if (use_cycle_counter)
|
|
p->cpu_cycles = read_cycle_counter(cpu, wallclock);
|
|
}
|
|
|
|
static inline bool is_ed_enabled(void)
|
|
{
|
|
return (walt_rotation_enabled || (sched_boost_policy() !=
|
|
SCHED_BOOST_NONE));
|
|
}
|
|
|
|
void clear_ed_task(struct task_struct *p, struct rq *rq)
|
|
{
|
|
if (p == rq->ed_task)
|
|
rq->ed_task = NULL;
|
|
}
|
|
|
|
static inline bool is_ed_task(struct task_struct *p, u64 wallclock)
|
|
{
|
|
return (wallclock - p->last_wake_ts >= EARLY_DETECTION_DURATION);
|
|
}
|
|
|
|
bool early_detection_notify(struct rq *rq, u64 wallclock)
|
|
{
|
|
struct task_struct *p;
|
|
int loop_max = 10;
|
|
|
|
rq->ed_task = NULL;
|
|
|
|
if (!is_ed_enabled() || !rq->cfs.h_nr_running)
|
|
return 0;
|
|
|
|
list_for_each_entry(p, &rq->cfs_tasks, se.group_node) {
|
|
if (!loop_max)
|
|
break;
|
|
|
|
if (is_ed_task(p, wallclock)) {
|
|
rq->ed_task = p;
|
|
return 1;
|
|
}
|
|
|
|
loop_max--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sched_account_irqstart(int cpu, struct task_struct *curr, u64 wallclock)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
if (!rq->window_start || sched_disable_window_stats)
|
|
return;
|
|
|
|
if (is_idle_task(curr)) {
|
|
/* We're here without rq->lock held, IRQ disabled */
|
|
raw_spin_lock(&rq->lock);
|
|
update_task_cpu_cycles(curr, cpu, sched_ktime_clock());
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return total number of tasks "eligible" to run on higher capacity cpus
|
|
*/
|
|
unsigned int walt_big_tasks(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
return rq->walt_stats.nr_big_tasks;
|
|
}
|
|
|
|
void clear_walt_request(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long flags;
|
|
|
|
clear_reserved(cpu);
|
|
if (rq->push_task) {
|
|
struct task_struct *push_task = NULL;
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
if (rq->push_task) {
|
|
clear_reserved(rq->push_cpu);
|
|
push_task = rq->push_task;
|
|
rq->push_task = NULL;
|
|
}
|
|
rq->active_balance = 0;
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
if (push_task)
|
|
put_task_struct(push_task);
|
|
}
|
|
}
|
|
|
|
void sched_account_irqtime(int cpu, struct task_struct *curr,
|
|
u64 delta, u64 wallclock)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long nr_windows;
|
|
u64 cur_jiffies_ts;
|
|
|
|
/*
|
|
* We called with interrupts disabled. Take the rq lock only
|
|
* if we are in idle context in which case update_task_ravg()
|
|
* call is needed.
|
|
*/
|
|
if (is_idle_task(curr)) {
|
|
raw_spin_lock(&rq->lock);
|
|
/*
|
|
* cputime (wallclock) uses sched_clock so use the same here
|
|
* for consistency.
|
|
*/
|
|
delta += sched_clock() - wallclock;
|
|
update_task_ravg(curr, rq, IRQ_UPDATE, sched_ktime_clock(),
|
|
delta);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
cur_jiffies_ts = get_jiffies_64();
|
|
nr_windows = cur_jiffies_ts - rq->irqload_ts;
|
|
|
|
if (nr_windows) {
|
|
if (nr_windows < 10) {
|
|
/* Decay CPU's irqload by 3/4 for each window. */
|
|
rq->avg_irqload *= (3 * nr_windows);
|
|
rq->avg_irqload = div64_u64(rq->avg_irqload,
|
|
4 * nr_windows);
|
|
} else {
|
|
rq->avg_irqload = 0;
|
|
}
|
|
rq->avg_irqload += rq->cur_irqload;
|
|
rq->cur_irqload = 0;
|
|
}
|
|
|
|
rq->cur_irqload += delta;
|
|
rq->irqload_ts = cur_jiffies_ts;
|
|
}
|
|
|
|
/*
|
|
* Special case the last index and provide a fast path for index = 0.
|
|
* Note that sched_load_granule can change underneath us if we are not
|
|
* holding any runqueue locks while calling the two functions below.
|
|
*/
|
|
static u32 top_task_load(struct rq *rq)
|
|
{
|
|
int index = rq->prev_top;
|
|
u8 prev = 1 - rq->curr_table;
|
|
|
|
if (!index) {
|
|
int msb = NUM_LOAD_INDICES - 1;
|
|
|
|
if (!test_bit(msb, rq->top_tasks_bitmap[prev]))
|
|
return 0;
|
|
else
|
|
return sched_load_granule;
|
|
} else if (index == NUM_LOAD_INDICES - 1) {
|
|
return sched_ravg_window;
|
|
} else {
|
|
return (index + 1) * sched_load_granule;
|
|
}
|
|
}
|
|
|
|
unsigned int sysctl_sched_user_hint;
|
|
static unsigned long sched_user_hint_reset_time;
|
|
static bool is_cluster_hosting_top_app(struct sched_cluster *cluster);
|
|
|
|
static inline bool should_apply_suh_freq_boost(struct sched_cluster *cluster)
|
|
{
|
|
if (sched_freq_aggr_en || !sysctl_sched_user_hint ||
|
|
!cluster->aggr_grp_load)
|
|
return false;
|
|
|
|
return is_cluster_hosting_top_app(cluster);
|
|
}
|
|
|
|
static inline u64 freq_policy_load(struct rq *rq)
|
|
{
|
|
unsigned int reporting_policy = sysctl_sched_freq_reporting_policy;
|
|
struct sched_cluster *cluster = rq->cluster;
|
|
u64 aggr_grp_load = cluster->aggr_grp_load;
|
|
u64 load, tt_load = 0;
|
|
struct task_struct *cpu_ksoftirqd = per_cpu(ksoftirqd, cpu_of(rq));
|
|
|
|
if (rq->ed_task != NULL) {
|
|
load = sched_ravg_window;
|
|
goto done;
|
|
}
|
|
|
|
if (sched_freq_aggr_en)
|
|
load = rq->prev_runnable_sum + aggr_grp_load;
|
|
else
|
|
load = rq->prev_runnable_sum + rq->grp_time.prev_runnable_sum;
|
|
|
|
if (cpu_ksoftirqd && cpu_ksoftirqd->state == TASK_RUNNING)
|
|
load = max_t(u64, load, task_load(cpu_ksoftirqd));
|
|
|
|
tt_load = top_task_load(rq);
|
|
switch (reporting_policy) {
|
|
case FREQ_REPORT_MAX_CPU_LOAD_TOP_TASK:
|
|
load = max_t(u64, load, tt_load);
|
|
break;
|
|
case FREQ_REPORT_TOP_TASK:
|
|
load = tt_load;
|
|
break;
|
|
case FREQ_REPORT_CPU_LOAD:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (should_apply_suh_freq_boost(cluster)) {
|
|
if (is_suh_max())
|
|
load = sched_ravg_window;
|
|
else
|
|
load = div64_u64(load * sysctl_sched_user_hint,
|
|
(u64)100);
|
|
}
|
|
|
|
done:
|
|
trace_sched_load_to_gov(rq, aggr_grp_load, tt_load, sched_freq_aggr_en,
|
|
load, reporting_policy, walt_rotation_enabled,
|
|
sysctl_sched_user_hint);
|
|
return load;
|
|
}
|
|
|
|
static bool rtgb_active;
|
|
|
|
static inline unsigned long
|
|
__cpu_util_freq_walt(int cpu, struct sched_walt_cpu_load *walt_load)
|
|
{
|
|
u64 util, util_unboosted;
|
|
struct rq *rq = cpu_rq(cpu);
|
|
unsigned long capacity = capacity_orig_of(cpu);
|
|
int boost;
|
|
|
|
boost = per_cpu(sched_load_boost, cpu);
|
|
util_unboosted = util = freq_policy_load(rq);
|
|
util = div64_u64(util * (100 + boost),
|
|
walt_cpu_util_freq_divisor);
|
|
|
|
if (walt_load) {
|
|
u64 nl = cpu_rq(cpu)->nt_prev_runnable_sum +
|
|
rq->grp_time.nt_prev_runnable_sum;
|
|
u64 pl = rq->walt_stats.pred_demands_sum_scaled;
|
|
|
|
/* do_pl_notif() needs unboosted signals */
|
|
rq->old_busy_time = div64_u64(util_unboosted,
|
|
sched_ravg_window >>
|
|
SCHED_CAPACITY_SHIFT);
|
|
rq->old_estimated_time = pl;
|
|
|
|
nl = div64_u64(nl * (100 + boost), walt_cpu_util_freq_divisor);
|
|
|
|
walt_load->nl = nl;
|
|
walt_load->pl = pl;
|
|
walt_load->ws = walt_load_reported_window;
|
|
walt_load->rtgb_active = rtgb_active;
|
|
}
|
|
|
|
return (util >= capacity) ? capacity : util;
|
|
}
|
|
|
|
#define ADJUSTED_ASYM_CAP_CPU_UTIL(orig, other, x) \
|
|
(max(orig, mult_frac(other, x, 100)))
|
|
|
|
unsigned long
|
|
cpu_util_freq_walt(int cpu, struct sched_walt_cpu_load *walt_load)
|
|
{
|
|
struct sched_walt_cpu_load wl_other = {0};
|
|
unsigned long util = 0, util_other = 0;
|
|
unsigned long capacity = capacity_orig_of(cpu);
|
|
int i, mpct = sysctl_sched_asym_cap_sibling_freq_match_pct;
|
|
|
|
if (!cpumask_test_cpu(cpu, &asym_cap_sibling_cpus))
|
|
return __cpu_util_freq_walt(cpu, walt_load);
|
|
|
|
for_each_cpu(i, &asym_cap_sibling_cpus) {
|
|
if (i == cpu)
|
|
util = __cpu_util_freq_walt(cpu, walt_load);
|
|
else
|
|
util_other = __cpu_util_freq_walt(i, &wl_other);
|
|
}
|
|
|
|
if (cpu == cpumask_last(&asym_cap_sibling_cpus))
|
|
mpct = 100;
|
|
|
|
util = ADJUSTED_ASYM_CAP_CPU_UTIL(util, util_other, mpct);
|
|
|
|
walt_load->nl = ADJUSTED_ASYM_CAP_CPU_UTIL(walt_load->nl, wl_other.nl,
|
|
mpct);
|
|
walt_load->pl = ADJUSTED_ASYM_CAP_CPU_UTIL(walt_load->pl, wl_other.pl,
|
|
mpct);
|
|
|
|
return (util >= capacity) ? capacity : util;
|
|
}
|
|
|
|
/*
|
|
* In this function we match the accumulated subtractions with the current
|
|
* and previous windows we are operating with. Ignore any entries where
|
|
* the window start in the load_subtraction struct does not match either
|
|
* the curent or the previous window. This could happen whenever CPUs
|
|
* become idle or busy with interrupts disabled for an extended period.
|
|
*/
|
|
static inline void account_load_subtractions(struct rq *rq)
|
|
{
|
|
u64 ws = rq->window_start;
|
|
u64 prev_ws = ws - rq->prev_window_size;
|
|
struct load_subtractions *ls = rq->load_subs;
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
|
|
if (ls[i].window_start == ws) {
|
|
rq->curr_runnable_sum -= ls[i].subs;
|
|
rq->nt_curr_runnable_sum -= ls[i].new_subs;
|
|
} else if (ls[i].window_start == prev_ws) {
|
|
rq->prev_runnable_sum -= ls[i].subs;
|
|
rq->nt_prev_runnable_sum -= ls[i].new_subs;
|
|
}
|
|
|
|
ls[i].subs = 0;
|
|
ls[i].new_subs = 0;
|
|
}
|
|
|
|
SCHED_BUG_ON((s64)rq->prev_runnable_sum < 0);
|
|
SCHED_BUG_ON((s64)rq->curr_runnable_sum < 0);
|
|
SCHED_BUG_ON((s64)rq->nt_prev_runnable_sum < 0);
|
|
SCHED_BUG_ON((s64)rq->nt_curr_runnable_sum < 0);
|
|
}
|
|
|
|
static inline void create_subtraction_entry(struct rq *rq, u64 ws, int index)
|
|
{
|
|
rq->load_subs[index].window_start = ws;
|
|
rq->load_subs[index].subs = 0;
|
|
rq->load_subs[index].new_subs = 0;
|
|
}
|
|
|
|
static int get_top_index(unsigned long *bitmap, unsigned long old_top)
|
|
{
|
|
int index = find_next_bit(bitmap, NUM_LOAD_INDICES, old_top);
|
|
|
|
if (index == NUM_LOAD_INDICES)
|
|
return 0;
|
|
|
|
return NUM_LOAD_INDICES - 1 - index;
|
|
}
|
|
|
|
static bool get_subtraction_index(struct rq *rq, u64 ws)
|
|
{
|
|
int i;
|
|
u64 oldest = ULLONG_MAX;
|
|
int oldest_index = 0;
|
|
|
|
for (i = 0; i < NUM_TRACKED_WINDOWS; i++) {
|
|
u64 entry_ws = rq->load_subs[i].window_start;
|
|
|
|
if (ws == entry_ws)
|
|
return i;
|
|
|
|
if (entry_ws < oldest) {
|
|
oldest = entry_ws;
|
|
oldest_index = i;
|
|
}
|
|
}
|
|
|
|
create_subtraction_entry(rq, ws, oldest_index);
|
|
return oldest_index;
|
|
}
|
|
|
|
static void update_rq_load_subtractions(int index, struct rq *rq,
|
|
u32 sub_load, bool new_task)
|
|
{
|
|
rq->load_subs[index].subs += sub_load;
|
|
if (new_task)
|
|
rq->load_subs[index].new_subs += sub_load;
|
|
}
|
|
|
|
void update_cluster_load_subtractions(struct task_struct *p,
|
|
int cpu, u64 ws, bool new_task)
|
|
{
|
|
struct sched_cluster *cluster = cpu_cluster(cpu);
|
|
struct cpumask cluster_cpus = cluster->cpus;
|
|
u64 prev_ws = ws - cpu_rq(cpu)->prev_window_size;
|
|
int i;
|
|
|
|
cpumask_clear_cpu(cpu, &cluster_cpus);
|
|
raw_spin_lock(&cluster->load_lock);
|
|
|
|
for_each_cpu(i, &cluster_cpus) {
|
|
struct rq *rq = cpu_rq(i);
|
|
int index;
|
|
|
|
if (p->ravg.curr_window_cpu[i]) {
|
|
index = get_subtraction_index(rq, ws);
|
|
update_rq_load_subtractions(index, rq,
|
|
p->ravg.curr_window_cpu[i], new_task);
|
|
p->ravg.curr_window_cpu[i] = 0;
|
|
}
|
|
|
|
if (p->ravg.prev_window_cpu[i]) {
|
|
index = get_subtraction_index(rq, prev_ws);
|
|
update_rq_load_subtractions(index, rq,
|
|
p->ravg.prev_window_cpu[i], new_task);
|
|
p->ravg.prev_window_cpu[i] = 0;
|
|
}
|
|
}
|
|
|
|
raw_spin_unlock(&cluster->load_lock);
|
|
}
|
|
|
|
static inline void inter_cluster_migration_fixup
|
|
(struct task_struct *p, int new_cpu, int task_cpu, bool new_task)
|
|
{
|
|
struct rq *dest_rq = cpu_rq(new_cpu);
|
|
struct rq *src_rq = cpu_rq(task_cpu);
|
|
|
|
if (same_freq_domain(new_cpu, task_cpu))
|
|
return;
|
|
|
|
p->ravg.curr_window_cpu[new_cpu] = p->ravg.curr_window;
|
|
p->ravg.prev_window_cpu[new_cpu] = p->ravg.prev_window;
|
|
|
|
dest_rq->curr_runnable_sum += p->ravg.curr_window;
|
|
dest_rq->prev_runnable_sum += p->ravg.prev_window;
|
|
|
|
if (src_rq->curr_runnable_sum < p->ravg.curr_window_cpu[task_cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU%d -> CPU%d src_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, src_rq->cpu, dest_rq->cpu,
|
|
src_rq->curr_runnable_sum,
|
|
p->ravg.curr_window_cpu[task_cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
src_rq->curr_runnable_sum -= p->ravg.curr_window_cpu[task_cpu];
|
|
|
|
