6dc3ebb376
This change is for general scheduler improvement. Change-Id: Id1692f724f2efd22ada3365cebd154f1999930b5 Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org> [clingutla@codeaurora.org: Resolved trivial merge conflicts] Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org>
3232 lines
83 KiB
C
3232 lines
83 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Scheduler internal types and methods:
|
|
*/
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/sched/autogroup.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/cpufreq.h>
|
|
#include <linux/sched/cputime.h>
|
|
#include <linux/sched/deadline.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/idle.h>
|
|
#include <linux/sched/init.h>
|
|
#include <linux/sched/isolation.h>
|
|
#include <linux/sched/jobctl.h>
|
|
#include <linux/sched/loadavg.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/nohz.h>
|
|
#include <linux/sched/numa_balancing.h>
|
|
#include <linux/sched/prio.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/smt.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/sched/sysctl.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sched/topology.h>
|
|
#include <linux/sched/user.h>
|
|
#include <linux/sched/wake_q.h>
|
|
#include <linux/sched/xacct.h>
|
|
|
|
#include <uapi/linux/sched/types.h>
|
|
|
|
#include <linux/binfmts.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/delayacct.h>
|
|
#include <linux/energy_model.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/membarrier.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/psi.h>
|
|
#include <linux/rcupdate_wait.h>
|
|
#include <linux/security.h>
|
|
#include <linux/stackprotector.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/swait.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/task_work.h>
|
|
#include <linux/tsacct_kern.h>
|
|
|
|
#include <asm/tlb.h>
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
# include <asm/paravirt.h>
|
|
#endif
|
|
|
|
#include "cpupri.h"
|
|
#include "cpudeadline.h"
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
|
|
#else
|
|
# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
|
|
#endif
|
|
|
|
#include "tune.h"
|
|
|
|
struct rq;
|
|
struct cpuidle_state;
|
|
|
|
extern __read_mostly bool sched_predl;
|
|
extern unsigned int sched_capacity_margin_up[NR_CPUS];
|
|
extern unsigned int sched_capacity_margin_down[NR_CPUS];
|
|
|
|
struct sched_walt_cpu_load {
|
|
unsigned long nl;
|
|
unsigned long pl;
|
|
bool rtgb_active;
|
|
u64 ws;
|
|
};
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
extern unsigned int sched_ravg_window;
|
|
|
|
struct walt_sched_stats {
|
|
int nr_big_tasks;
|
|
u64 cumulative_runnable_avg_scaled;
|
|
u64 pred_demands_sum_scaled;
|
|
unsigned int nr_rtg_high_prio_tasks;
|
|
};
|
|
|
|
struct group_cpu_time {
|
|
u64 curr_runnable_sum;
|
|
u64 prev_runnable_sum;
|
|
u64 nt_curr_runnable_sum;
|
|
u64 nt_prev_runnable_sum;
|
|
};
|
|
|
|
struct load_subtractions {
|
|
u64 window_start;
|
|
u64 subs;
|
|
u64 new_subs;
|
|
};
|
|
|
|
#define NUM_TRACKED_WINDOWS 2
|
|
#define NUM_LOAD_INDICES 1000
|
|
|
|
struct sched_cluster {
|
|
raw_spinlock_t load_lock;
|
|
struct list_head list;
|
|
struct cpumask cpus;
|
|
int id;
|
|
int max_power_cost;
|
|
int min_power_cost;
|
|
int max_possible_capacity;
|
|
int efficiency; /* Differentiate cpus with different IPC capability */
|
|
unsigned int exec_scale_factor;
|
|
/*
|
|
* max_freq = user maximum
|
|
* max_mitigated_freq = thermal defined maximum
|
|
* max_possible_freq = maximum supported by hardware
|
|
*/
|
|
unsigned int cur_freq, max_freq, max_mitigated_freq, min_freq;
|
|
unsigned int max_possible_freq;
|
|
bool freq_init_done;
|
|
u64 aggr_grp_load;
|
|
};
|
|
|
|
extern cpumask_t asym_cap_sibling_cpus;
|
|
#endif /* CONFIG_SCHED_WALT */
|
|
|
|
/* task_struct::on_rq states: */
|
|
#define TASK_ON_RQ_QUEUED 1
|
|
#define TASK_ON_RQ_MIGRATING 2
|
|
|
|
extern __read_mostly int scheduler_running;
|
|
|
|
extern unsigned long calc_load_update;
|
|
extern atomic_long_t calc_load_tasks;
|
|
|
|
extern void calc_global_load_tick(struct rq *this_rq);
|
|
extern long calc_load_fold_active(struct rq *this_rq, long adjust);
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void cpu_load_update_active(struct rq *this_rq);
|
|
extern void init_sched_groups_capacity(int cpu, struct sched_domain *sd);
|
|
#else
|
|
static inline void cpu_load_update_active(struct rq *this_rq) { }
|
|
#endif
|
|
|
|
/*
|
|
* Helpers for converting nanosecond timing to jiffy resolution
|
|
*/
|
|
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
|
|
|
|
/*
|
|
* Increase resolution of nice-level calculations for 64-bit architectures.