if (src_rq->prev_runnable_sum < p->ravg.prev_window_cpu[task_cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU%d -> CPU%d src_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, src_rq->cpu, dest_rq->cpu,
|
|
src_rq->prev_runnable_sum,
|
|
p->ravg.prev_window_cpu[task_cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
src_rq->prev_runnable_sum -= p->ravg.prev_window_cpu[task_cpu];
|
|
|
|
if (new_task) {
|
|
dest_rq->nt_curr_runnable_sum += p->ravg.curr_window;
|
|
dest_rq->nt_prev_runnable_sum += p->ravg.prev_window;
|
|
|
|
if (src_rq->nt_curr_runnable_sum <
|
|
p->ravg.curr_window_cpu[task_cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU%d -> CPU%d src_nt_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, src_rq->cpu, dest_rq->cpu,
|
|
src_rq->nt_curr_runnable_sum,
|
|
p->ravg.curr_window_cpu[task_cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
src_rq->nt_curr_runnable_sum -=
|
|
p->ravg.curr_window_cpu[task_cpu];
|
|
if (src_rq->nt_prev_runnable_sum <
|
|
p->ravg.prev_window_cpu[task_cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU%d -> CPU%d src_nt_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, src_rq->cpu, dest_rq->cpu,
|
|
src_rq->nt_prev_runnable_sum,
|
|
p->ravg.prev_window_cpu[task_cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
src_rq->nt_prev_runnable_sum -=
|
|
p->ravg.prev_window_cpu[task_cpu];
|
|
}
|
|
|
|
p->ravg.curr_window_cpu[task_cpu] = 0;
|
|
p->ravg.prev_window_cpu[task_cpu] = 0;
|
|
|
|
update_cluster_load_subtractions(p, task_cpu,
|
|
src_rq->window_start, new_task);
|
|
}
|
|
|
|
static u32 load_to_index(u32 load)
|
|
{
|
|
u32 index = load / sched_load_granule;
|
|
|
|
return min(index, (u32)(NUM_LOAD_INDICES - 1));
|
|
}
|
|
|
|
static void
|
|
migrate_top_tasks(struct task_struct *p, struct rq *src_rq, struct rq *dst_rq)
|
|
{
|
|
int index;
|
|
int top_index;
|
|
u32 curr_window = p->ravg.curr_window;
|
|
u32 prev_window = p->ravg.prev_window;
|
|
u8 src = src_rq->curr_table;
|
|
u8 dst = dst_rq->curr_table;
|
|
u8 *src_table;
|
|
u8 *dst_table;
|
|
|
|
if (curr_window) {
|
|
src_table = src_rq->top_tasks[src];
|
|
dst_table = dst_rq->top_tasks[dst];
|
|
index = load_to_index(curr_window);
|
|
src_table[index] -= 1;
|
|
dst_table[index] += 1;
|
|
|
|
if (!src_table[index])
|
|
__clear_bit(NUM_LOAD_INDICES - index - 1,
|
|
src_rq->top_tasks_bitmap[src]);
|
|
|
|
if (dst_table[index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - index - 1,
|
|
dst_rq->top_tasks_bitmap[dst]);
|
|
|
|
if (index > dst_rq->curr_top)
|
|
dst_rq->curr_top = index;
|
|
|
|
top_index = src_rq->curr_top;
|
|
if (index == top_index && !src_table[index])
|
|
src_rq->curr_top = get_top_index(
|
|
src_rq->top_tasks_bitmap[src], top_index);
|
|
}
|
|
|
|
if (prev_window) {
|
|
src = 1 - src;
|
|
dst = 1 - dst;
|
|
src_table = src_rq->top_tasks[src];
|
|
dst_table = dst_rq->top_tasks[dst];
|
|
index = load_to_index(prev_window);
|
|
src_table[index] -= 1;
|
|
dst_table[index] += 1;
|
|
|
|
if (!src_table[index])
|
|
__clear_bit(NUM_LOAD_INDICES - index - 1,
|
|
src_rq->top_tasks_bitmap[src]);
|
|
|
|
if (dst_table[index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - index - 1,
|
|
dst_rq->top_tasks_bitmap[dst]);
|
|
|
|
if (index > dst_rq->prev_top)
|
|
dst_rq->prev_top = index;
|
|
|
|
top_index = src_rq->prev_top;
|
|
if (index == top_index && !src_table[index])
|
|
src_rq->prev_top = get_top_index(
|
|
src_rq->top_tasks_bitmap[src], top_index);
|
|
}
|
|
}
|
|
|
|
void fixup_busy_time(struct task_struct *p, int new_cpu)
|
|
{
|
|
struct rq *src_rq = task_rq(p);
|
|
struct rq *dest_rq = cpu_rq(new_cpu);
|
|
u64 wallclock;
|
|
u64 *src_curr_runnable_sum, *dst_curr_runnable_sum;
|
|
u64 *src_prev_runnable_sum, *dst_prev_runnable_sum;
|
|
u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum;
|
|
u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum;
|
|
bool new_task;
|
|
struct related_thread_group *grp;
|
|
|
|
if (!p->on_rq && p->state != TASK_WAKING)
|
|
return;
|
|
|
|
if (exiting_task(p)) {
|
|
clear_ed_task(p, src_rq);
|
|
return;
|
|
}
|
|
|
|
if (p->state == TASK_WAKING)
|
|
double_rq_lock(src_rq, dest_rq);
|
|
|
|
if (sched_disable_window_stats)
|
|
goto done;
|
|
|
|
wallclock = sched_ktime_clock();
|
|
|
|
update_task_ravg(task_rq(p)->curr, task_rq(p),
|
|
TASK_UPDATE,
|
|
wallclock, 0);
|
|
update_task_ravg(dest_rq->curr, dest_rq,
|
|
TASK_UPDATE, wallclock, 0);
|
|
|
|
update_task_ravg(p, task_rq(p), TASK_MIGRATE,
|
|
wallclock, 0);
|
|
|
|
update_task_cpu_cycles(p, new_cpu, wallclock);
|
|
|
|
/*
|
|
* When a task is migrating during the wakeup, adjust
|
|
* the task's contribution towards cumulative window
|
|
* demand.
|
|
*/
|
|
if (p->state == TASK_WAKING && p->last_sleep_ts >=
|
|
src_rq->window_start) {
|
|
walt_fixup_cum_window_demand(src_rq,
|
|
-(s64)p->ravg.demand_scaled);
|
|
walt_fixup_cum_window_demand(dest_rq, p->ravg.demand_scaled);
|
|
}
|
|
|
|
new_task = is_new_task(p);
|
|
/* Protected by rq_lock */
|
|
grp = p->grp;
|
|
|
|
/*
|
|
* For frequency aggregation, we continue to do migration fixups
|
|
* even for intra cluster migrations. This is because, the aggregated
|
|
* load has to reported on a single CPU regardless.
|
|
*/
|
|
if (grp) {
|
|
struct group_cpu_time *cpu_time;
|
|
|
|
cpu_time = &src_rq->grp_time;
|
|
src_curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
src_prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
|
|
cpu_time = &dest_rq->grp_time;
|
|
dst_curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
dst_prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
|
|
if (p->ravg.curr_window) {
|
|
*src_curr_runnable_sum -= p->ravg.curr_window;
|
|
*dst_curr_runnable_sum += p->ravg.curr_window;
|
|
if (new_task) {
|
|
*src_nt_curr_runnable_sum -=
|
|
p->ravg.curr_window;
|
|
*dst_nt_curr_runnable_sum +=
|
|
p->ravg.curr_window;
|
|
}
|
|
}
|
|
|
|
if (p->ravg.prev_window) {
|
|
*src_prev_runnable_sum -= p->ravg.prev_window;
|
|
*dst_prev_runnable_sum += p->ravg.prev_window;
|
|
if (new_task) {
|
|
*src_nt_prev_runnable_sum -=
|
|
p->ravg.prev_window;
|
|
*dst_nt_prev_runnable_sum +=
|
|
p->ravg.prev_window;
|
|
}
|
|
}
|
|
} else {
|
|
inter_cluster_migration_fixup(p, new_cpu,
|
|
task_cpu(p), new_task);
|
|
}
|
|
|
|
migrate_top_tasks(p, src_rq, dest_rq);
|
|
|
|
if (!same_freq_domain(new_cpu, task_cpu(p))) {
|
|
src_rq->notif_pending = true;
|
|
dest_rq->notif_pending = true;
|
|
walt_irq_work_queue(&walt_migration_irq_work);
|
|
}
|
|
|
|
if (is_ed_enabled()) {
|
|
if (p == src_rq->ed_task) {
|
|
src_rq->ed_task = NULL;
|
|
dest_rq->ed_task = p;
|
|
} else if (is_ed_task(p, wallclock)) {
|
|
dest_rq->ed_task = p;
|
|
}
|
|
}
|
|
|
|
done:
|
|
if (p->state == TASK_WAKING)
|
|
double_rq_unlock(src_rq, dest_rq);
|
|
}
|
|
|
|
void set_window_start(struct rq *rq)
|
|
{
|
|
static int sync_cpu_available;
|
|
|
|
if (likely(rq->window_start))
|
|
return;
|
|
|
|
if (!sync_cpu_available) {
|
|
rq->window_start = 1;
|
|
sync_cpu_available = 1;
|
|
atomic64_set(&walt_irq_work_lastq_ws, rq->window_start);
|
|
walt_load_reported_window =
|
|
atomic64_read(&walt_irq_work_lastq_ws);
|
|
|
|
} else {
|
|
struct rq *sync_rq = cpu_rq(cpumask_any(cpu_online_mask));
|
|
|
|
raw_spin_unlock(&rq->lock);
|
|
double_rq_lock(rq, sync_rq);
|
|
rq->window_start = sync_rq->window_start;
|
|
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
|
|
rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0;
|
|
raw_spin_unlock(&sync_rq->lock);
|
|
}
|
|
|
|
rq->curr->ravg.mark_start = rq->window_start;
|
|
}
|
|
|
|
unsigned int max_possible_efficiency = 1;
|
|
unsigned int min_possible_efficiency = UINT_MAX;
|
|
|
|
unsigned int sysctl_sched_conservative_pl;
|
|
unsigned int sysctl_sched_many_wakeup_threshold = WALT_MANY_WAKEUP_DEFAULT;
|
|
|
|
#define INC_STEP 8
|
|
#define DEC_STEP 2
|
|
#define CONSISTENT_THRES 16
|
|
#define INC_STEP_BIG 16
|
|
/*
|
|
* bucket_increase - update the count of all buckets
|
|
*
|
|
* @buckets: array of buckets tracking busy time of a task
|
|
* @idx: the index of bucket to be incremented
|
|
*
|
|
* Each time a complete window finishes, count of bucket that runtime
|
|
* falls in (@idx) is incremented. Counts of all other buckets are
|
|
* decayed. The rate of increase and decay could be different based
|
|
* on current count in the bucket.
|
|
*/
|
|
static inline void bucket_increase(u8 *buckets, int idx)
|
|
{
|
|
int i, step;
|
|
|
|
for (i = 0; i < NUM_BUSY_BUCKETS; i++) {
|
|
if (idx != i) {
|
|
if (buckets[i] > DEC_STEP)
|
|
buckets[i] -= DEC_STEP;
|
|
else
|
|
buckets[i] = 0;
|
|
} else {
|
|
step = buckets[i] >= CONSISTENT_THRES ?
|
|
INC_STEP_BIG : INC_STEP;
|
|
if (buckets[i] > U8_MAX - step)
|
|
buckets[i] = U8_MAX;
|
|
else
|
|
buckets[i] += step;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int busy_to_bucket(u32 normalized_rt)
|
|
{
|
|
int bidx;
|
|
|
|
bidx = mult_frac(normalized_rt, NUM_BUSY_BUCKETS, max_task_load());
|
|
bidx = min(bidx, NUM_BUSY_BUCKETS - 1);
|
|
|
|
/*
|
|
* Combine lowest two buckets. The lowest frequency falls into
|
|
* 2nd bucket and thus keep predicting lowest bucket is not
|
|
* useful.
|
|
*/
|
|
if (!bidx)
|
|
bidx++;
|
|
|
|
return bidx;
|
|
}
|
|
|
|
/*
|
|
* get_pred_busy - calculate predicted demand for a task on runqueue
|
|
*
|
|
* @p: task whose prediction is being updated
|
|
* @start: starting bucket. returned prediction should not be lower than
|
|
* this bucket.
|
|
* @runtime: runtime of the task. returned prediction should not be lower
|
|
* than this runtime.
|
|
* Note: @start can be derived from @runtime. It's passed in only to
|
|
* avoid duplicated calculation in some cases.
|
|
*
|
|
* A new predicted busy time is returned for task @p based on @runtime
|
|
* passed in. The function searches through buckets that represent busy
|
|
* time equal to or bigger than @runtime and attempts to find the bucket to
|
|
* to use for prediction. Once found, it searches through historical busy
|
|
* time and returns the latest that falls into the bucket. If no such busy
|
|
* time exists, it returns the medium of that bucket.
|
|
*/
|
|
static u32 get_pred_busy(struct task_struct *p,
|
|
int start, u32 runtime)
|
|
{
|
|
int i;
|
|
u8 *buckets = p->ravg.busy_buckets;
|
|
u32 *hist = p->ravg.sum_history;
|
|
u32 dmin, dmax;
|
|
u64 cur_freq_runtime = 0;
|
|
int first = NUM_BUSY_BUCKETS, final;
|
|
u32 ret = runtime;
|
|
|
|
/* skip prediction for new tasks due to lack of history */
|
|
if (unlikely(is_new_task(p)))
|
|
goto out;
|
|
|
|
/* find minimal bucket index to pick */
|
|
for (i = start; i < NUM_BUSY_BUCKETS; i++) {
|
|
if (buckets[i]) {
|
|
first = i;
|
|
break;
|
|
}
|
|
}
|
|
/* if no higher buckets are filled, predict runtime */
|
|
if (first >= NUM_BUSY_BUCKETS)
|
|
goto out;
|
|
|
|
/* compute the bucket for prediction */
|
|
final = first;
|
|
|
|
/* determine demand range for the predicted bucket */
|
|
if (final < 2) {
|
|
/* lowest two buckets are combined */
|
|
dmin = 0;
|
|
final = 1;
|
|
} else {
|
|
dmin = mult_frac(final, max_task_load(), NUM_BUSY_BUCKETS);
|
|
}
|
|
dmax = mult_frac(final + 1, max_task_load(), NUM_BUSY_BUCKETS);
|
|
|
|
/*
|
|
* search through runtime history and return first runtime that falls
|
|
* into the range of predicted bucket.
|
|
*/
|
|
for (i = 0; i < sched_ravg_hist_size; i++) {
|
|
if (hist[i] >= dmin && hist[i] < dmax) {
|
|
ret = hist[i];
|
|
break;
|
|
}
|
|
}
|
|
/* no historical runtime within bucket found, use average of the bin */
|
|
if (ret < dmin)
|
|
ret = (dmin + dmax) / 2;
|
|
/*
|
|
* when updating in middle of a window, runtime could be higher
|
|
* than all recorded history. Always predict at least runtime.
|
|
*/
|
|
ret = max(runtime, ret);
|
|
out:
|
|
trace_sched_update_pred_demand(p, runtime,
|
|
mult_frac((unsigned int)cur_freq_runtime, 100,
|
|
sched_ravg_window), ret);
|
|
return ret;
|
|
}
|
|
|
|
static inline u32 calc_pred_demand(struct task_struct *p)
|
|
{
|
|
if (p->ravg.pred_demand >= p->ravg.curr_window)
|
|
return p->ravg.pred_demand;
|
|
|
|
return get_pred_busy(p, busy_to_bucket(p->ravg.curr_window),
|
|
p->ravg.curr_window);
|
|
}
|
|
|
|
/*
|
|
* predictive demand of a task is calculated at the window roll-over.
|
|
* if the task current window busy time exceeds the predicted
|
|
* demand, update it here to reflect the task needs.
|
|
*/
|
|
void update_task_pred_demand(struct rq *rq, struct task_struct *p, int event)
|
|
{
|
|
u32 new, old;
|
|
u16 new_scaled;
|
|
|
|
if (!sched_predl)
|
|
return;
|
|
|
|
if (is_idle_task(p) || exiting_task(p))
|
|
return;
|
|
|
|
if (event != PUT_PREV_TASK && event != TASK_UPDATE &&
|
|
(!SCHED_FREQ_ACCOUNT_WAIT_TIME ||
|
|
(event != TASK_MIGRATE &&
|
|
event != PICK_NEXT_TASK)))
|
|
return;
|
|
|
|
/*
|
|
* TASK_UPDATE can be called on sleeping task, when its moved between
|
|
* related groups
|
|
*/
|
|
if (event == TASK_UPDATE) {
|
|
if (!p->on_rq && !SCHED_FREQ_ACCOUNT_WAIT_TIME)
|
|
return;
|
|
}
|
|
|
|
new = calc_pred_demand(p);
|
|
old = p->ravg.pred_demand;
|
|
|
|
if (old >= new)
|
|
return;
|
|
|
|
new_scaled = scale_demand(new);
|
|
if (task_on_rq_queued(p) && (!task_has_dl_policy(p) ||
|
|
!p->dl.dl_throttled) &&
|
|
p->sched_class->fixup_walt_sched_stats)
|
|
p->sched_class->fixup_walt_sched_stats(rq, p,
|
|
p->ravg.demand_scaled,
|
|
new_scaled);
|
|
|
|
p->ravg.pred_demand = new;
|
|
p->ravg.pred_demand_scaled = new_scaled;
|
|
}
|
|
|
|
void clear_top_tasks_bitmap(unsigned long *bitmap)
|
|
{
|
|
memset(bitmap, 0, top_tasks_bitmap_size);
|
|
__set_bit(NUM_LOAD_INDICES, bitmap);
|
|
}
|
|
|
|
static void update_top_tasks(struct task_struct *p, struct rq *rq,
|
|
u32 old_curr_window, int new_window, bool full_window)
|
|
{
|
|
u8 curr = rq->curr_table;
|
|
u8 prev = 1 - curr;
|
|
u8 *curr_table = rq->top_tasks[curr];
|
|
u8 *prev_table = rq->top_tasks[prev];
|
|
int old_index, new_index, update_index;
|
|
u32 curr_window = p->ravg.curr_window;
|
|
u32 prev_window = p->ravg.prev_window;
|
|
bool zero_index_update;
|
|
|
|
if (old_curr_window == curr_window && !new_window)
|
|
return;
|
|
|
|
old_index = load_to_index(old_curr_window);
|
|
new_index = load_to_index(curr_window);
|
|
|
|
if (!new_window) {
|
|
zero_index_update = !old_curr_window && curr_window;
|
|
if (old_index != new_index || zero_index_update) {
|
|
if (old_curr_window)
|
|
curr_table[old_index] -= 1;
|
|
if (curr_window)
|
|
curr_table[new_index] += 1;
|
|
if (new_index > rq->curr_top)
|
|
rq->curr_top = new_index;
|
|
}
|
|
|
|
if (!curr_table[old_index])
|
|
__clear_bit(NUM_LOAD_INDICES - old_index - 1,
|
|
rq->top_tasks_bitmap[curr]);
|
|
|
|
if (curr_table[new_index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - new_index - 1,
|
|
rq->top_tasks_bitmap[curr]);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The window has rolled over for this task. By the time we get
|
|
* here, curr/prev swaps would has already occurred. So we need
|
|
* to use prev_window for the new index.
|
|
*/
|
|
update_index = load_to_index(prev_window);
|
|
|
|
if (full_window) {
|
|
/*
|
|
* Two cases here. Either 'p' ran for the entire window or
|
|
* it didn't run at all. In either case there is no entry
|
|
* in the prev table. If 'p' ran the entire window, we just
|
|
* need to create a new entry in the prev table. In this case
|
|
* update_index will be correspond to sched_ravg_window
|
|
* so we can unconditionally update the top index.
|
|
*/
|
|
if (prev_window) {
|
|
prev_table[update_index] += 1;
|
|
rq->prev_top = update_index;
|
|
}
|
|
|
|
if (prev_table[update_index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - update_index - 1,
|
|
rq->top_tasks_bitmap[prev]);
|
|
} else {
|
|
zero_index_update = !old_curr_window && prev_window;
|
|
if (old_index != update_index || zero_index_update) {
|
|
if (old_curr_window)
|
|
prev_table[old_index] -= 1;
|
|
|
|
prev_table[update_index] += 1;
|
|
|
|
if (update_index > rq->prev_top)
|
|
rq->prev_top = update_index;
|
|
|
|
if (!prev_table[old_index])
|
|
__clear_bit(NUM_LOAD_INDICES - old_index - 1,
|
|
rq->top_tasks_bitmap[prev]);
|
|
|
|
if (prev_table[update_index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - update_index - 1,
|
|
rq->top_tasks_bitmap[prev]);
|
|
}
|
|
}
|
|
|
|
if (curr_window) {
|
|
curr_table[new_index] += 1;
|
|
|
|
if (new_index > rq->curr_top)
|
|
rq->curr_top = new_index;
|
|
|
|
if (curr_table[new_index] == 1)
|
|
__set_bit(NUM_LOAD_INDICES - new_index - 1,
|
|
rq->top_tasks_bitmap[curr]);
|
|
}
|
|
}
|
|
|
|
static void rollover_top_tasks(struct rq *rq, bool full_window)
|
|
{
|
|
u8 curr_table = rq->curr_table;
|
|
u8 prev_table = 1 - curr_table;
|
|
int curr_top = rq->curr_top;
|
|
|
|
clear_top_tasks_table(rq->top_tasks[prev_table]);
|
|
clear_top_tasks_bitmap(rq->top_tasks_bitmap[prev_table]);
|
|
|
|
if (full_window) {
|
|
curr_top = 0;
|
|
clear_top_tasks_table(rq->top_tasks[curr_table]);
|
|
clear_top_tasks_bitmap(
|
|
rq->top_tasks_bitmap[curr_table]);
|
|
}
|
|
|
|
rq->curr_table = prev_table;
|
|
rq->prev_top = curr_top;
|
|
rq->curr_top = 0;
|
|
}
|
|
|
|
static u32 empty_windows[NR_CPUS];
|
|
|
|
static void rollover_task_window(struct task_struct *p, bool full_window)
|
|
{
|
|
u32 *curr_cpu_windows = empty_windows;
|
|
u32 curr_window;
|
|
int i;
|
|
|
|
/* Rollover the sum */
|
|
curr_window = 0;
|
|
|
|
if (!full_window) {
|
|
curr_window = p->ravg.curr_window;
|
|
curr_cpu_windows = p->ravg.curr_window_cpu;
|
|
}
|
|
|
|
p->ravg.prev_window = curr_window;
|
|
p->ravg.curr_window = 0;
|
|
|
|
/* Roll over individual CPU contributions */
|
|
for (i = 0; i < nr_cpu_ids; i++) {
|
|
p->ravg.prev_window_cpu[i] = curr_cpu_windows[i];
|
|
p->ravg.curr_window_cpu[i] = 0;
|
|
}
|
|
|
|
if (is_new_task(p))
|
|
p->ravg.active_time += p->ravg.last_win_size;
|
|
}
|
|
|
|
void sched_set_io_is_busy(int val)
|
|
{
|
|
sched_io_is_busy = val;
|
|
}
|
|
|
|
static inline int cpu_is_waiting_on_io(struct rq *rq)
|
|
{
|
|
if (!sched_io_is_busy)
|
|
return 0;
|
|
|
|
return atomic_read(&rq->nr_iowait);
|
|
}
|
|
|
|
static int account_busy_for_cpu_time(struct rq *rq, struct task_struct *p,
|
|
u64 irqtime, int event)
|
|
{
|
|
if (is_idle_task(p)) {
|
|
/* TASK_WAKE && TASK_MIGRATE is not possible on idle task! */
|
|
if (event == PICK_NEXT_TASK)
|
|
return 0;
|
|
|
|
/* PUT_PREV_TASK, TASK_UPDATE && IRQ_UPDATE are left */
|
|
return irqtime || cpu_is_waiting_on_io(rq);
|
|
}
|
|
|
|
if (event == TASK_WAKE)
|
|
return 0;
|
|
|
|
if (event == PUT_PREV_TASK || event == IRQ_UPDATE)
|
|
return 1;
|
|
|
|
/*
|
|
* TASK_UPDATE can be called on sleeping task, when its moved between
|
|
* related groups
|
|
*/
|
|
if (event == TASK_UPDATE) {
|
|
if (rq->curr == p)
|
|
return 1;
|
|
|
|
return p->on_rq ? SCHED_FREQ_ACCOUNT_WAIT_TIME : 0;
|
|
}
|
|
|
|
/* TASK_MIGRATE, PICK_NEXT_TASK left */
|
|
return SCHED_FREQ_ACCOUNT_WAIT_TIME;
|
|
}
|
|
|
|
#define DIV64_U64_ROUNDUP(X, Y) div64_u64((X) + (Y - 1), Y)
|
|
|
|
static inline u64 scale_exec_time(u64 delta, struct rq *rq)
|
|
{
|
|
return (delta * rq->task_exec_scale) >> 10;
|
|
}
|
|
|
|
/* Convert busy time to frequency equivalent
|
|
* Assumes load is scaled to 1024
|
|
*/
|
|
static inline unsigned int load_to_freq(struct rq *rq, unsigned int load)
|
|
{
|
|
return mult_frac(cpu_max_possible_freq(cpu_of(rq)), load,
|
|
(unsigned int) capacity_orig_of(cpu_of(rq)));
|
|
}
|
|
|
|
bool do_pl_notif(struct rq *rq)
|
|
{
|
|
u64 prev = rq->old_busy_time;
|
|
u64 pl = rq->walt_stats.pred_demands_sum_scaled;
|
|
int cpu = cpu_of(rq);
|
|
|
|
/* If already at max freq, bail out */
|
|
if (capacity_orig_of(cpu) == capacity_curr_of(cpu))
|
|
return false;
|
|
|
|
prev = max(prev, rq->old_estimated_time);
|
|
|
|
/* 400 MHz filter. */
|
|
return (pl > prev) && (load_to_freq(rq, pl - prev) > 400000);
|
|
}
|
|
|
|
static void rollover_cpu_window(struct rq *rq, bool full_window)
|
|
{
|
|
u64 curr_sum = rq->curr_runnable_sum;
|
|
u64 nt_curr_sum = rq->nt_curr_runnable_sum;
|
|
u64 grp_curr_sum = rq->grp_time.curr_runnable_sum;
|
|
u64 grp_nt_curr_sum = rq->grp_time.nt_curr_runnable_sum;
|
|
|
|
if (unlikely(full_window)) {
|
|
curr_sum = 0;
|
|
nt_curr_sum = 0;
|
|
grp_curr_sum = 0;
|
|
grp_nt_curr_sum = 0;
|
|
}
|
|
|
|
rq->prev_runnable_sum = curr_sum;
|
|
rq->nt_prev_runnable_sum = nt_curr_sum;
|
|
rq->grp_time.prev_runnable_sum = grp_curr_sum;
|
|
rq->grp_time.nt_prev_runnable_sum = grp_nt_curr_sum;
|
|
|
|
rq->curr_runnable_sum = 0;
|
|
rq->nt_curr_runnable_sum = 0;
|
|
rq->grp_time.curr_runnable_sum = 0;
|
|
rq->grp_time.nt_curr_runnable_sum = 0;
|
|
}
|
|
|
|
/*
|
|
* Account cpu activity in its busy time counters (rq->curr/prev_runnable_sum)
|
|
*/
|
|
static void update_cpu_busy_time(struct task_struct *p, struct rq *rq,
|
|
int event, u64 wallclock, u64 irqtime)
|
|
{
|
|
int new_window, full_window = 0;
|
|
int p_is_curr_task = (p == rq->curr);
|
|
u64 mark_start = p->ravg.mark_start;
|
|
u64 window_start = rq->window_start;
|
|
u32 window_size = rq->prev_window_size;
|
|
u64 delta;
|
|
u64 *curr_runnable_sum = &rq->curr_runnable_sum;
|
|
u64 *prev_runnable_sum = &rq->prev_runnable_sum;
|
|
u64 *nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
|
|
u64 *nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
|
|
bool new_task;
|
|
struct related_thread_group *grp;
|
|
int cpu = rq->cpu;
|
|
u32 old_curr_window = p->ravg.curr_window;
|
|
|
|
new_window = mark_start < window_start;
|
|
if (new_window)
|
|
full_window = (window_start - mark_start) >= window_size;
|
|
|
|
/*
|
|
* Handle per-task window rollover. We don't care about the idle
|
|
* task or exiting tasks.
|
|
*/
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
if (new_window)
|
|
rollover_task_window(p, full_window);
|
|
}
|
|
|
|
new_task = is_new_task(p);
|
|
|
|
if (p_is_curr_task && new_window) {
|
|
rollover_cpu_window(rq, full_window);
|
|
rollover_top_tasks(rq, full_window);
|
|
}
|
|
|
|
if (!account_busy_for_cpu_time(rq, p, irqtime, event))
|
|
goto done;
|
|
|
|
grp = p->grp;
|
|
if (grp) {
|
|
struct group_cpu_time *cpu_time = &rq->grp_time;
|
|
|
|
curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
|
|
nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
}
|
|
|
|
if (!new_window) {
|
|
/*
|
|
* account_busy_for_cpu_time() = 1 so busy time needs
|
|
* to be accounted to the current window. No rollover
|
|
* since we didn't start a new window. An example of this is
|
|
* when a task starts execution and then sleeps within the
|
|
* same window.
|
|
*/
|
|
|
|
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq))
|
|
delta = wallclock - mark_start;
|
|
else
|
|
delta = irqtime;
|
|
delta = scale_exec_time(delta, rq);
|
|
*curr_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_curr_runnable_sum += delta;
|
|
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
p->ravg.curr_window += delta;
|
|
p->ravg.curr_window_cpu[cpu] += delta;
|
|
}
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (!p_is_curr_task) {
|
|
/*
|
|
* account_busy_for_cpu_time() = 1 so busy time needs
|
|
* to be accounted to the current window. A new window
|
|
* has also started, but p is not the current task, so the
|
|
* window is not rolled over - just split up and account
|
|
* as necessary into curr and prev. The window is only
|
|
* rolled over when a new window is processed for the current
|
|
* task.
|
|
*
|
|
* Irqtime can't be accounted by a task that isn't the
|
|
* currently running task.
|
|
*/
|
|
|
|
if (!full_window) {
|
|
/*
|
|
* A full window hasn't elapsed, account partial
|
|
* contribution to previous completed window.
|
|
*/
|
|
delta = scale_exec_time(window_start - mark_start, rq);
|
|
if (!exiting_task(p)) {
|
|
p->ravg.prev_window += delta;
|
|
p->ravg.prev_window_cpu[cpu] += delta;
|
|
}
|
|
} else {
|
|
/*
|
|
* Since at least one full window has elapsed,
|
|
* the contribution to the previous window is the
|
|
* full window (window_size).
|
|
*/
|
|
delta = scale_exec_time(window_size, rq);
|
|
if (!exiting_task(p)) {
|
|
p->ravg.prev_window = delta;
|
|
p->ravg.prev_window_cpu[cpu] = delta;
|
|
}
|
|
}
|
|
|
|
*prev_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_prev_runnable_sum += delta;
|
|
|
|
/* Account piece of busy time in the current window. */
|
|
delta = scale_exec_time(wallclock - window_start, rq);
|
|
*curr_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_curr_runnable_sum += delta;
|
|
|
|
if (!exiting_task(p)) {
|
|
p->ravg.curr_window = delta;
|
|
p->ravg.curr_window_cpu[cpu] = delta;
|
|
}
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (!irqtime || !is_idle_task(p) || cpu_is_waiting_on_io(rq)) {
|
|
/*
|
|
* account_busy_for_cpu_time() = 1 so busy time needs
|
|
* to be accounted to the current window. A new window
|
|
* has started and p is the current task so rollover is
|
|
* needed. If any of these three above conditions are true
|
|
* then this busy time can't be accounted as irqtime.
|
|
*
|
|
* Busy time for the idle task or exiting tasks need not
|
|
* be accounted.
|
|
*
|
|
* An example of this would be a task that starts execution
|
|
* and then sleeps once a new window has begun.