|
|
* The extra resolution improves shares distribution and load balancing of
|
|
* low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
|
|
* hierarchies, especially on larger systems. This is not a user-visible change
|
|
* and does not change the user-interface for setting shares/weights.
|
|
*
|
|
* We increase resolution only if we have enough bits to allow this increased
|
|
* resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
|
|
* are pretty high and the returns do not justify the increased costs.
|
|
*
|
|
* Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
|
|
* increase coverage and consistency always enable it on 64-bit platforms.
|
|
*/
|
|
#ifdef CONFIG_64BIT
|
|
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
|
|
# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
|
|
# define scale_load_down(w) \
|
|
({ \
|
|
unsigned long __w = (w); \
|
|
if (__w) \
|
|
__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
|
|
__w; \
|
|
})
|
|
#else
|
|
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
|
|
# define scale_load(w) (w)
|
|
# define scale_load_down(w) (w)
|
|
#endif
|
|
|
|
/*
|
|
* Task weight (visible to users) and its load (invisible to users) have
|
|
* independent resolution, but they should be well calibrated. We use
|
|
* scale_load() and scale_load_down(w) to convert between them. The
|
|
* following must be true:
|
|
*
|
|
* scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
|
|
*
|
|
*/
|
|
#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
|
|
|
|
/*
|
|
* Single value that decides SCHED_DEADLINE internal math precision.
|
|
* 10 -> just above 1us
|
|
* 9 -> just above 0.5us
|
|
*/
|
|
#define DL_SCALE 10
|
|
|
|
/*
|
|
* Single value that denotes runtime == period, ie unlimited time.
|
|
*/
|
|
#define RUNTIME_INF ((u64)~0ULL)
|
|
|
|
static inline int idle_policy(int policy)
|
|
{
|
|
return policy == SCHED_IDLE;
|
|
}
|
|
static inline int fair_policy(int policy)
|
|
{
|
|
return policy == SCHED_NORMAL || policy == SCHED_BATCH;
|
|
}
|
|
|
|
static inline int rt_policy(int policy)
|
|
{
|
|
return policy == SCHED_FIFO || policy == SCHED_RR;
|
|
}
|
|
|
|
static inline int dl_policy(int policy)
|
|
{
|
|
return policy == SCHED_DEADLINE;
|
|
}
|
|
static inline bool valid_policy(int policy)
|
|
{
|
|
return idle_policy(policy) || fair_policy(policy) ||
|
|
rt_policy(policy) || dl_policy(policy);
|
|
}
|
|
|
|
static inline int task_has_rt_policy(struct task_struct *p)
|
|
{
|
|
return rt_policy(p->policy);
|
|
}
|
|
|
|
static inline int task_has_dl_policy(struct task_struct *p)
|
|
{
|
|
return dl_policy(p->policy);
|
|
}
|
|
|
|
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
|
|
|
|
/*
|
|
* !! For sched_setattr_nocheck() (kernel) only !!
|
|
*
|
|
* This is actually gross. :(
|
|
*
|
|
* It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
|
|
* tasks, but still be able to sleep. We need this on platforms that cannot
|
|
* atomically change clock frequency. Remove once fast switching will be
|
|
* available on such platforms.
|
|
*
|
|
* SUGOV stands for SchedUtil GOVernor.
|
|
*/
|
|
#define SCHED_FLAG_SUGOV 0x10000000
|
|
|
|
static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
|
|
{
|
|
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
|
|
return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Tells if entity @a should preempt entity @b.
|
|
*/
|
|
static inline bool
|
|
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
|
|
{
|
|
return dl_entity_is_special(a) ||
|
|
dl_time_before(a->deadline, b->deadline);
|
|
}
|
|
|
|
/*
|
|
* This is the priority-queue data structure of the RT scheduling class:
|
|
*/
|
|
struct rt_prio_array {
|
|
DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
|
|
struct list_head queue[MAX_RT_PRIO];
|
|
};
|
|
|
|
struct rt_bandwidth {
|
|
/* nests inside the rq lock: */
|
|
raw_spinlock_t rt_runtime_lock;
|
|
ktime_t rt_period;
|
|
u64 rt_runtime;
|
|
struct hrtimer rt_period_timer;
|
|
unsigned int rt_period_active;
|
|
};
|
|
|
|
void __dl_clear_params(struct task_struct *p);
|
|
|
|
/*
|
|
* To keep the bandwidth of -deadline tasks and groups under control
|
|
* we need some place where:
|
|
* - store the maximum -deadline bandwidth of the system (the group);
|
|
* - cache the fraction of that bandwidth that is currently allocated.
|
|
*
|
|
* This is all done in the data structure below. It is similar to the
|
|
* one used for RT-throttling (rt_bandwidth), with the main difference
|
|
* that, since here we are only interested in admission control, we
|
|
* do not decrease any runtime while the group "executes", neither we
|
|
* need a timer to replenish it.