|
|
*/
|
|
|
|
if (!full_window) {
|
|
/*
|
|
* A full window hasn't elapsed, account partial
|
|
* contribution to previous completed window.
|
|
*/
|
|
delta = scale_exec_time(window_start - mark_start, rq);
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
p->ravg.prev_window += delta;
|
|
p->ravg.prev_window_cpu[cpu] += delta;
|
|
}
|
|
} else {
|
|
/*
|
|
* Since at least one full window has elapsed,
|
|
* the contribution to the previous window is the
|
|
* full window (window_size).
|
|
*/
|
|
delta = scale_exec_time(window_size, rq);
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
p->ravg.prev_window = delta;
|
|
p->ravg.prev_window_cpu[cpu] = delta;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rollover is done here by overwriting the values in
|
|
* prev_runnable_sum and curr_runnable_sum.
|
|
*/
|
|
*prev_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_prev_runnable_sum += delta;
|
|
|
|
/* Account piece of busy time in the current window. */
|
|
delta = scale_exec_time(wallclock - window_start, rq);
|
|
*curr_runnable_sum += delta;
|
|
if (new_task)
|
|
*nt_curr_runnable_sum += delta;
|
|
|
|
if (!is_idle_task(p) && !exiting_task(p)) {
|
|
p->ravg.curr_window = delta;
|
|
p->ravg.curr_window_cpu[cpu] = delta;
|
|
}
|
|
|
|
goto done;
|
|
}
|
|
|
|
if (irqtime) {
|
|
/*
|
|
* account_busy_for_cpu_time() = 1 so busy time needs
|
|
* to be accounted to the current window. A new window
|
|
* has started and p is the current task so rollover is
|
|
* needed. The current task must be the idle task because
|
|
* irqtime is not accounted for any other task.
|
|
*
|
|
* Irqtime will be accounted each time we process IRQ activity
|
|
* after a period of idleness, so we know the IRQ busy time
|
|
* started at wallclock - irqtime.
|
|
*/
|
|
|
|
SCHED_BUG_ON(!is_idle_task(p));
|
|
mark_start = wallclock - irqtime;
|
|
|
|
/*
|
|
* Roll window over. If IRQ busy time was just in the current
|
|
* window then that is all that need be accounted.
|
|
*/
|
|
if (mark_start > window_start) {
|
|
*curr_runnable_sum = scale_exec_time(irqtime, rq);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The IRQ busy time spanned multiple windows. Process the
|
|
* busy time preceding the current window start first.
|
|
*/
|
|
delta = window_start - mark_start;
|
|
if (delta > window_size)
|
|
delta = window_size;
|
|
delta = scale_exec_time(delta, rq);
|
|
*prev_runnable_sum += delta;
|
|
|
|
/* Process the remaining IRQ busy time in the current window. */
|
|
delta = wallclock - window_start;
|
|
rq->curr_runnable_sum = scale_exec_time(delta, rq);
|
|
|
|
return;
|
|
}
|
|
|
|
done:
|
|
if (!is_idle_task(p) && !exiting_task(p))
|
|
update_top_tasks(p, rq, old_curr_window,
|
|
new_window, full_window);
|
|
}
|
|
|
|
|
|
static inline u32 predict_and_update_buckets(
|
|
struct task_struct *p, u32 runtime) {
|
|
|
|
int bidx;
|
|
u32 pred_demand;
|
|
|
|
if (!sched_predl)
|
|
return 0;
|
|
|
|
bidx = busy_to_bucket(runtime);
|
|
pred_demand = get_pred_busy(p, bidx, runtime);
|
|
bucket_increase(p->ravg.busy_buckets, bidx);
|
|
|
|
return pred_demand;
|
|
}
|
|
|
|
static int
|
|
account_busy_for_task_demand(struct rq *rq, struct task_struct *p, int event)
|
|
{
|
|
/*
|
|
* No need to bother updating task demand for exiting tasks
|
|
* or the idle task.
|
|
*/
|
|
if (exiting_task(p) || is_idle_task(p))
|
|
return 0;
|
|
|
|
/*
|
|
* When a task is waking up it is completing a segment of non-busy
|
|
* time. Likewise, if wait time is not treated as busy time, then
|
|
* when a task begins to run or is migrated, it is not running and
|
|
* is completing a segment of non-busy time.
|
|
*/
|
|
if (event == TASK_WAKE || (!SCHED_ACCOUNT_WAIT_TIME &&
|
|
(event == PICK_NEXT_TASK || event == TASK_MIGRATE)))
|
|
return 0;
|
|
|
|
/*
|
|
* The idle exit time is not accounted for the first task _picked_ up to
|
|
* run on the idle CPU.
|
|
*/
|
|
if (event == PICK_NEXT_TASK && rq->curr == rq->idle)
|
|
return 0;
|
|
|
|
/*
|
|
* TASK_UPDATE can be called on sleeping task, when its moved between
|
|
* related groups
|
|
*/
|
|
if (event == TASK_UPDATE) {
|
|
if (rq->curr == p)
|
|
return 1;
|
|
|
|
return p->on_rq ? SCHED_ACCOUNT_WAIT_TIME : 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
unsigned int sysctl_sched_task_unfilter_period = 200000000;
|
|
|
|
/*
|
|
* Called when new window is starting for a task, to record cpu usage over
|
|
* recently concluded window(s). Normally 'samples' should be 1. It can be > 1
|
|
* when, say, a real-time task runs without preemption for several windows at a
|
|
* stretch.
|
|
*/
|
|
static void update_history(struct rq *rq, struct task_struct *p,
|
|
u32 runtime, int samples, int event)
|
|
{
|
|
u32 *hist = &p->ravg.sum_history[0];
|
|
int ridx, widx;
|
|
u32 max = 0, avg, demand, pred_demand;
|
|
u64 sum = 0;
|
|
u16 demand_scaled, pred_demand_scaled;
|
|
|
|
/* Ignore windows where task had no activity */
|
|
if (!runtime || is_idle_task(p) || exiting_task(p) || !samples)
|
|
goto done;
|
|
|
|
/* Push new 'runtime' value onto stack */
|
|
widx = sched_ravg_hist_size - 1;
|
|
ridx = widx - samples;
|
|
for (; ridx >= 0; --widx, --ridx) {
|
|
hist[widx] = hist[ridx];
|
|
sum += hist[widx];
|
|
if (hist[widx] > max)
|
|
max = hist[widx];
|
|
}
|
|
|
|
for (widx = 0; widx < samples && widx < sched_ravg_hist_size; widx++) {
|
|
hist[widx] = runtime;
|
|
sum += hist[widx];
|
|
if (hist[widx] > max)
|
|
max = hist[widx];
|
|
}
|
|
|
|
p->ravg.sum = 0;
|
|
|
|
if (sysctl_sched_window_stats_policy == WINDOW_STATS_RECENT) {
|
|
demand = runtime;
|
|
} else if (sysctl_sched_window_stats_policy == WINDOW_STATS_MAX) {
|
|
demand = max;
|
|
} else {
|
|
avg = div64_u64(sum, sched_ravg_hist_size);
|
|
if (sysctl_sched_window_stats_policy == WINDOW_STATS_AVG)
|
|
demand = avg;
|
|
else
|
|
demand = max(avg, runtime);
|
|
}
|
|
pred_demand = predict_and_update_buckets(p, runtime);
|
|
demand_scaled = scale_demand(demand);
|
|
pred_demand_scaled = scale_demand(pred_demand);
|
|
|
|
/*
|
|
* A throttled deadline sched class task gets dequeued without
|
|
* changing p->on_rq. Since the dequeue decrements walt stats
|
|
* avoid decrementing it here again.
|
|
*
|
|
* When window is rolled over, the cumulative window demand
|
|
* is reset to the cumulative runnable average (contribution from
|
|
* the tasks on the runqueue). If the current task is dequeued
|
|
* already, it's demand is not included in the cumulative runnable
|
|
* average. So add the task demand separately to cumulative window
|
|
* demand.
|
|
*/
|
|
if (!task_has_dl_policy(p) || !p->dl.dl_throttled) {
|
|
if (task_on_rq_queued(p) &&
|
|
p->sched_class->fixup_walt_sched_stats)
|
|
p->sched_class->fixup_walt_sched_stats(rq, p,
|
|
demand_scaled, pred_demand_scaled);
|
|
else if (rq->curr == p)
|
|
walt_fixup_cum_window_demand(rq, demand_scaled);
|
|
}
|
|
|
|
p->ravg.demand = demand;
|
|
p->ravg.demand_scaled = demand_scaled;
|
|
p->ravg.coloc_demand = div64_u64(sum, sched_ravg_hist_size);
|
|
p->ravg.pred_demand = pred_demand;
|
|
p->ravg.pred_demand_scaled = pred_demand_scaled;
|
|
|
|
if (demand_scaled > sysctl_sched_min_task_util_for_colocation)
|
|
p->unfilter = sysctl_sched_task_unfilter_period;
|
|
else
|
|
if (p->unfilter)
|
|
p->unfilter = max_t(int, 0,
|
|
p->unfilter - p->ravg.last_win_size);
|
|
done:
|
|
trace_sched_update_history(rq, p, runtime, samples, event);
|
|
}
|
|
|
|
static u64 add_to_task_demand(struct rq *rq, struct task_struct *p, u64 delta)
|
|
{
|
|
delta = scale_exec_time(delta, rq);
|
|
p->ravg.sum += delta;
|
|
if (unlikely(p->ravg.sum > sched_ravg_window))
|
|
p->ravg.sum = sched_ravg_window;
|
|
|
|
return delta;
|
|
}
|
|
|
|
/*
|
|
* Account cpu demand of task and/or update task's cpu demand history
|
|
*
|
|
* ms = p->ravg.mark_start;
|
|
* wc = wallclock
|
|
* ws = rq->window_start
|
|
*
|
|
* Three possibilities:
|
|
*
|
|
* a) Task event is contained within one window.
|
|
* window_start < mark_start < wallclock
|
|
*
|
|
* ws ms wc
|
|
* | | |
|
|
* V V V
|
|
* |---------------|
|
|
*
|
|
* In this case, p->ravg.sum is updated *iff* event is appropriate
|
|
* (ex: event == PUT_PREV_TASK)
|
|
*
|
|
* b) Task event spans two windows.
|
|
* mark_start < window_start < wallclock
|
|
*
|
|
* ms ws wc
|
|
* | | |
|
|
* V V V
|
|
* -----|-------------------
|
|
*
|
|
* In this case, p->ravg.sum is updated with (ws - ms) *iff* event
|
|
* is appropriate, then a new window sample is recorded followed
|
|
* by p->ravg.sum being set to (wc - ws) *iff* event is appropriate.
|
|
*
|
|
* c) Task event spans more than two windows.
|
|
*
|
|
* ms ws_tmp ws wc
|
|
* | | | |
|
|
* V V V V
|
|
* ---|-------|-------|-------|-------|------
|
|
* | |
|
|
* |<------ nr_full_windows ------>|
|
|
*
|
|
* In this case, p->ravg.sum is updated with (ws_tmp - ms) first *iff*
|
|
* event is appropriate, window sample of p->ravg.sum is recorded,
|
|
* 'nr_full_window' samples of window_size is also recorded *iff*
|
|
* event is appropriate and finally p->ravg.sum is set to (wc - ws)
|
|
* *iff* event is appropriate.
|
|
*
|
|
* IMPORTANT : Leave p->ravg.mark_start unchanged, as update_cpu_busy_time()
|
|
* depends on it!
|
|
*/
|
|
static u64 update_task_demand(struct task_struct *p, struct rq *rq,
|
|
int event, u64 wallclock)
|
|
{
|
|
u64 mark_start = p->ravg.mark_start;
|
|
u64 delta, window_start = rq->window_start;
|
|
int new_window, nr_full_windows;
|
|
u32 window_size = sched_ravg_window;
|
|
u64 runtime;
|
|
|
|
new_window = mark_start < window_start;
|
|
if (!account_busy_for_task_demand(rq, p, event)) {
|
|
if (new_window)
|
|
/*
|
|
* If the time accounted isn't being accounted as
|
|
* busy time, and a new window started, only the
|
|
* previous window need be closed out with the
|
|
* pre-existing demand. Multiple windows may have
|
|
* elapsed, but since empty windows are dropped,
|
|
* it is not necessary to account those.
|
|
*/
|
|
update_history(rq, p, p->ravg.sum, 1, event);
|
|
return 0;
|
|
}
|
|
|
|
if (!new_window) {
|
|
/*
|
|
* The simple case - busy time contained within the existing
|
|
* window.
|
|
*/
|
|
return add_to_task_demand(rq, p, wallclock - mark_start);
|
|
}
|
|
|
|
/*
|
|
* Busy time spans at least two windows. Temporarily rewind
|
|
* window_start to first window boundary after mark_start.
|
|
*/
|
|
delta = window_start - mark_start;
|
|
nr_full_windows = div64_u64(delta, window_size);
|
|
window_start -= (u64)nr_full_windows * (u64)window_size;
|
|
|
|
/* Process (window_start - mark_start) first */
|
|
runtime = add_to_task_demand(rq, p, window_start - mark_start);
|
|
|
|
/* Push new sample(s) into task's demand history */
|
|
update_history(rq, p, p->ravg.sum, 1, event);
|
|
if (nr_full_windows) {
|
|
u64 scaled_window = scale_exec_time(window_size, rq);
|
|
|
|
update_history(rq, p, scaled_window, nr_full_windows, event);
|
|
runtime += nr_full_windows * scaled_window;
|
|
}
|
|
|
|
/*
|
|
* Roll window_start back to current to process any remainder
|
|
* in current window.
|
|
*/
|
|
window_start += (u64)nr_full_windows * (u64)window_size;
|
|
|
|
/* Process (wallclock - window_start) next */
|
|
mark_start = window_start;
|
|
runtime += add_to_task_demand(rq, p, wallclock - mark_start);
|
|
|
|
return runtime;
|
|
}
|
|
|
|
static void
|
|
update_task_rq_cpu_cycles(struct task_struct *p, struct rq *rq, int event,
|
|
u64 wallclock, u64 irqtime)
|
|
{
|
|
u64 cur_cycles;
|
|
u64 cycles_delta;
|
|
u64 time_delta;
|
|
int cpu = cpu_of(rq);
|
|
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
if (!use_cycle_counter) {
|
|
rq->task_exec_scale = DIV64_U64_ROUNDUP(cpu_cur_freq(cpu) *
|
|
topology_get_cpu_scale(NULL, cpu),
|
|
rq->cluster->max_possible_freq);
|
|
return;
|
|
}
|
|
|
|
cur_cycles = read_cycle_counter(cpu, wallclock);
|
|
|
|
/*
|
|
* If current task is idle task and irqtime == 0 CPU was
|
|
* indeed idle and probably its cycle counter was not
|
|
* increasing. We still need estimatied CPU frequency
|
|
* for IO wait time accounting. Use the previously
|
|
* calculated frequency in such a case.
|
|
*/
|
|
if (!is_idle_task(rq->curr) || irqtime) {
|
|
if (unlikely(cur_cycles < p->cpu_cycles))
|
|
cycles_delta = cur_cycles + (U64_MAX - p->cpu_cycles);
|
|
else
|
|
cycles_delta = cur_cycles - p->cpu_cycles;
|
|
cycles_delta = cycles_delta * NSEC_PER_MSEC;
|
|
|
|
if (event == IRQ_UPDATE && is_idle_task(p))
|
|
/*
|
|
* Time between mark_start of idle task and IRQ handler
|
|
* entry time is CPU cycle counter stall period.
|
|
* Upon IRQ handler entry sched_account_irqstart()
|
|
* replenishes idle task's cpu cycle counter so
|
|
* cycles_delta now represents increased cycles during
|
|
* IRQ handler rather than time between idle entry and
|
|
* IRQ exit. Thus use irqtime as time delta.
|
|
*/
|
|
time_delta = irqtime;
|
|
else
|
|
time_delta = wallclock - p->ravg.mark_start;
|
|
SCHED_BUG_ON((s64)time_delta < 0);
|
|
|
|
rq->task_exec_scale = DIV64_U64_ROUNDUP(cycles_delta *
|
|
topology_get_cpu_scale(NULL, cpu),
|
|
time_delta * rq->cluster->max_possible_freq);
|
|
trace_sched_get_task_cpu_cycles(cpu, event,
|
|
cycles_delta, time_delta, p);
|
|
}
|
|
|
|
p->cpu_cycles = cur_cycles;
|
|
|
|
}
|
|
|
|
static inline void run_walt_irq_work(u64 old_window_start, struct rq *rq)
|
|
{
|
|
u64 result;
|
|
|
|
if (old_window_start == rq->window_start)
|
|
return;
|
|
|
|
result = atomic64_cmpxchg(&walt_irq_work_lastq_ws, old_window_start,
|
|
rq->window_start);
|
|
if (result == old_window_start)
|
|
walt_irq_work_queue(&walt_cpufreq_irq_work);
|
|
}
|
|
|
|
/* Reflect task activity on its demand and cpu's busy time statistics */
|
|
void update_task_ravg(struct task_struct *p, struct rq *rq, int event,
|
|
u64 wallclock, u64 irqtime)
|
|
{
|
|
u64 old_window_start;
|
|
|
|
if (!rq->window_start || sched_disable_window_stats ||
|
|
p->ravg.mark_start == wallclock)
|
|
return;
|
|
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
old_window_start = update_window_start(rq, wallclock, event);
|
|
|
|
if (!p->ravg.mark_start) {
|
|
update_task_cpu_cycles(p, cpu_of(rq), wallclock);
|
|
goto done;
|
|
}
|
|
|
|
update_task_rq_cpu_cycles(p, rq, event, wallclock, irqtime);
|
|
update_task_demand(p, rq, event, wallclock);
|
|
update_cpu_busy_time(p, rq, event, wallclock, irqtime);
|
|
update_task_pred_demand(rq, p, event);
|
|
|
|
if (exiting_task(p))
|
|
goto done;
|
|
|
|
trace_sched_update_task_ravg(p, rq, event, wallclock, irqtime,
|
|
&rq->grp_time);
|
|
trace_sched_update_task_ravg_mini(p, rq, event, wallclock, irqtime,
|
|
&rq->grp_time);
|
|
|
|
done:
|
|
p->ravg.mark_start = wallclock;
|
|
p->ravg.last_win_size = sched_ravg_window;
|
|
|
|
run_walt_irq_work(old_window_start, rq);
|
|
}
|
|
|
|
u32 sched_get_init_task_load(struct task_struct *p)
|
|
{
|
|
return p->init_load_pct;
|
|
}
|
|
|
|
int sched_set_init_task_load(struct task_struct *p, int init_load_pct)
|
|
{
|
|
if (init_load_pct < 0 || init_load_pct > 100)
|
|
return -EINVAL;
|
|
|
|
p->init_load_pct = init_load_pct;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void init_new_task_load(struct task_struct *p)
|
|
{
|
|
int i;
|
|
u32 init_load_windows = sched_init_task_load_windows;
|
|
u32 init_load_windows_scaled = sched_init_task_load_windows_scaled;
|
|
u32 init_load_pct = current->init_load_pct;
|
|
|
|
p->init_load_pct = 0;
|
|
rcu_assign_pointer(p->grp, NULL);
|
|
INIT_LIST_HEAD(&p->grp_list);
|
|
memset(&p->ravg, 0, sizeof(struct ravg));
|
|
p->cpu_cycles = 0;
|
|
|
|
p->ravg.curr_window_cpu = kcalloc(nr_cpu_ids, sizeof(u32),
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
p->ravg.prev_window_cpu = kcalloc(nr_cpu_ids, sizeof(u32),
|
|
GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
if (init_load_pct) {
|
|
init_load_windows = div64_u64((u64)init_load_pct *
|
|
(u64)sched_ravg_window, 100);
|
|
init_load_windows_scaled = scale_demand(init_load_windows);
|
|
}
|
|
|
|
p->ravg.demand = init_load_windows;
|
|
p->ravg.demand_scaled = init_load_windows_scaled;
|
|
p->ravg.coloc_demand = init_load_windows;
|
|
p->ravg.pred_demand = 0;
|
|
p->ravg.pred_demand_scaled = 0;
|
|
for (i = 0; i < RAVG_HIST_SIZE_MAX; ++i)
|
|
p->ravg.sum_history[i] = init_load_windows;
|
|
p->misfit = false;
|
|
p->unfilter = sysctl_sched_task_unfilter_period;
|
|
}
|
|
|
|
/*
|
|
* kfree() may wakeup kswapd. So this function should NOT be called
|
|
* with any CPU's rq->lock acquired.
|
|
*/
|
|
void free_task_load_ptrs(struct task_struct *p)
|
|
{
|
|
kfree(p->ravg.curr_window_cpu);
|
|
kfree(p->ravg.prev_window_cpu);
|
|
|
|
/*
|
|
* update_task_ravg() can be called for exiting tasks. While the
|
|
* function itself ensures correct behavior, the corresponding
|
|
* trace event requires that these pointers be NULL.
|
|
*/
|
|
p->ravg.curr_window_cpu = NULL;
|
|
p->ravg.prev_window_cpu = NULL;
|
|
}
|
|
|
|
void reset_task_stats(struct task_struct *p)
|
|
{
|
|
u32 sum = 0;
|
|
u32 *curr_window_ptr = NULL;
|
|
u32 *prev_window_ptr = NULL;
|
|
|
|
if (exiting_task(p)) {
|
|
sum = EXITING_TASK_MARKER;
|
|
} else {
|
|
curr_window_ptr = p->ravg.curr_window_cpu;
|
|
prev_window_ptr = p->ravg.prev_window_cpu;
|
|
memset(curr_window_ptr, 0, sizeof(u32) * nr_cpu_ids);
|
|
memset(prev_window_ptr, 0, sizeof(u32) * nr_cpu_ids);
|
|
}
|
|
|
|
memset(&p->ravg, 0, sizeof(struct ravg));
|
|
|
|
p->ravg.curr_window_cpu = curr_window_ptr;
|
|
p->ravg.prev_window_cpu = prev_window_ptr;
|
|
|
|
/* Retain EXITING_TASK marker */
|
|
p->ravg.sum_history[0] = sum;
|
|
}
|
|
|
|
void mark_task_starting(struct task_struct *p)
|
|
{
|
|
u64 wallclock;
|
|
struct rq *rq = task_rq(p);
|
|
|
|
if (!rq->window_start || sched_disable_window_stats) {
|
|
reset_task_stats(p);
|
|
return;
|
|
}
|
|
|
|
wallclock = sched_ktime_clock();
|
|
p->ravg.mark_start = p->last_wake_ts = wallclock;
|
|
p->last_enqueued_ts = wallclock;
|
|
update_task_cpu_cycles(p, cpu_of(rq), wallclock);
|
|
}
|
|
|
|
#define pct_to_min_scaled(tunable) \
|
|
div64_u64(((u64)sched_ravg_window * tunable * \
|
|
topology_get_cpu_scale(NULL, \
|
|
cluster_first_cpu(sched_cluster[0]))), \
|
|
((u64)SCHED_CAPACITY_SCALE * 100))
|
|
|
|
static inline void walt_update_group_thresholds(void)
|
|
{
|
|
sched_group_upmigrate =
|
|
pct_to_min_scaled(sysctl_sched_group_upmigrate_pct);
|
|
sched_group_downmigrate =
|
|
pct_to_min_scaled(sysctl_sched_group_downmigrate_pct);
|
|
}
|
|
|
|
static void walt_cpus_capacity_changed(const cpumask_t *cpus)
|
|
{
|
|
unsigned long flags;
|
|
|
|
acquire_rq_locks_irqsave(cpu_possible_mask, &flags);
|
|
|
|
if (cpumask_intersects(cpus, &sched_cluster[0]->cpus))
|
|
walt_update_group_thresholds();
|
|
|
|
release_rq_locks_irqrestore(cpu_possible_mask, &flags);
|
|
}
|
|
|
|
|
|
struct sched_cluster *sched_cluster[NR_CPUS];
|
|
static int num_sched_clusters;
|
|
|
|
struct list_head cluster_head;
|
|
cpumask_t asym_cap_sibling_cpus = CPU_MASK_NONE;
|
|
|
|
static struct sched_cluster init_cluster = {
|
|
.list = LIST_HEAD_INIT(init_cluster.list),
|
|
.id = 0,
|
|
.max_power_cost = 1,
|
|
.min_power_cost = 1,
|
|
.max_possible_capacity = 1024,
|
|
.efficiency = 1,
|
|
.cur_freq = 1,
|
|
.max_freq = 1,
|
|
.max_mitigated_freq = UINT_MAX,
|
|
.min_freq = 1,
|
|
.max_possible_freq = 1,
|
|
.exec_scale_factor = 1024,
|
|
.aggr_grp_load = 0,
|
|
};
|
|
|
|
void init_clusters(void)
|
|
{
|
|
init_cluster.cpus = *cpu_possible_mask;
|
|
raw_spin_lock_init(&init_cluster.load_lock);
|
|
INIT_LIST_HEAD(&cluster_head);
|
|
list_add(&init_cluster.list, &cluster_head);
|
|
}
|
|
|
|
static void
|
|
insert_cluster(struct sched_cluster *cluster, struct list_head *head)
|
|
{
|
|
struct sched_cluster *tmp;
|
|
struct list_head *iter = head;
|
|
|
|
list_for_each_entry(tmp, head, list) {
|
|
if (cluster->max_power_cost < tmp->max_power_cost)
|
|
break;
|
|
iter = &tmp->list;
|
|
}
|
|
|
|
list_add(&cluster->list, iter);
|
|
}
|
|
|
|
static struct sched_cluster *alloc_new_cluster(const struct cpumask *cpus)
|
|
{
|
|
struct sched_cluster *cluster = NULL;
|
|
|
|
cluster = kzalloc(sizeof(struct sched_cluster), GFP_ATOMIC);
|
|
if (!cluster) {
|
|
__WARN_printf("Cluster allocation failed. Possible bad scheduling\n");
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&cluster->list);
|
|
cluster->max_power_cost = 1;
|
|
cluster->min_power_cost = 1;
|
|
cluster->max_possible_capacity = 1024;
|
|
cluster->efficiency = 1;
|
|
cluster->cur_freq = 1;
|
|
cluster->max_freq = 1;
|
|
cluster->max_mitigated_freq = UINT_MAX;
|
|
cluster->min_freq = 1;
|
|
cluster->max_possible_freq = 1;
|
|
cluster->freq_init_done = false;
|
|
|
|
raw_spin_lock_init(&cluster->load_lock);
|
|
cluster->cpus = *cpus;
|
|
cluster->efficiency = topology_get_cpu_scale(NULL, cpumask_first(cpus));
|
|
|
|
if (cluster->efficiency > max_possible_efficiency)
|
|
max_possible_efficiency = cluster->efficiency;
|
|
if (cluster->efficiency < min_possible_efficiency)
|
|
min_possible_efficiency = cluster->efficiency;
|
|
|
|
return cluster;
|
|
}
|
|
|
|
static void add_cluster(const struct cpumask *cpus, struct list_head *head)
|
|
{
|
|
struct sched_cluster *cluster = alloc_new_cluster(cpus);
|
|
int i;
|
|
|
|
if (!cluster)
|
|
return;
|
|
|
|
for_each_cpu(i, cpus)
|
|
cpu_rq(i)->cluster = cluster;
|
|
|
|
insert_cluster(cluster, head);
|
|
num_sched_clusters++;
|
|
}
|
|
|
|
static void cleanup_clusters(struct list_head *head)
|
|
{
|
|
struct sched_cluster *cluster, *tmp;
|
|
int i;
|
|
|
|
list_for_each_entry_safe(cluster, tmp, head, list) {
|
|
for_each_cpu(i, &cluster->cpus)
|
|
cpu_rq(i)->cluster = &init_cluster;
|
|
|
|
list_del(&cluster->list);
|
|
num_sched_clusters--;
|
|
kfree(cluster);
|
|
}
|
|
}
|
|
|
|
static int compute_max_possible_capacity(struct sched_cluster *cluster)
|
|
{
|
|
int capacity = 1024;
|
|
|
|
capacity *= (1024 * cluster->efficiency) / min_possible_efficiency;
|
|
capacity >>= 10;
|
|
|
|
capacity *= (1024 * cluster->max_possible_freq) / min_max_freq;
|
|
capacity >>= 10;
|
|
|
|
return capacity;
|
|
}
|
|
|
|
unsigned int max_power_cost = 1;
|
|
|
|
static int
|
|
compare_clusters(void *priv, struct list_head *a, struct list_head *b)
|
|
{
|
|
struct sched_cluster *cluster1, *cluster2;
|
|
int ret;
|
|
|
|
cluster1 = container_of(a, struct sched_cluster, list);
|
|
cluster2 = container_of(b, struct sched_cluster, list);
|
|
|
|
/*
|
|
* Don't assume higher capacity means higher power. If the
|
|
* power cost is same, sort the higher capacity cluster before
|
|
* the lower capacity cluster to start placing the tasks
|
|
* on the higher capacity cluster.
|
|
*/
|
|
ret = cluster1->max_power_cost > cluster2->max_power_cost ||
|
|
(cluster1->max_power_cost == cluster2->max_power_cost &&
|
|
cluster1->max_possible_capacity <
|
|
cluster2->max_possible_capacity);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void sort_clusters(void)
|
|
{
|
|
struct sched_cluster *cluster;
|
|
struct list_head new_head;
|
|
unsigned int tmp_max = 1;
|
|
|
|
INIT_LIST_HEAD(&new_head);
|
|
|
|
for_each_sched_cluster(cluster) {
|
|
cluster->max_power_cost = power_cost(cluster_first_cpu(cluster),
|
|
max_task_load());
|
|
cluster->min_power_cost = power_cost(cluster_first_cpu(cluster),
|
|
0);
|
|
|
|
if (cluster->max_power_cost > tmp_max)
|
|
tmp_max = cluster->max_power_cost;
|
|
}
|
|
max_power_cost = tmp_max;
|
|
|
|
move_list(&new_head, &cluster_head, true);
|
|
|
|
list_sort(NULL, &new_head, compare_clusters);
|
|
assign_cluster_ids(&new_head);
|
|
|
|
/*
|
|
* Ensure cluster ids are visible to all CPUs before making
|
|
* cluster_head visible.
|
|
*/
|
|
move_list(&cluster_head, &new_head, false);
|
|
}
|
|
|
|
static void update_all_clusters_stats(void)
|
|
{
|
|
struct sched_cluster *cluster;
|
|
u64 highest_mpc = 0, lowest_mpc = U64_MAX;
|
|
unsigned long flags;
|
|
|
|
acquire_rq_locks_irqsave(cpu_possible_mask, &flags);
|
|
|
|
for_each_sched_cluster(cluster) {
|
|
u64 mpc;
|
|
|
|
mpc = cluster->max_possible_capacity =
|
|
compute_max_possible_capacity(cluster);
|
|
|
|
cluster->exec_scale_factor =
|
|
DIV_ROUND_UP(cluster->efficiency * 1024,
|
|
max_possible_efficiency);
|
|
|
|
if (mpc > highest_mpc)
|
|
highest_mpc = mpc;
|
|
|
|
if (mpc < lowest_mpc)
|
|
lowest_mpc = mpc;
|
|
}
|
|
|
|
max_possible_capacity = highest_mpc;
|
|
min_max_possible_capacity = lowest_mpc;
|
|
walt_update_group_thresholds();
|
|
|
|
release_rq_locks_irqrestore(cpu_possible_mask, &flags);
|
|
}
|
|
|
|
void update_cluster_topology(void)
|
|
{
|
|
struct cpumask cpus = *cpu_possible_mask;
|
|
const struct cpumask *cluster_cpus;
|
|
struct sched_cluster *cluster;
|
|
struct list_head new_head;
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&new_head);
|
|
|
|
for_each_cpu(i, &cpus) {
|
|
cluster_cpus = topology_possible_sibling_cpumask(i);
|
|
if (cpumask_empty(cluster_cpus)) {
|
|
WARN(1, "WALT: Invalid cpu topology!!");
|
|
cleanup_clusters(&new_head);
|
|
return;
|
|
}
|
|
cpumask_andnot(&cpus, &cpus, cluster_cpus);
|
|
add_cluster(cluster_cpus, &new_head);
|
|
}
|
|
|
|
assign_cluster_ids(&new_head);
|
|
|
|
/*
|
|
* Ensure cluster ids are visible to all CPUs before making
|
|
* cluster_head visible.