|
|
*
|
|
* With respect to SMP, the bandwidth is given on a per-CPU basis,
|
|
* meaning that:
|
|
* - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
|
|
* - dl_total_bw array contains, in the i-eth element, the currently
|
|
* allocated bandwidth on the i-eth CPU.
|
|
* Moreover, groups consume bandwidth on each CPU, while tasks only
|
|
* consume bandwidth on the CPU they're running on.
|
|
* Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
|
|
* that will be shown the next time the proc or cgroup controls will
|
|
* be red. It on its turn can be changed by writing on its own
|
|
* control.
|
|
*/
|
|
struct dl_bandwidth {
|
|
raw_spinlock_t dl_runtime_lock;
|
|
u64 dl_runtime;
|
|
u64 dl_period;
|
|
};
|
|
|
|
static inline int dl_bandwidth_enabled(void)
|
|
{
|
|
return sysctl_sched_rt_runtime >= 0;
|
|
}
|
|
|
|
struct dl_bw {
|
|
raw_spinlock_t lock;
|
|
u64 bw;
|
|
u64 total_bw;
|
|
};
|
|
|
|
static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
|
|
|
|
static inline
|
|
void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
|
|
{
|
|
dl_b->total_bw -= tsk_bw;
|
|
__dl_update(dl_b, (s32)tsk_bw / cpus);
|
|
}
|
|
|
|
static inline
|
|
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
|
|
{
|
|
dl_b->total_bw += tsk_bw;
|
|
__dl_update(dl_b, -((s32)tsk_bw / cpus));
|
|
}
|
|
|
|
static inline
|
|
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
|
|
{
|
|
return dl_b->bw != -1 &&
|
|
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
|
|
}
|
|
|
|
extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
|
|
extern void init_dl_bw(struct dl_bw *dl_b);
|
|
extern int sched_dl_global_validate(void);
|
|
extern void sched_dl_do_global(void);
|
|
extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
|
|
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
|
|
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
|
|
extern bool __checkparam_dl(const struct sched_attr *attr);
|
|
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
|
|
extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
|
|
extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
|
|
extern bool dl_cpu_busy(unsigned int cpu);
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
#include <linux/cgroup.h>
|
|
#include <linux/psi.h>
|
|
|
|
struct cfs_rq;
|
|
struct rt_rq;
|
|
|
|
extern struct list_head task_groups;
|
|
|
|
struct cfs_bandwidth {
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
raw_spinlock_t lock;
|
|
ktime_t period;
|
|
u64 quota;
|
|
u64 runtime;
|
|
s64 hierarchical_quota;
|
|
|
|
short idle;
|
|
short period_active;
|
|
struct hrtimer period_timer;
|
|
struct hrtimer slack_timer;
|
|
struct list_head throttled_cfs_rq;
|
|
|
|
/* Statistics: */
|
|
int nr_periods;
|
|
int nr_throttled;
|
|
u64 throttled_time;
|
|
|
|
bool distribute_running;
|
|
#endif
|
|
};
|
|
|
|
/* Task group related information */
|
|
struct task_group {
|
|
struct cgroup_subsys_state css;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/* schedulable entities of this group on each CPU */
|
|
struct sched_entity **se;
|
|
/* runqueue "owned" by this group on each CPU */
|
|
struct cfs_rq **cfs_rq;
|
|
unsigned long shares;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* load_avg can be heavily contended at clock tick time, so put
|
|
* it in its own cacheline separated from the fields above which
|
|
* will also be accessed at each tick.
|
|
*/
|
|
atomic_long_t load_avg ____cacheline_aligned;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct sched_rt_entity **rt_se;
|
|
struct rt_rq **rt_rq;
|
|
|
|
struct rt_bandwidth rt_bandwidth;
|
|
#endif
|
|
|
|
struct rcu_head rcu;
|
|
struct list_head list;
|
|
|
|
struct task_group *parent;
|
|
struct list_head siblings;
|
|
struct list_head children;
|
|
|
|
#ifdef CONFIG_SCHED_AUTOGROUP
|
|
struct autogroup *autogroup;
|
|
#endif
|
|
|
|
struct cfs_bandwidth cfs_bandwidth;
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK_GROUP
|
|
/* The two decimal precision [%] value requested from user-space */
|
|
unsigned int uclamp_pct[UCLAMP_CNT];
|
|
/* Clamp values requested for a task group */
|
|
struct uclamp_se uclamp_req[UCLAMP_CNT];
|
|
/* Effective clamp values used for a task group */
|
|
struct uclamp_se uclamp[UCLAMP_CNT];
|
|
/* Latency-sensitive flag used for a task group */
|
|
unsigned int latency_sensitive;
|
|
#endif
|
|
|
|
};
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
|
|
|
|
/*
|
|
* A weight of 0 or 1 can cause arithmetics problems.
|
|
* A weight of a cfs_rq is the sum of weights of which entities
|
|
* are queued on this cfs_rq, so a weight of a entity should not be
|
|
* too large, so as the shares value of a task group.
|
|
* (The default weight is 1024 - so there's no practical
|
|
* limitation from this.)
|
|
*/
|
|
#define MIN_SHARES (1UL << 1)
|
|
#define MAX_SHARES (1UL << 18)
|
|
#endif
|
|
|
|
typedef int (*tg_visitor)(struct task_group *, void *);
|
|
|
|
extern int walk_tg_tree_from(struct task_group *from,
|
|
tg_visitor down, tg_visitor up, void *data);
|
|
|
|
/*
|
|
* Iterate the full tree, calling @down when first entering a node and @up when
|
|
* leaving it for the final time.
|
|
*
|
|
* Caller must hold rcu_lock or sufficient equivalent.
|
|
*/
|
|
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
|
|
{
|
|
return walk_tg_tree_from(&root_task_group, down, up, data);
|
|
}
|
|
|
|
extern int tg_nop(struct task_group *tg, void *data);
|
|
|
|
extern void free_fair_sched_group(struct task_group *tg);
|
|
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
|
|
extern void online_fair_sched_group(struct task_group *tg);
|
|
extern void unregister_fair_sched_group(struct task_group *tg);
|
|
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
|
|
struct sched_entity *se, int cpu,
|
|
struct sched_entity *parent);
|
|
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
|
|
|
|
extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
|
|
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
|
|
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
|
|
|
|
extern void free_rt_sched_group(struct task_group *tg);
|
|
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
|
|
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
|
|
struct sched_rt_entity *rt_se, int cpu,
|
|
struct sched_rt_entity *parent);
|
|
extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
|
|
extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
|
|
extern long sched_group_rt_runtime(struct task_group *tg);
|
|
extern long sched_group_rt_period(struct task_group *tg);
|
|
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
|
|
|
|
extern struct task_group *sched_create_group(struct task_group *parent);
|
|
extern void sched_online_group(struct task_group *tg,
|
|
struct task_group *parent);
|
|
extern void sched_destroy_group(struct task_group *tg);
|
|
extern void sched_offline_group(struct task_group *tg);
|
|
|
|
extern void sched_move_task(struct task_struct *tsk);
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void set_task_rq_fair(struct sched_entity *se,
|
|
struct cfs_rq *prev, struct cfs_rq *next);
|
|
#else /* !CONFIG_SMP */
|
|
static inline void set_task_rq_fair(struct sched_entity *se,
|
|
struct cfs_rq *prev, struct cfs_rq *next) { }
|
|
#endif /* CONFIG_SMP */
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
#else /* CONFIG_CGROUP_SCHED */
|
|
|
|
struct cfs_bandwidth { };
|
|
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
/* CFS-related fields in a runqueue */
|
|
struct cfs_rq {
|
|
struct load_weight load;
|
|
unsigned long runnable_weight;
|
|
unsigned int nr_running;
|
|
unsigned int h_nr_running;
|
|
|
|
u64 exec_clock;
|
|
u64 min_vruntime;
|
|
#ifndef CONFIG_64BIT
|
|
u64 min_vruntime_copy;
|
|
#endif
|
|
|
|
struct rb_root_cached tasks_timeline;
|
|
|
|
/*
|
|
* 'curr' points to currently running entity on this cfs_rq.
|
|
* It is set to NULL otherwise (i.e when none are currently running).
|
|
*/
|
|
struct sched_entity *curr;
|
|
struct sched_entity *next;
|
|
struct sched_entity *last;
|
|
struct sched_entity *skip;
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
unsigned int nr_spread_over;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* CFS load tracking
|
|
*/
|
|
struct sched_avg avg;
|
|
#ifndef CONFIG_64BIT
|
|
u64 load_last_update_time_copy;
|
|
#endif
|
|
struct {
|
|
raw_spinlock_t lock ____cacheline_aligned;
|
|
int nr;
|
|
unsigned long load_avg;
|
|
unsigned long util_avg;
|
|
unsigned long runnable_sum;
|
|
} removed;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
unsigned long tg_load_avg_contrib;
|
|
long propagate;
|
|
long prop_runnable_sum;
|
|
|
|
/*
|
|
* h_load = weight * f(tg)
|
|
*
|
|
* Where f(tg) is the recursive weight fraction assigned to
|
|
* this group.
|
|
*/
|
|
unsigned long h_load;
|
|
u64 last_h_load_update;
|
|
struct sched_entity *h_load_next;
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
|
|
|
|
/*
|
|
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
|
|
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
|
|
* (like users, containers etc.)
|
|
*
|
|
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
|
|
* This list is used during load balance.