|
|
*/
|
|
move_list(&cluster_head, &new_head, false);
|
|
update_all_clusters_stats();
|
|
|
|
for_each_sched_cluster(cluster) {
|
|
if (cpumask_weight(&cluster->cpus) == 1)
|
|
cpumask_or(&asym_cap_sibling_cpus,
|
|
&asym_cap_sibling_cpus, &cluster->cpus);
|
|
}
|
|
|
|
if (cpumask_weight(&asym_cap_sibling_cpus) == 1)
|
|
cpumask_clear(&asym_cap_sibling_cpus);
|
|
}
|
|
|
|
static unsigned long cpu_max_table_freq[NR_CPUS];
|
|
|
|
static int cpufreq_notifier_policy(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
|
|
struct sched_cluster *cluster = NULL;
|
|
struct cpumask policy_cluster = *policy->related_cpus;
|
|
unsigned int orig_max_freq = 0;
|
|
int i, j, update_capacity = 0;
|
|
|
|
if (val != CPUFREQ_NOTIFY)
|
|
return 0;
|
|
|
|
max_possible_freq = max(max_possible_freq, policy->cpuinfo.max_freq);
|
|
if (min_max_freq == 1)
|
|
min_max_freq = UINT_MAX;
|
|
min_max_freq = min(min_max_freq, policy->cpuinfo.max_freq);
|
|
SCHED_BUG_ON(!min_max_freq);
|
|
SCHED_BUG_ON(!policy->max);
|
|
|
|
for_each_cpu(i, &policy_cluster)
|
|
cpu_max_table_freq[i] = policy->cpuinfo.max_freq;
|
|
|
|
for_each_cpu(i, &policy_cluster) {
|
|
cluster = cpu_rq(i)->cluster;
|
|
cpumask_andnot(&policy_cluster, &policy_cluster,
|
|
&cluster->cpus);
|
|
|
|
orig_max_freq = cluster->max_freq;
|
|
cluster->min_freq = policy->min;
|
|
cluster->max_freq = policy->max;
|
|
cluster->cur_freq = policy->cur;
|
|
|
|
if (!cluster->freq_init_done) {
|
|
mutex_lock(&cluster_lock);
|
|
for_each_cpu(j, &cluster->cpus)
|
|
cpumask_copy(&cpu_rq(j)->freq_domain_cpumask,
|
|
policy->related_cpus);
|
|
cluster->max_possible_freq = policy->cpuinfo.max_freq;
|
|
cluster->max_possible_capacity =
|
|
compute_max_possible_capacity(cluster);
|
|
cluster->freq_init_done = true;
|
|
|
|
sort_clusters();
|
|
update_all_clusters_stats();
|
|
mutex_unlock(&cluster_lock);
|
|
continue;
|
|
}
|
|
|
|
update_capacity += (orig_max_freq != cluster->max_freq);
|
|
}
|
|
|
|
if (update_capacity)
|
|
walt_cpus_capacity_changed(policy->related_cpus);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block notifier_policy_block = {
|
|
.notifier_call = cpufreq_notifier_policy
|
|
};
|
|
|
|
static int cpufreq_notifier_trans(struct notifier_block *nb,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = (struct cpufreq_freqs *)data;
|
|
unsigned int cpu = freq->cpu, new_freq = freq->new;
|
|
unsigned long flags;
|
|
struct sched_cluster *cluster;
|
|
struct cpumask policy_cpus = cpu_rq(cpu)->freq_domain_cpumask;
|
|
int i, j;
|
|
|
|
if (use_cycle_counter)
|
|
return NOTIFY_DONE;
|
|
|
|
if (val != CPUFREQ_POSTCHANGE)
|
|
return NOTIFY_DONE;
|
|
|
|
if (cpu_cur_freq(cpu) == new_freq)
|
|
return NOTIFY_OK;
|
|
|
|
for_each_cpu(i, &policy_cpus) {
|
|
cluster = cpu_rq(i)->cluster;
|
|
|
|
for_each_cpu(j, &cluster->cpus) {
|
|
struct rq *rq = cpu_rq(j);
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
update_task_ravg(rq->curr, rq, TASK_UPDATE,
|
|
sched_ktime_clock(), 0);
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
cluster->cur_freq = new_freq;
|
|
cpumask_andnot(&policy_cpus, &policy_cpus, &cluster->cpus);
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block notifier_trans_block = {
|
|
.notifier_call = cpufreq_notifier_trans
|
|
};
|
|
|
|
static int register_walt_callback(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = cpufreq_register_notifier(¬ifier_policy_block,
|
|
CPUFREQ_POLICY_NOTIFIER);
|
|
if (!ret)
|
|
ret = cpufreq_register_notifier(¬ifier_trans_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
|
|
return ret;
|
|
}
|
|
/*
|
|
* cpufreq callbacks can be registered at core_initcall or later time.
|
|
* Any registration done prior to that is "forgotten" by cpufreq. See
|
|
* initialization of variable init_cpufreq_transition_notifier_list_called
|
|
* for further information.
|
|
*/
|
|
core_initcall(register_walt_callback);
|
|
|
|
int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb)
|
|
{
|
|
unsigned long flags;
|
|
|
|
mutex_lock(&cluster_lock);
|
|
if (!cb->get_cpu_cycle_counter) {
|
|
mutex_unlock(&cluster_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
acquire_rq_locks_irqsave(cpu_possible_mask, &flags);
|
|
cpu_cycle_counter_cb = *cb;
|
|
use_cycle_counter = true;
|
|
release_rq_locks_irqrestore(cpu_possible_mask, &flags);
|
|
|
|
mutex_unlock(&cluster_lock);
|
|
|
|
cpufreq_unregister_notifier(¬ifier_trans_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
return 0;
|
|
}
|
|
|
|
static void transfer_busy_time(struct rq *rq, struct related_thread_group *grp,
|
|
struct task_struct *p, int event);
|
|
|
|
/*
|
|
* Enable colocation and frequency aggregation for all threads in a process.
|
|
* The children inherits the group id from the parent.
|
|
*/
|
|
unsigned int __read_mostly sysctl_sched_coloc_downmigrate_ns;
|
|
|
|
struct related_thread_group *related_thread_groups[MAX_NUM_CGROUP_COLOC_ID];
|
|
static LIST_HEAD(active_related_thread_groups);
|
|
DEFINE_RWLOCK(related_thread_group_lock);
|
|
|
|
/*
|
|
* Task groups whose aggregate demand on a cpu is more than
|
|
* sched_group_upmigrate need to be up-migrated if possible.
|
|
*/
|
|
unsigned int __read_mostly sched_group_upmigrate = 20000000;
|
|
unsigned int __read_mostly sysctl_sched_group_upmigrate_pct = 100;
|
|
|
|
/*
|
|
* Task groups, once up-migrated, will need to drop their aggregate
|
|
* demand to less than sched_group_downmigrate before they are "down"
|
|
* migrated.
|
|
*/
|
|
unsigned int __read_mostly sched_group_downmigrate = 19000000;
|
|
unsigned int __read_mostly sysctl_sched_group_downmigrate_pct = 95;
|
|
|
|
static inline
|
|
void update_best_cluster(struct related_thread_group *grp,
|
|
u64 demand, bool boost)
|
|
{
|
|
if (boost) {
|
|
/*
|
|
* since we are in boost, we can keep grp on min, the boosts
|
|
* will ensure tasks get to bigs
|
|
*/
|
|
grp->skip_min = false;
|
|
return;
|
|
}
|
|
|
|
if (is_suh_max())
|
|
demand = sched_group_upmigrate;
|
|
|
|
if (!grp->skip_min) {
|
|
if (demand >= sched_group_upmigrate) {
|
|
grp->skip_min = true;
|
|
}
|
|
return;
|
|
}
|
|
if (demand < sched_group_downmigrate) {
|
|
if (!sysctl_sched_coloc_downmigrate_ns) {
|
|
grp->skip_min = false;
|
|
return;
|
|
}
|
|
if (!grp->downmigrate_ts) {
|
|
grp->downmigrate_ts = grp->last_update;
|
|
return;
|
|
}
|
|
if (grp->last_update - grp->downmigrate_ts >
|
|
sysctl_sched_coloc_downmigrate_ns) {
|
|
grp->downmigrate_ts = 0;
|
|
grp->skip_min = false;
|
|
}
|
|
} else if (grp->downmigrate_ts)
|
|
grp->downmigrate_ts = 0;
|
|
}
|
|
|
|
int preferred_cluster(struct sched_cluster *cluster, struct task_struct *p)
|
|
{
|
|
struct related_thread_group *grp;
|
|
int rc = -1;
|
|
|
|
rcu_read_lock();
|
|
|
|
grp = task_related_thread_group(p);
|
|
if (grp)
|
|
rc = (sched_cluster[(int)grp->skip_min] == cluster ||
|
|
cpumask_subset(&cluster->cpus, &asym_cap_sibling_cpus));
|
|
|
|
rcu_read_unlock();
|
|
return rc;
|
|
}
|
|
|
|
static void _set_preferred_cluster(struct related_thread_group *grp)
|
|
{
|
|
struct task_struct *p;
|
|
u64 combined_demand = 0;
|
|
bool group_boost = false;
|
|
u64 wallclock;
|
|
bool prev_skip_min = grp->skip_min;
|
|
|
|
if (list_empty(&grp->tasks)) {
|
|
grp->skip_min = false;
|
|
goto out;
|
|
}
|
|
|
|
if (!hmp_capable()) {
|
|
grp->skip_min = false;
|
|
goto out;
|
|
}
|
|
|
|
wallclock = sched_ktime_clock();
|
|
|
|
/*
|
|
* wakeup of two or more related tasks could race with each other and
|
|
* could result in multiple calls to _set_preferred_cluster being issued
|
|
* at same time. Avoid overhead in such cases of rechecking preferred
|
|
* cluster
|
|
*/
|
|
if (wallclock - grp->last_update < sched_ravg_window / 10)
|
|
return;
|
|
|
|
list_for_each_entry(p, &grp->tasks, grp_list) {
|
|
if (task_boost_policy(p) == SCHED_BOOST_ON_BIG) {
|
|
group_boost = true;
|
|
break;
|
|
}
|
|
|
|
if (p->ravg.mark_start < wallclock -
|
|
(sched_ravg_window * sched_ravg_hist_size))
|
|
continue;
|
|
|
|
combined_demand += p->ravg.coloc_demand;
|
|
if (!trace_sched_set_preferred_cluster_enabled()) {
|
|
if (combined_demand > sched_group_upmigrate)
|
|
break;
|
|
}
|
|
}
|
|
|
|
grp->last_update = wallclock;
|
|
update_best_cluster(grp, combined_demand, group_boost);
|
|
trace_sched_set_preferred_cluster(grp, combined_demand);
|
|
out:
|
|
if (grp->id == DEFAULT_CGROUP_COLOC_ID
|
|
&& grp->skip_min != prev_skip_min) {
|
|
if (grp->skip_min)
|
|
grp->start_ts = sched_clock();
|
|
sched_update_hyst_times();
|
|
}
|
|
}
|
|
|
|
void set_preferred_cluster(struct related_thread_group *grp)
|
|
{
|
|
raw_spin_lock(&grp->lock);
|
|
_set_preferred_cluster(grp);
|
|
raw_spin_unlock(&grp->lock);
|
|
}
|
|
|
|
int update_preferred_cluster(struct related_thread_group *grp,
|
|
struct task_struct *p, u32 old_load, bool from_tick)
|
|
{
|
|
u32 new_load = task_load(p);
|
|
|
|
if (!grp)
|
|
return 0;
|
|
|
|
if (unlikely(from_tick && is_suh_max()))
|
|
return 1;
|
|
|
|
/*
|
|
* Update if task's load has changed significantly or a complete window
|
|
* has passed since we last updated preference
|
|
*/
|
|
if (abs(new_load - old_load) > sched_ravg_window / 4 ||
|
|
sched_ktime_clock() - grp->last_update > sched_ravg_window)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define ADD_TASK 0
|
|
#define REM_TASK 1
|
|
|
|
static inline struct related_thread_group*
|
|
lookup_related_thread_group(unsigned int group_id)
|
|
{
|
|
return related_thread_groups[group_id];
|
|
}
|
|
|
|
int alloc_related_thread_groups(void)
|
|
{
|
|
int i, ret;
|
|
struct related_thread_group *grp;
|
|
|
|
/* groupd_id = 0 is invalid as it's special id to remove group. */
|
|
for (i = 1; i < MAX_NUM_CGROUP_COLOC_ID; i++) {
|
|
grp = kzalloc(sizeof(*grp), GFP_NOWAIT);
|
|
if (!grp) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
grp->id = i;
|
|
INIT_LIST_HEAD(&grp->tasks);
|
|
INIT_LIST_HEAD(&grp->list);
|
|
raw_spin_lock_init(&grp->lock);
|
|
|
|
related_thread_groups[i] = grp;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (i = 1; i < MAX_NUM_CGROUP_COLOC_ID; i++) {
|
|
grp = lookup_related_thread_group(i);
|
|
if (grp) {
|
|
kfree(grp);
|
|
related_thread_groups[i] = NULL;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void remove_task_from_group(struct task_struct *p)
|
|
{
|
|
struct related_thread_group *grp = p->grp;
|
|
struct rq *rq;
|
|
int empty_group = 1;
|
|
struct rq_flags rf;
|
|
|
|
raw_spin_lock(&grp->lock);
|
|
|
|
rq = __task_rq_lock(p, &rf);
|
|
transfer_busy_time(rq, p->grp, p, REM_TASK);
|
|
list_del_init(&p->grp_list);
|
|
rcu_assign_pointer(p->grp, NULL);
|
|
__task_rq_unlock(rq, &rf);
|
|
|
|
|
|
if (!list_empty(&grp->tasks)) {
|
|
empty_group = 0;
|
|
_set_preferred_cluster(grp);
|
|
}
|
|
|
|
raw_spin_unlock(&grp->lock);
|
|
|
|
/* Reserved groups cannot be destroyed */
|
|
if (empty_group && grp->id != DEFAULT_CGROUP_COLOC_ID)
|
|
/*
|
|
* We test whether grp->list is attached with list_empty()
|
|
* hence re-init the list after deletion.
|
|
*/
|
|
list_del_init(&grp->list);
|
|
}
|
|
|
|
static int
|
|
add_task_to_group(struct task_struct *p, struct related_thread_group *grp)
|
|
{
|
|
struct rq *rq;
|
|
struct rq_flags rf;
|
|
|
|
raw_spin_lock(&grp->lock);
|
|
|
|
/*
|
|
* Change p->grp under rq->lock. Will prevent races with read-side
|
|
* reference of p->grp in various hot-paths
|
|
*/
|
|
rq = __task_rq_lock(p, &rf);
|
|
transfer_busy_time(rq, grp, p, ADD_TASK);
|
|
list_add(&p->grp_list, &grp->tasks);
|
|
rcu_assign_pointer(p->grp, grp);
|
|
__task_rq_unlock(rq, &rf);
|
|
|
|
_set_preferred_cluster(grp);
|
|
|
|
raw_spin_unlock(&grp->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void add_new_task_to_grp(struct task_struct *new)
|
|
{
|
|
unsigned long flags;
|
|
struct related_thread_group *grp;
|
|
|
|
/*
|
|
* If the task does not belong to colocated schedtune
|
|
* cgroup, nothing to do. We are checking this without
|
|
* lock. Even if there is a race, it will be added
|
|
* to the co-located cgroup via cgroup attach.
|
|
*/
|
|
if (!schedtune_task_colocated(new))
|
|
return;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
write_lock_irqsave(&related_thread_group_lock, flags);
|
|
|
|
/*
|
|
* It's possible that someone already added the new task to the
|
|
* group. or it might have taken out from the colocated schedtune
|
|
* cgroup. check these conditions under lock.