|
|
*/
|
|
int on_list;
|
|
struct list_head leaf_cfs_rq_list;
|
|
struct task_group *tg; /* group that "owns" this runqueue */
|
|
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
#ifdef CONFIG_SCHED_WALT
|
|
struct walt_sched_stats walt_stats;
|
|
#endif
|
|
int runtime_enabled;
|
|
s64 runtime_remaining;
|
|
|
|
u64 throttled_clock;
|
|
u64 throttled_clock_task;
|
|
u64 throttled_clock_task_time;
|
|
int throttled;
|
|
int throttle_count;
|
|
struct list_head throttled_list;
|
|
#endif /* CONFIG_CFS_BANDWIDTH */
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
};
|
|
|
|
static inline int rt_bandwidth_enabled(void)
|
|
{
|
|
return sysctl_sched_rt_runtime >= 0;
|
|
}
|
|
|
|
/* RT IPI pull logic requires IRQ_WORK */
|
|
#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
|
|
# define HAVE_RT_PUSH_IPI
|
|
#endif
|
|
|
|
/* Real-Time classes' related field in a runqueue: */
|
|
struct rt_rq {
|
|
struct rt_prio_array active;
|
|
unsigned int rt_nr_running;
|
|
unsigned int rr_nr_running;
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
struct {
|
|
int curr; /* highest queued rt task prio */
|
|
#ifdef CONFIG_SMP
|
|
int next; /* next highest */
|
|
#endif
|
|
} highest_prio;
|
|
#endif
|
|
#ifdef CONFIG_SMP
|
|
unsigned long rt_nr_migratory;
|
|
unsigned long rt_nr_total;
|
|
int overloaded;
|
|
struct plist_head pushable_tasks;
|
|
|
|
#endif /* CONFIG_SMP */
|
|
int rt_queued;
|
|
|
|
int rt_throttled;
|
|
u64 rt_time;
|
|
u64 rt_runtime;
|
|
/* Nests inside the rq lock: */
|
|
raw_spinlock_t rt_runtime_lock;
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
unsigned long rt_nr_boosted;
|
|
|
|
struct rq *rq;
|
|
struct task_group *tg;
|
|
#endif
|
|
};
|
|
|
|
static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
|
|
{
|
|
return rt_rq->rt_queued && rt_rq->rt_nr_running;
|
|
}
|
|
|
|
/* Deadline class' related fields in a runqueue */
|
|
struct dl_rq {
|
|
/* runqueue is an rbtree, ordered by deadline */
|
|
struct rb_root_cached root;
|
|
|
|
unsigned long dl_nr_running;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Deadline values of the currently executing and the
|
|
* earliest ready task on this rq. Caching these facilitates
|
|
* the decision wether or not a ready but not running task
|
|
* should migrate somewhere else.
|
|
*/
|
|
struct {
|
|
u64 curr;
|
|
u64 next;
|
|
} earliest_dl;
|
|
|
|
unsigned long dl_nr_migratory;
|
|
int overloaded;
|
|
|
|
/*
|
|
* Tasks on this rq that can be pushed away. They are kept in
|
|
* an rb-tree, ordered by tasks' deadlines, with caching
|
|
* of the leftmost (earliest deadline) element.
|
|
*/
|
|
struct rb_root_cached pushable_dl_tasks_root;
|
|
#else
|
|
struct dl_bw dl_bw;
|
|
#endif
|
|
/*
|
|
* "Active utilization" for this runqueue: increased when a
|
|
* task wakes up (becomes TASK_RUNNING) and decreased when a
|
|
* task blocks
|
|
*/
|
|
u64 running_bw;
|
|
|
|
/*
|
|
* Utilization of the tasks "assigned" to this runqueue (including
|
|
* the tasks that are in runqueue and the tasks that executed on this
|
|
* CPU and blocked). Increased when a task moves to this runqueue, and
|
|
* decreased when the task moves away (migrates, changes scheduling
|
|
* policy, or terminates).
|
|
* This is needed to compute the "inactive utilization" for the
|
|
* runqueue (inactive utilization = this_bw - running_bw).
|
|
*/
|
|
u64 this_bw;
|
|
u64 extra_bw;
|
|
|
|
/*
|
|
* Inverse of the fraction of CPU utilization that can be reclaimed
|
|
* by the GRUB algorithm.
|
|
*/
|
|
u64 bw_ratio;
|
|
};
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/* An entity is a task if it doesn't "own" a runqueue */
|
|
#define entity_is_task(se) (!se->my_q)
|
|
#else
|
|
#define entity_is_task(se) 1
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* XXX we want to get rid of these helpers and use the full load resolution.
|
|
*/
|
|
static inline long se_weight(struct sched_entity *se)
|
|
{
|
|
return scale_load_down(se->load.weight);
|
|
}
|
|
|
|
static inline long se_runnable(struct sched_entity *se)
|
|
{
|
|
return scale_load_down(se->runnable_weight);
|
|
}
|
|
|
|
static inline bool sched_asym_prefer(int a, int b)
|
|
{
|
|
return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
|
|
}
|
|
|
|
struct perf_domain {
|
|
struct em_perf_domain *em_pd;
|
|
struct perf_domain *next;
|
|
struct rcu_head rcu;
|
|
};
|
|
|
|
struct max_cpu_capacity {
|
|
raw_spinlock_t lock;
|
|
unsigned long val;
|
|
int cpu;
|
|
};
|
|
|
|
/* Scheduling group status flags */
|
|
#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
|
|
#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
|
|
#define SG_HAS_MISFIT_TASK 0x4 /* Group has misfit task. */
|
|
|
|
/*
|
|
* We add the notion of a root-domain which will be used to define per-domain
|
|
* variables. Each exclusive cpuset essentially defines an island domain by
|
|
* fully partitioning the member CPUs from any other cpuset. Whenever a new
|
|
* exclusive cpuset is created, we also create and attach a new root-domain
|
|
* object.
|
|
*
|
|
*/
|
|
struct root_domain {
|
|
atomic_t refcount;
|
|
atomic_t rto_count;
|
|
struct rcu_head rcu;
|
|
cpumask_var_t span;
|
|
cpumask_var_t online;
|
|
|
|
/*
|
|
* Indicate pullable load on at least one CPU, e.g:
|
|
* - More than one runnable task
|
|
* - Running task is misfit
|
|
*/
|
|
int overload;
|
|
|
|
/*
|
|
* The bit corresponding to a CPU gets set here if such CPU has more
|
|
* than one runnable -deadline task (as it is below for RT tasks).
|
|
*/
|
|
cpumask_var_t dlo_mask;
|
|
atomic_t dlo_count;
|
|
struct dl_bw dl_bw;
|
|
struct cpudl cpudl;
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
/*
|
|
* For IPI pull requests, loop across the rto_mask.
|
|
*/
|
|
struct irq_work rto_push_work;
|
|
raw_spinlock_t rto_lock;
|
|
/* These are only updated and read within rto_lock */
|
|
int rto_loop;
|
|
int rto_cpu;
|
|
/* These atomics are updated outside of a lock */
|
|
atomic_t rto_loop_next;
|
|
atomic_t rto_loop_start;
|
|
#endif
|
|
/*
|
|
* The "RT overload" flag: it gets set if a CPU has more than
|
|
* one runnable RT task.
|
|
*/
|
|
cpumask_var_t rto_mask;
|
|
struct cpupri cpupri;
|
|
|
|
/* Maximum cpu capacity in the system. */
|
|
struct max_cpu_capacity max_cpu_capacity;
|
|
|
|
/*
|
|
* NULL-terminated list of performance domains intersecting with the
|
|
* CPUs of the rd. Protected by RCU.
|
|
*/
|
|
struct perf_domain *pd;
|
|
|
|
/* First cpu with maximum and minimum original capacity */
|
|
int max_cap_orig_cpu, min_cap_orig_cpu;
|
|
/* First cpu with mid capacity */
|
|
int mid_cap_orig_cpu;
|
|
};
|
|
|
|
extern struct root_domain def_root_domain;
|
|
extern struct mutex sched_domains_mutex;
|
|
|
|
extern void init_defrootdomain(void);
|
|
extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
|
|
extern int sched_init_domains(const struct cpumask *cpu_map);
|
|
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
|
|
extern void sched_get_rd(struct root_domain *rd);
|
|
extern void sched_put_rd(struct root_domain *rd);
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
extern void rto_push_irq_work_func(struct irq_work *work);
|
|
#endif
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
/*
|
|
* struct uclamp_bucket - Utilization clamp bucket
|
|
* @value: utilization clamp value for tasks on this clamp bucket
|
|
* @tasks: number of RUNNABLE tasks on this clamp bucket
|
|
*
|
|
* Keep track of how many tasks are RUNNABLE for a given utilization
|
|
* clamp value.
|
|
*/
|
|
struct uclamp_bucket {
|
|
unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
|
|
unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
|
|
};
|
|
|
|
/*
|
|
* struct uclamp_rq - rq's utilization clamp
|
|
* @value: currently active clamp values for a rq
|
|
* @bucket: utilization clamp buckets affecting a rq
|
|
*
|
|
* Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
|
|
* A clamp value is affecting a rq when there is at least one task RUNNABLE
|
|
* (or actually running) with that value.
|
|
*
|
|
* There are up to UCLAMP_CNT possible different clamp values, currently there
|
|
* are only two: minimum utilization and maximum utilization.
|
|
*
|
|
* All utilization clamping values are MAX aggregated, since:
|
|
* - for util_min: we want to run the CPU at least at the max of the minimum
|
|
* utilization required by its currently RUNNABLE tasks.
|
|
* - for util_max: we want to allow the CPU to run up to the max of the
|
|
* maximum utilization allowed by its currently RUNNABLE tasks.
|
|
*
|
|
* Since on each system we expect only a limited number of different
|
|
* utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
|
|
* the metrics required to compute all the per-rq utilization clamp values.
|
|
*/
|
|
struct uclamp_rq {
|
|
unsigned int value;
|
|
struct uclamp_bucket bucket[UCLAMP_BUCKETS];
|
|
};
|
|
#endif /* CONFIG_UCLAMP_TASK */
|
|
|
|
/*
|
|
* This is the main, per-CPU runqueue data structure.