|
|
*/
|
|
if (!schedtune_task_colocated(new) || new->grp) {
|
|
write_unlock_irqrestore(&related_thread_group_lock, flags);
|
|
return;
|
|
}
|
|
|
|
raw_spin_lock(&grp->lock);
|
|
|
|
rcu_assign_pointer(new->grp, grp);
|
|
list_add(&new->grp_list, &grp->tasks);
|
|
|
|
raw_spin_unlock(&grp->lock);
|
|
write_unlock_irqrestore(&related_thread_group_lock, flags);
|
|
}
|
|
|
|
static int __sched_set_group_id(struct task_struct *p, unsigned int group_id)
|
|
{
|
|
int rc = 0;
|
|
unsigned long flags;
|
|
struct related_thread_group *grp = NULL;
|
|
|
|
if (group_id >= MAX_NUM_CGROUP_COLOC_ID)
|
|
return -EINVAL;
|
|
|
|
raw_spin_lock_irqsave(&p->pi_lock, flags);
|
|
write_lock(&related_thread_group_lock);
|
|
|
|
/* Switching from one group to another directly is not permitted */
|
|
if ((current != p && p->flags & PF_EXITING) ||
|
|
(!p->grp && !group_id) ||
|
|
(p->grp && group_id))
|
|
goto done;
|
|
|
|
if (!group_id) {
|
|
remove_task_from_group(p);
|
|
goto done;
|
|
}
|
|
|
|
grp = lookup_related_thread_group(group_id);
|
|
if (list_empty(&grp->list))
|
|
list_add(&grp->list, &active_related_thread_groups);
|
|
|
|
rc = add_task_to_group(p, grp);
|
|
done:
|
|
write_unlock(&related_thread_group_lock);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int sched_set_group_id(struct task_struct *p, unsigned int group_id)
|
|
{
|
|
/* DEFAULT_CGROUP_COLOC_ID is a reserved id */
|
|
if (group_id == DEFAULT_CGROUP_COLOC_ID)
|
|
return -EINVAL;
|
|
|
|
return __sched_set_group_id(p, group_id);
|
|
}
|
|
|
|
unsigned int sched_get_group_id(struct task_struct *p)
|
|
{
|
|
unsigned int group_id;
|
|
struct related_thread_group *grp;
|
|
|
|
rcu_read_lock();
|
|
grp = task_related_thread_group(p);
|
|
group_id = grp ? grp->id : 0;
|
|
rcu_read_unlock();
|
|
|
|
return group_id;
|
|
}
|
|
|
|
#if defined(CONFIG_SCHED_TUNE)
|
|
/*
|
|
* We create a default colocation group at boot. There is no need to
|
|
* synchronize tasks between cgroups at creation time because the
|
|
* correct cgroup hierarchy is not available at boot. Therefore cgroup
|
|
* colocation is turned off by default even though the colocation group
|
|
* itself has been allocated. Furthermore this colocation group cannot
|
|
* be destroyted once it has been created. All of this has been as part
|
|
* of runtime optimizations.
|
|
*
|
|
* The job of synchronizing tasks to the colocation group is done when
|
|
* the colocation flag in the cgroup is turned on.
|
|
*/
|
|
static int __init create_default_coloc_group(void)
|
|
{
|
|
struct related_thread_group *grp = NULL;
|
|
unsigned long flags;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
write_lock_irqsave(&related_thread_group_lock, flags);
|
|
list_add(&grp->list, &active_related_thread_groups);
|
|
write_unlock_irqrestore(&related_thread_group_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(create_default_coloc_group);
|
|
|
|
int sync_cgroup_colocation(struct task_struct *p, bool insert)
|
|
{
|
|
unsigned int grp_id = insert ? DEFAULT_CGROUP_COLOC_ID : 0;
|
|
|
|
return __sched_set_group_id(p, grp_id);
|
|
}
|
|
#endif
|
|
|
|
static bool is_cluster_hosting_top_app(struct sched_cluster *cluster)
|
|
{
|
|
struct related_thread_group *grp;
|
|
bool grp_on_min;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
|
|
if (!grp)
|
|
return false;
|
|
|
|
grp_on_min = !grp->skip_min &&
|
|
(sched_boost_policy() != SCHED_BOOST_ON_BIG);
|
|
|
|
return (is_min_capacity_cluster(cluster) == grp_on_min);
|
|
}
|
|
|
|
static unsigned long max_cap[NR_CPUS];
|
|
static unsigned long thermal_cap_cpu[NR_CPUS];
|
|
|
|
unsigned long thermal_cap(int cpu)
|
|
{
|
|
return thermal_cap_cpu[cpu] ?: SCHED_CAPACITY_SCALE;
|
|
}
|
|
|
|
unsigned long do_thermal_cap(int cpu, unsigned long thermal_max_freq)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
#ifdef CONFIG_ENERGY_MODEL
|
|
int nr_cap_states;
|
|
struct root_domain *rd = rq->rd;
|
|
struct perf_domain *pd;
|
|
unsigned long freq, scale_cpu;
|
|
|
|
if (!max_cap[cpu]) {
|
|
rcu_read_lock();
|
|
pd = rcu_dereference(rd->pd);
|
|
|
|
if (!pd || !pd->em_pd || !pd->em_pd->table) {
|
|
rcu_read_unlock();
|
|
return rq->cpu_capacity_orig;
|
|
}
|
|
|
|
nr_cap_states = em_pd_nr_cap_states(pd->em_pd);
|
|
scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
|
|
freq = pd->em_pd->table[nr_cap_states - 1].frequency;
|
|
max_cap[cpu] = DIV_ROUND_UP(scale_cpu * freq,
|
|
cpu_max_table_freq[cpu]);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
if (cpu_max_table_freq[cpu])
|
|
return div64_ul(thermal_max_freq * max_cap[cpu],
|
|
cpu_max_table_freq[cpu]);
|
|
else
|
|
return rq->cpu_capacity_orig;
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(cpu_freq_min_max_lock);
|
|
void sched_update_cpu_freq_min_max(const cpumask_t *cpus, u32 fmin, u32 fmax)
|
|
{
|
|
struct cpumask cpumask;
|
|
struct sched_cluster *cluster;
|
|
int i, update_capacity = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpu_freq_min_max_lock, flags);
|
|
cpumask_copy(&cpumask, cpus);
|
|
|
|
for_each_cpu(i, &cpumask)
|
|
thermal_cap_cpu[i] = do_thermal_cap(i, fmax);
|
|
|
|
for_each_cpu(i, &cpumask) {
|
|
cluster = cpu_rq(i)->cluster;
|
|
cpumask_andnot(&cpumask, &cpumask, &cluster->cpus);
|
|
update_capacity += (cluster->max_mitigated_freq != fmax);
|
|
cluster->max_mitigated_freq = fmax;
|
|
}
|
|
spin_unlock_irqrestore(&cpu_freq_min_max_lock, flags);
|
|
|
|
if (update_capacity)
|
|
walt_cpus_capacity_changed(cpus);
|
|
}
|
|
|
|
void note_task_waking(struct task_struct *p, u64 wallclock)
|
|
{
|
|
p->last_wake_ts = wallclock;
|
|
}
|
|
|
|
/*
|
|
* Task's cpu usage is accounted in:
|
|
* rq->curr/prev_runnable_sum, when its ->grp is NULL
|
|
* grp->cpu_time[cpu]->curr/prev_runnable_sum, when its ->grp is !NULL
|
|
*
|
|
* Transfer task's cpu usage between those counters when transitioning between
|
|
* groups
|
|
*/
|
|
static void transfer_busy_time(struct rq *rq, struct related_thread_group *grp,
|
|
struct task_struct *p, int event)
|
|
{
|
|
u64 wallclock;
|
|
struct group_cpu_time *cpu_time;
|
|
u64 *src_curr_runnable_sum, *dst_curr_runnable_sum;
|
|
u64 *src_prev_runnable_sum, *dst_prev_runnable_sum;
|
|
u64 *src_nt_curr_runnable_sum, *dst_nt_curr_runnable_sum;
|
|
u64 *src_nt_prev_runnable_sum, *dst_nt_prev_runnable_sum;
|
|
int migrate_type;
|
|
int cpu = cpu_of(rq);
|
|
bool new_task;
|
|
int i;
|
|
|
|
wallclock = sched_ktime_clock();
|
|
|
|
update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
|
|
update_task_ravg(p, rq, TASK_UPDATE, wallclock, 0);
|
|
new_task = is_new_task(p);
|
|
|
|
cpu_time = &rq->grp_time;
|
|
if (event == ADD_TASK) {
|
|
migrate_type = RQ_TO_GROUP;
|
|
|
|
src_curr_runnable_sum = &rq->curr_runnable_sum;
|
|
dst_curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
src_prev_runnable_sum = &rq->prev_runnable_sum;
|
|
dst_prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
|
|
src_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
|
|
dst_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
src_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
|
|
dst_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
|
|
if (*src_curr_runnable_sum < p->ravg.curr_window_cpu[cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event, *src_curr_runnable_sum,
|
|
p->ravg.curr_window_cpu[cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_curr_runnable_sum -= p->ravg.curr_window_cpu[cpu];
|
|
|
|
if (*src_prev_runnable_sum < p->ravg.prev_window_cpu[cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event, *src_prev_runnable_sum,
|
|
p->ravg.prev_window_cpu[cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_prev_runnable_sum -= p->ravg.prev_window_cpu[cpu];
|
|
|
|
if (new_task) {
|
|
if (*src_nt_curr_runnable_sum <
|
|
p->ravg.curr_window_cpu[cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_nt_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event,
|
|
*src_nt_curr_runnable_sum,
|
|
p->ravg.curr_window_cpu[cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_nt_curr_runnable_sum -=
|
|
p->ravg.curr_window_cpu[cpu];
|
|
|
|
if (*src_nt_prev_runnable_sum <
|
|
p->ravg.prev_window_cpu[cpu]) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_nt_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event,
|
|
*src_nt_prev_runnable_sum,
|
|
p->ravg.prev_window_cpu[cpu]);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_nt_prev_runnable_sum -=
|
|
p->ravg.prev_window_cpu[cpu];
|
|
}
|
|
|
|
update_cluster_load_subtractions(p, cpu,
|
|
rq->window_start, new_task);
|
|
|
|
} else {
|
|
migrate_type = GROUP_TO_RQ;
|
|
|
|
src_curr_runnable_sum = &cpu_time->curr_runnable_sum;
|
|
dst_curr_runnable_sum = &rq->curr_runnable_sum;
|
|
src_prev_runnable_sum = &cpu_time->prev_runnable_sum;
|
|
dst_prev_runnable_sum = &rq->prev_runnable_sum;
|
|
|
|
src_nt_curr_runnable_sum = &cpu_time->nt_curr_runnable_sum;
|
|
dst_nt_curr_runnable_sum = &rq->nt_curr_runnable_sum;
|
|
src_nt_prev_runnable_sum = &cpu_time->nt_prev_runnable_sum;
|
|
dst_nt_prev_runnable_sum = &rq->nt_prev_runnable_sum;
|
|
|
|
if (*src_curr_runnable_sum < p->ravg.curr_window) {
|
|
printk_deferred("WALT-UG pid=%u CPU=%d event=%d src_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event, *src_curr_runnable_sum,
|
|
p->ravg.curr_window);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_curr_runnable_sum -= p->ravg.curr_window;
|
|
|
|
if (*src_prev_runnable_sum < p->ravg.prev_window) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event, *src_prev_runnable_sum,
|
|
p->ravg.prev_window);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_prev_runnable_sum -= p->ravg.prev_window;
|
|
|
|
if (new_task) {
|
|
if (*src_nt_curr_runnable_sum < p->ravg.curr_window) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_nt_crs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event,
|
|
*src_nt_curr_runnable_sum,
|
|
p->ravg.curr_window);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_nt_curr_runnable_sum -= p->ravg.curr_window;
|
|
|
|
if (*src_nt_prev_runnable_sum < p->ravg.prev_window) {
|
|
printk_deferred("WALT-BUG pid=%u CPU=%d event=%d src_nt_prs=%llu is lesser than task_contrib=%llu",
|
|
p->pid, cpu, event,
|
|
*src_nt_prev_runnable_sum,
|
|
p->ravg.prev_window);
|
|
walt_task_dump(p);
|
|
SCHED_BUG_ON(1);
|
|
}
|
|
*src_nt_prev_runnable_sum -= p->ravg.prev_window;
|
|
}
|
|
|
|
/*
|
|
* Need to reset curr/prev windows for all CPUs, not just the
|
|
* ones in the same cluster. Since inter cluster migrations
|
|
* did not result in the appropriate book keeping, the values
|
|
* per CPU would be inaccurate.
|
|
*/
|
|
for_each_possible_cpu(i) {
|
|
p->ravg.curr_window_cpu[i] = 0;
|
|
p->ravg.prev_window_cpu[i] = 0;
|
|
}
|
|
}
|
|
|
|
*dst_curr_runnable_sum += p->ravg.curr_window;
|
|
*dst_prev_runnable_sum += p->ravg.prev_window;
|
|
if (new_task) {
|
|
*dst_nt_curr_runnable_sum += p->ravg.curr_window;
|
|
*dst_nt_prev_runnable_sum += p->ravg.prev_window;
|
|
}
|
|
|
|
/*
|
|
* When a task enter or exits a group, it's curr and prev windows are
|
|
* moved to a single CPU. This behavior might be sub-optimal in the
|
|
* exit case, however, it saves us the overhead of handling inter
|
|
* cluster migration fixups while the task is part of a related group.
|
|
*/
|
|
p->ravg.curr_window_cpu[cpu] = p->ravg.curr_window;
|
|
p->ravg.prev_window_cpu[cpu] = p->ravg.prev_window;
|
|
|
|
trace_sched_migration_update_sum(p, migrate_type, rq);
|
|
}
|
|
|
|
bool is_rtgb_active(void)
|
|
{
|
|
struct related_thread_group *grp;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
return grp && grp->skip_min;
|
|
}
|
|
|
|
u64 get_rtgb_active_time(void)
|
|
{
|
|
struct related_thread_group *grp;
|
|
u64 now = sched_clock();
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
|
|
if (grp && grp->skip_min && grp->start_ts)
|
|
return now - grp->start_ts;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void walt_init_window_dep(void);
|
|
static void walt_tunables_fixup(void)
|
|
{
|
|
walt_update_group_thresholds();
|
|
walt_init_window_dep();
|
|
}
|
|
|
|
/*
|
|
* Runs in hard-irq context. This should ideally run just after the latest
|
|
* window roll-over.
|
|
*/
|
|
void walt_irq_work(struct irq_work *irq_work)
|
|
{
|
|
struct sched_cluster *cluster;
|
|
struct rq *rq;
|
|
int cpu;
|
|
u64 wc;
|
|
bool is_migration = false, is_asym_migration = false;
|
|
u64 total_grp_load = 0, min_cluster_grp_load = 0;
|
|
int level = 0;
|
|
unsigned long flags;
|
|
|
|
/* Am I the window rollover work or the migration work? */
|
|
if (irq_work == &walt_migration_irq_work)
|
|
is_migration = true;
|
|
|
|
for_each_cpu(cpu, cpu_possible_mask) {
|
|
if (level == 0)
|
|
raw_spin_lock(&cpu_rq(cpu)->lock);
|
|
else
|
|
raw_spin_lock_nested(&cpu_rq(cpu)->lock, level);
|
|
level++;
|
|
}
|
|
|
|
wc = sched_ktime_clock();
|
|
walt_load_reported_window = atomic64_read(&walt_irq_work_lastq_ws);
|
|
for_each_sched_cluster(cluster) {
|
|
u64 aggr_grp_load = 0;
|
|
|
|
raw_spin_lock(&cluster->load_lock);
|
|
|
|
for_each_cpu(cpu, &cluster->cpus) {
|
|
rq = cpu_rq(cpu);
|
|
if (rq->curr) {
|
|
update_task_ravg(rq->curr, rq,
|
|
TASK_UPDATE, wc, 0);
|
|
account_load_subtractions(rq);
|
|
aggr_grp_load += rq->grp_time.prev_runnable_sum;
|
|
}
|
|
if (is_migration && rq->notif_pending &&
|
|
cpumask_test_cpu(cpu, &asym_cap_sibling_cpus)) {
|
|
is_asym_migration = true;
|
|
rq->notif_pending = false;
|
|
}
|
|
}
|
|
|
|
cluster->aggr_grp_load = aggr_grp_load;
|
|
total_grp_load += aggr_grp_load;
|
|
|
|
if (is_min_capacity_cluster(cluster))
|
|
min_cluster_grp_load = aggr_grp_load;
|
|
raw_spin_unlock(&cluster->load_lock);
|
|
}
|
|
|
|
if (total_grp_load) {
|
|
if (cpumask_weight(&asym_cap_sibling_cpus)) {
|
|
u64 big_grp_load =
|
|
total_grp_load - min_cluster_grp_load;
|
|
|
|
for_each_cpu(cpu, &asym_cap_sibling_cpus)
|
|
cpu_cluster(cpu)->aggr_grp_load = big_grp_load;
|
|
}
|
|
rtgb_active = is_rtgb_active();
|
|
} else {
|
|
rtgb_active = false;
|
|
}
|
|
|
|
if (!is_migration && sysctl_sched_user_hint && time_after(jiffies,
|
|
sched_user_hint_reset_time))
|
|
sysctl_sched_user_hint = 0;
|
|
|
|
for_each_sched_cluster(cluster) {
|
|
cpumask_t cluster_online_cpus;
|
|
unsigned int num_cpus, i = 1;
|
|
|
|
cpumask_and(&cluster_online_cpus, &cluster->cpus,
|
|
cpu_online_mask);
|
|
num_cpus = cpumask_weight(&cluster_online_cpus);
|
|
for_each_cpu(cpu, &cluster_online_cpus) {
|
|
int flag = SCHED_CPUFREQ_WALT;
|
|
|
|
rq = cpu_rq(cpu);
|
|
|
|
if (is_migration) {
|
|
if (rq->notif_pending) {
|
|
flag |= SCHED_CPUFREQ_INTERCLUSTER_MIG;
|
|
rq->notif_pending = false;
|
|
}
|
|
}
|
|
|
|
if (is_asym_migration && cpumask_test_cpu(cpu,
|
|
&asym_cap_sibling_cpus))
|
|
flag |= SCHED_CPUFREQ_INTERCLUSTER_MIG;
|
|
|
|
if (i == num_cpus)
|
|
cpufreq_update_util(cpu_rq(cpu), flag);
|
|
else
|
|
cpufreq_update_util(cpu_rq(cpu), flag |
|
|
SCHED_CPUFREQ_CONTINUE);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the window change request is in pending, good place to
|
|
* change sched_ravg_window since all rq locks are acquired.