|
|
*
|
|
* Locking rule: those places that want to lock multiple runqueues
|
|
* (such as the load balancing or the thread migration code), lock
|
|
* acquire operations must be ordered by ascending &runqueue.
|
|
*/
|
|
struct rq {
|
|
/* runqueue lock: */
|
|
raw_spinlock_t lock;
|
|
|
|
/*
|
|
* nr_running and cpu_load should be in the same cacheline because
|
|
* remote CPUs use both these fields when doing load calculation.
|
|
*/
|
|
unsigned int nr_running;
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
unsigned int nr_numa_running;
|
|
unsigned int nr_preferred_running;
|
|
unsigned int numa_migrate_on;
|
|
#endif
|
|
#define CPU_LOAD_IDX_MAX 5
|
|
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
#ifdef CONFIG_SMP
|
|
unsigned long last_load_update_tick;
|
|
unsigned long last_blocked_load_update_tick;
|
|
unsigned int has_blocked_load;
|
|
#endif /* CONFIG_SMP */
|
|
unsigned int nohz_tick_stopped;
|
|
atomic_t nohz_flags;
|
|
#endif /* CONFIG_NO_HZ_COMMON */
|
|
|
|
/* capture load from *all* tasks on this CPU: */
|
|
struct load_weight load;
|
|
unsigned long nr_load_updates;
|
|
u64 nr_switches;
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
/* Utilization clamp values based on CPU's RUNNABLE tasks */
|
|
struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
|
|
unsigned int uclamp_flags;
|
|
#define UCLAMP_FLAG_IDLE 0x01
|
|
#endif
|
|
|
|
struct cfs_rq cfs;
|
|
struct rt_rq rt;
|
|
struct dl_rq dl;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/* list of leaf cfs_rq on this CPU: */
|
|
struct list_head leaf_cfs_rq_list;
|
|
struct list_head *tmp_alone_branch;
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
/*
|
|
* This is part of a global counter where only the total sum
|
|
* over all CPUs matters. A task can increase this counter on
|
|
* one CPU and if it got migrated afterwards it may decrease
|
|
* it on another CPU. Always updated under the runqueue lock:
|
|
*/
|
|
unsigned long nr_uninterruptible;
|
|
|
|
struct task_struct *curr;
|
|
struct task_struct *idle;
|
|
struct task_struct *stop;
|
|
unsigned long next_balance;
|
|
struct mm_struct *prev_mm;
|
|
|
|
unsigned int clock_update_flags;
|
|
u64 clock;
|
|
/* Ensure that all clocks are in the same cache line */
|
|
u64 clock_task ____cacheline_aligned;
|
|
u64 clock_pelt;
|
|
unsigned long lost_idle_time;
|
|
|
|
atomic_t nr_iowait;
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct root_domain *rd;
|
|
struct sched_domain *sd;
|
|
|
|
unsigned long cpu_capacity;
|
|
unsigned long cpu_capacity_orig;
|
|
|
|
struct callback_head *balance_callback;
|
|
|
|
unsigned char idle_balance;
|
|
|
|
unsigned long misfit_task_load;
|
|
|
|
/* For active balancing */
|
|
int active_balance;
|
|
int push_cpu;
|
|
struct task_struct *push_task;
|
|
struct cpu_stop_work active_balance_work;
|
|
|
|
/* CPU of this runqueue: */
|
|
int cpu;
|
|
int online;
|
|
|
|
struct list_head cfs_tasks;
|
|
|
|
struct sched_avg avg_rt;
|
|
struct sched_avg avg_dl;
|
|
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
|
|
struct sched_avg avg_irq;
|
|
#endif
|
|
u64 idle_stamp;
|
|
u64 avg_idle;
|
|
|
|
/* This is used to determine avg_idle's max value */
|
|
u64 max_idle_balance_cost;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
struct sched_cluster *cluster;
|
|
struct cpumask freq_domain_cpumask;
|
|
struct walt_sched_stats walt_stats;
|
|
|
|
u64 window_start;
|
|
u32 prev_window_size;
|
|
unsigned long walt_flags;
|
|
|
|
u64 cur_irqload;
|
|
u64 avg_irqload;
|
|
u64 irqload_ts;
|
|
struct task_struct *ed_task;
|
|
u64 task_exec_scale;
|
|
u64 old_busy_time, old_busy_time_group;
|
|
u64 old_estimated_time;
|
|
u64 curr_runnable_sum;
|
|
u64 prev_runnable_sum;
|
|
u64 nt_curr_runnable_sum;
|
|
u64 nt_prev_runnable_sum;
|
|
u64 cum_window_demand_scaled;
|
|
struct group_cpu_time grp_time;
|
|
struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
|
|
DECLARE_BITMAP_ARRAY(top_tasks_bitmap,
|
|
NUM_TRACKED_WINDOWS, NUM_LOAD_INDICES);
|
|
u8 *top_tasks[NUM_TRACKED_WINDOWS];
|
|
u8 curr_table;
|
|
int prev_top;
|
|
int curr_top;
|
|
bool notif_pending;
|
|
u64 last_cc_update;
|
|
u64 cycles;
|
|
#endif /* CONFIG_SCHED_WALT */
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
u64 prev_irq_time;
|
|
#endif
|
|
#ifdef CONFIG_PARAVIRT
|
|
u64 prev_steal_time;
|
|
#endif
|
|
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