|
|
*
|
|
* If the current window roll over is delayed such that the
|
|
* mark_start (current wallclock with which roll over is done)
|
|
* of the current task went past the window start with the
|
|
* updated new window size, delay the update to the next
|
|
* window roll over. Otherwise the CPU counters (prs and crs) are
|
|
* not rolled over properly as mark_start > window_start.
|
|
*/
|
|
if (!is_migration) {
|
|
spin_lock_irqsave(&sched_ravg_window_lock, flags);
|
|
|
|
if ((sched_ravg_window != new_sched_ravg_window) &&
|
|
(wc < this_rq()->window_start + new_sched_ravg_window)) {
|
|
sched_ravg_window_change_time = sched_ktime_clock();
|
|
printk_deferred("ALERT: changing window size from %u to %u at %lu\n",
|
|
sched_ravg_window,
|
|
new_sched_ravg_window,
|
|
sched_ravg_window_change_time);
|
|
sched_ravg_window = new_sched_ravg_window;
|
|
walt_tunables_fixup();
|
|
}
|
|
spin_unlock_irqrestore(&sched_ravg_window_lock, flags);
|
|
}
|
|
|
|
for_each_cpu(cpu, cpu_possible_mask)
|
|
raw_spin_unlock(&cpu_rq(cpu)->lock);
|
|
|
|
if (!is_migration)
|
|
core_ctl_check(this_rq()->window_start);
|
|
}
|
|
|
|
void walt_rotation_checkpoint(int nr_big)
|
|
{
|
|
if (!hmp_capable())
|
|
return;
|
|
|
|
if (!sysctl_sched_walt_rotate_big_tasks || sched_boost() != NO_BOOST) {
|
|
walt_rotation_enabled = 0;
|
|
return;
|
|
}
|
|
|
|
walt_rotation_enabled = nr_big >= num_possible_cpus();
|
|
}
|
|
|
|
void walt_fill_ta_data(struct core_ctl_notif_data *data)
|
|
{
|
|
struct related_thread_group *grp;
|
|
unsigned long flags;
|
|
u64 total_demand = 0, wallclock;
|
|
struct task_struct *p;
|
|
int min_cap_cpu, scale = 1024;
|
|
struct sched_cluster *cluster;
|
|
int i = 0;
|
|
|
|
grp = lookup_related_thread_group(DEFAULT_CGROUP_COLOC_ID);
|
|
|
|
raw_spin_lock_irqsave(&grp->lock, flags);
|
|
if (list_empty(&grp->tasks)) {
|
|
raw_spin_unlock_irqrestore(&grp->lock, flags);
|
|
goto fill_util;
|
|
}
|
|
|
|
wallclock = sched_ktime_clock();
|
|
|
|
list_for_each_entry(p, &grp->tasks, grp_list) {
|
|
if (p->ravg.mark_start < wallclock -
|
|
(sched_ravg_window * sched_ravg_hist_size))
|
|
continue;
|
|
|
|
total_demand += p->ravg.coloc_demand;
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&grp->lock, flags);
|
|
|
|
/*
|
|
* Scale the total demand to the lowest capacity CPU and
|
|
* convert into percentage.
|
|
*
|
|
* P = total_demand/sched_ravg_window * 1024/scale * 100
|
|
*/
|
|
|
|
min_cap_cpu = this_rq()->rd->min_cap_orig_cpu;
|
|
if (min_cap_cpu != -1)
|
|
scale = arch_scale_cpu_capacity(NULL, min_cap_cpu);
|
|
|
|
data->coloc_load_pct = div64_u64(total_demand * 1024 * 100,
|
|
(u64)sched_ravg_window * scale);
|
|
|
|
fill_util:
|
|
for_each_sched_cluster(cluster) {
|
|
int fcpu = cluster_first_cpu(cluster);
|
|
|
|
if (i == MAX_CLUSTERS)
|
|
break;
|
|
|
|
scale = arch_scale_cpu_capacity(NULL, fcpu);
|
|
data->ta_util_pct[i] = div64_u64(cluster->aggr_grp_load * 1024 *
|
|
100, (u64)sched_ravg_window * scale);
|
|
|
|
scale = arch_scale_freq_capacity(fcpu);
|
|
data->cur_cap_pct[i] = (scale * 100)/1024;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
int walt_proc_group_thresholds_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
static DEFINE_MUTEX(mutex);
|
|
struct rq *rq = cpu_rq(cpumask_first(cpu_possible_mask));
|
|
unsigned long flags;
|
|
|
|
if (unlikely(num_sched_clusters <= 0))
|
|
return -EPERM;
|
|
|
|
mutex_lock(&mutex);
|
|
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret || !write) {
|
|
mutex_unlock(&mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The load scale factor update happens with all
|
|
* rqs locked. so acquiring 1 CPU rq lock and
|
|
* updating the thresholds is sufficient for
|
|
* an atomic update.
|
|
*/
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
walt_update_group_thresholds();
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void walt_init_window_dep(void)
|
|
{
|
|
walt_cpu_util_freq_divisor =
|
|
(sched_ravg_window >> SCHED_CAPACITY_SHIFT) * 100;
|
|
walt_scale_demand_divisor = sched_ravg_window >> SCHED_CAPACITY_SHIFT;
|
|
|
|
sched_init_task_load_windows =
|
|
div64_u64((u64)sysctl_sched_init_task_load_pct *
|
|
(u64)sched_ravg_window, 100);
|
|
sched_init_task_load_windows_scaled =
|
|
scale_demand(sched_init_task_load_windows);
|
|
}
|
|
|
|
static void walt_init_once(void)
|
|
{
|
|
init_irq_work(&walt_migration_irq_work, walt_irq_work);
|
|
init_irq_work(&walt_cpufreq_irq_work, walt_irq_work);
|
|
walt_rotate_work_init();
|
|
walt_init_window_dep();
|
|
}
|
|
|
|
void walt_sched_init_rq(struct rq *rq)
|
|
{
|
|
int j;
|
|
|
|
if (cpu_of(rq) == 0)
|
|
walt_init_once();
|
|
|
|
cpumask_set_cpu(cpu_of(rq), &rq->freq_domain_cpumask);
|
|
|
|
rq->walt_stats.cumulative_runnable_avg_scaled = 0;
|
|
rq->prev_window_size = sched_ravg_window;
|
|
rq->window_start = 0;
|
|
rq->walt_stats.nr_big_tasks = 0;
|
|
rq->walt_flags = 0;
|
|
rq->cur_irqload = 0;
|
|
rq->avg_irqload = 0;
|
|
rq->irqload_ts = 0;
|
|
rq->task_exec_scale = 1024;
|
|
|
|
/*
|
|
* All cpus part of same cluster by default. This avoids the
|
|
* need to check for rq->cluster being non-NULL in hot-paths
|
|
* like select_best_cpu()
|
|
*/
|
|
rq->cluster = &init_cluster;
|
|
rq->curr_runnable_sum = rq->prev_runnable_sum = 0;
|
|
rq->nt_curr_runnable_sum = rq->nt_prev_runnable_sum = 0;
|
|
memset(&rq->grp_time, 0, sizeof(struct group_cpu_time));
|
|
rq->old_busy_time = 0;
|
|
rq->old_estimated_time = 0;
|
|
rq->old_busy_time_group = 0;
|
|
rq->walt_stats.pred_demands_sum_scaled = 0;
|
|
rq->ed_task = NULL;
|
|
rq->curr_table = 0;
|
|
rq->prev_top = 0;
|
|
rq->curr_top = 0;
|
|
rq->last_cc_update = 0;
|
|
rq->cycles = 0;
|
|
for (j = 0; j < NUM_TRACKED_WINDOWS; j++) {
|
|
memset(&rq->load_subs[j], 0,
|
|
sizeof(struct load_subtractions));
|
|
rq->top_tasks[j] = kcalloc(NUM_LOAD_INDICES,
|
|
sizeof(u8), GFP_NOWAIT);
|
|
/* No other choice */
|
|
BUG_ON(!rq->top_tasks[j]);
|
|
clear_top_tasks_bitmap(rq->top_tasks_bitmap[j]);
|
|
}
|
|
rq->cum_window_demand_scaled = 0;
|
|
rq->notif_pending = false;
|
|
}
|
|
|
|
int walt_proc_user_hint_handler(struct ctl_table *table,
|
|
int write, void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret;
|
|
unsigned int old_value;
|
|
static DEFINE_MUTEX(mutex);
|
|
|
|
mutex_lock(&mutex);
|
|
|
|
sched_user_hint_reset_time = jiffies + HZ;
|
|
old_value = sysctl_sched_user_hint;
|
|
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
|
|
if (ret || !write || (old_value == sysctl_sched_user_hint))
|
|
goto unlock;
|
|
|
|
irq_work_queue(&walt_migration_irq_work);
|
|
|
|
unlock:
|
|
mutex_unlock(&mutex);
|
|
return ret;
|
|
}
|
|
|
|
static inline void sched_window_nr_ticks_change(void)
|
|
{
|
|
int new_ticks;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sched_ravg_window_lock, flags);
|
|
|
|
new_ticks = min(display_sched_ravg_window_nr_ticks,
|
|
sysctl_sched_ravg_window_nr_ticks);
|
|
|
|
new_sched_ravg_window = new_ticks * (NSEC_PER_SEC / HZ);
|
|
spin_unlock_irqrestore(&sched_ravg_window_lock, flags);
|
|
}
|
|
|
|
int sched_ravg_window_handler(struct ctl_table *table,
|
|
int write, void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret = -EPERM;
|
|
static DEFINE_MUTEX(mutex);
|
|
unsigned int prev_value;
|
|
|
|
mutex_lock(&mutex);
|
|
|
|
if (write && (HZ != 250 || !sysctl_sched_dynamic_ravg_window_enable))
|
|
goto unlock;
|
|
|
|
prev_value = sysctl_sched_ravg_window_nr_ticks;
|
|
ret = proc_douintvec_ravg_window(table, write, buffer, lenp, ppos);
|
|
if (ret || !write || (prev_value == sysctl_sched_ravg_window_nr_ticks))
|
|
goto unlock;
|
|
|
|
sched_window_nr_ticks_change();
|
|
|
|
unlock:
|
|
mutex_unlock(&mutex);
|
|
return ret;
|
|
}
|
|
|
|
void sched_set_refresh_rate(enum fps fps)
|
|
{
|
|
if (HZ == 250 && sysctl_sched_dynamic_ravg_window_enable) {
|
|
if (fps > FPS90)
|
|
display_sched_ravg_window_nr_ticks = 2;
|
|
else if (fps == FPS90)
|
|
display_sched_ravg_window_nr_ticks = 3;
|
|
else
|
|
display_sched_ravg_window_nr_ticks = 5;
|
|
|
|
sched_window_nr_ticks_change();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(sched_set_refresh_rate);
|
|
|
|
/* Migration margins */
|
|
unsigned int sysctl_sched_capacity_margin_up[MAX_MARGIN_LEVELS] = {
|
|
[0 ... MAX_MARGIN_LEVELS-1] = 1078}; /* ~5% margin */
|
|
unsigned int sysctl_sched_capacity_margin_down[MAX_MARGIN_LEVELS] = {
|
|
[0 ... MAX_MARGIN_LEVELS-1] = 1205}; /* ~15% margin */
|
|
|
|
#ifdef CONFIG_PROC_SYSCTL
|
|
static void sched_update_updown_migrate_values(bool up)
|
|
{
|
|
int i = 0, cpu;
|
|
struct sched_cluster *cluster;
|
|
int cap_margin_levels = num_sched_clusters - 1;
|
|
|
|
if (cap_margin_levels > 1) {
|
|
/*
|
|
* No need to worry about CPUs in last cluster
|
|
* if there are more than 2 clusters in the system
|
|
*/
|
|
for_each_sched_cluster(cluster) {
|
|
for_each_cpu(cpu, &cluster->cpus) {
|
|
|
|
if (up)
|
|
sched_capacity_margin_up[cpu] =
|
|
sysctl_sched_capacity_margin_up[i];
|
|
else
|
|
sched_capacity_margin_down[cpu] =
|
|
sysctl_sched_capacity_margin_down[i];
|
|
}
|
|
|
|
if (++i >= cap_margin_levels)
|
|
break;
|
|
}
|
|
} else {
|
|
for_each_possible_cpu(cpu) {
|
|
if (up)
|
|
sched_capacity_margin_up[cpu] =
|
|
sysctl_sched_capacity_margin_up[0];
|
|
else
|
|
sched_capacity_margin_down[cpu] =
|
|
sysctl_sched_capacity_margin_down[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
int sched_updown_migrate_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp,
|
|
loff_t *ppos)
|
|
{
|
|
int ret, i;
|
|
unsigned int *data = (unsigned int *)table->data;
|
|
unsigned int *old_val;
|
|
static DEFINE_MUTEX(mutex);
|
|
int cap_margin_levels = num_sched_clusters ? num_sched_clusters - 1 : 0;
|
|
|
|
if (cap_margin_levels <= 0)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&mutex);
|
|
|
|
if (table->maxlen != (sizeof(unsigned int) * cap_margin_levels))
|
|
table->maxlen = sizeof(unsigned int) * cap_margin_levels;
|
|
|
|
if (!write) {
|
|
ret = proc_douintvec_capacity(table, write, buffer, lenp, ppos);
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
/*
|
|
* Cache the old values so that they can be restored
|
|
* if either the write fails (for example out of range values)
|
|
* or the downmigrate and upmigrate are not in sync.
|
|
*/
|
|
old_val = kmemdup(data, table->maxlen, GFP_KERNEL);
|
|
if (!old_val) {
|
|
ret = -ENOMEM;
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
ret = proc_douintvec_capacity(table, write, buffer, lenp, ppos);
|
|
|
|
if (ret) {
|
|
memcpy(data, old_val, table->maxlen);
|
|
goto free_old_val;
|
|
}
|
|
|
|
for (i = 0; i < cap_margin_levels; i++) {
|
|
if (sysctl_sched_capacity_margin_up[i] >
|
|
sysctl_sched_capacity_margin_down[i]) {
|
|
memcpy(data, old_val, table->maxlen);
|
|
ret = -EINVAL;
|
|
goto free_old_val;
|
|
}
|
|
}
|
|
|
|
sched_update_updown_migrate_values(data ==
|
|
&sysctl_sched_capacity_margin_up[0]);
|
|
|
|
free_old_val:
|
|
kfree(old_val);
|
|
unlock_mutex:
|
|
mutex_unlock(&mutex);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|