|
|
u64 prev_steal_time_rq;
|
|
#endif
|
|
|
|
/* calc_load related fields */
|
|
unsigned long calc_load_update;
|
|
long calc_load_active;
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
#ifdef CONFIG_SMP
|
|
int hrtick_csd_pending;
|
|
call_single_data_t hrtick_csd;
|
|
#endif
|
|
struct hrtimer hrtick_timer;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/* latency stats */
|
|
struct sched_info rq_sched_info;
|
|
unsigned long long rq_cpu_time;
|
|
/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
|
|
|
|
/* sys_sched_yield() stats */
|
|
unsigned int yld_count;
|
|
|
|
/* schedule() stats */
|
|
unsigned int sched_count;
|
|
unsigned int sched_goidle;
|
|
|
|
/* try_to_wake_up() stats */
|
|
unsigned int ttwu_count;
|
|
unsigned int ttwu_local;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct llist_head wake_list;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_IDLE
|
|
/* Must be inspected within a rcu lock section */
|
|
struct cpuidle_state *idle_state;
|
|
int idle_state_idx;
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
|
/* CPU runqueue to which this cfs_rq is attached */
|
|
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
|
|
{
|
|
return cfs_rq->rq;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
|
|
{
|
|
return container_of(cfs_rq, struct rq, cfs);
|
|
}
|
|
#endif
|
|
|
|
static inline int cpu_of(struct rq *rq)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return rq->cpu;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
extern void __update_idle_core(struct rq *rq);
|
|
|
|
static inline void update_idle_core(struct rq *rq)
|
|
{
|
|
if (static_branch_unlikely(&sched_smt_present))
|
|
__update_idle_core(rq);
|
|
}
|
|
|
|
#else
|
|
static inline void update_idle_core(struct rq *rq) { }
|
|
#endif
|
|
|
|
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
|
|
|
|
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
|
|
#define this_rq() this_cpu_ptr(&runqueues)
|
|
#define task_rq(p) cpu_rq(task_cpu(p))
|
|
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
|
|
#define raw_rq() raw_cpu_ptr(&runqueues)
|
|
|
|
extern void update_rq_clock(struct rq *rq);
|
|
|
|
static inline u64 __rq_clock_broken(struct rq *rq)
|
|
{
|
|
return READ_ONCE(rq->clock);
|
|
}
|
|
|
|
/*
|
|
* rq::clock_update_flags bits
|
|
*
|
|
* %RQCF_REQ_SKIP - will request skipping of clock update on the next
|
|
* call to __schedule(). This is an optimisation to avoid
|
|
* neighbouring rq clock updates.
|
|
*
|
|
* %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
|
|
* in effect and calls to update_rq_clock() are being ignored.
|
|
*
|
|
* %RQCF_UPDATED - is a debug flag that indicates whether a call has been
|
|
* made to update_rq_clock() since the last time rq::lock was pinned.
|
|
*
|
|
* If inside of __schedule(), clock_update_flags will have been
|
|
* shifted left (a left shift is a cheap operation for the fast path
|
|
* to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
|
|
*
|
|
* if (rq-clock_update_flags >= RQCF_UPDATED)
|
|
*
|
|
* to check if %RQCF_UPADTED is set. It'll never be shifted more than
|
|
* one position though, because the next rq_unpin_lock() will shift it
|
|
* back.
|
|
*/
|
|
#define RQCF_REQ_SKIP 0x01
|
|
#define RQCF_ACT_SKIP 0x02
|
|
#define RQCF_UPDATED 0x04
|
|
|
|
static inline void assert_clock_updated(struct rq *rq)
|
|
{
|
|
/*
|
|
* The only reason for not seeing a clock update since the
|
|
* last rq_pin_lock() is if we're currently skipping updates.
|
|
*/
|
|
SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
|
|
}
|
|
|
|
static inline u64 rq_clock(struct rq *rq)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
assert_clock_updated(rq);
|
|
|
|
return rq->clock;
|
|
}
|
|
|
|
static inline u64 rq_clock_task(struct rq *rq)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
assert_clock_updated(rq);
|
|
|
|
return rq->clock_task;
|
|
}
|
|
|
|
static inline void rq_clock_skip_update(struct rq *rq)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
rq->clock_update_flags |= RQCF_REQ_SKIP;
|
|
}
|
|
|
|
/*
|
|
* See rt task throttling, which is the only time a skip
|
|
* request is cancelled.
|
|
*/
|
|
static inline void rq_clock_cancel_skipupdate(struct rq *rq)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
rq->clock_update_flags &= ~RQCF_REQ_SKIP;
|
|
}
|
|
|
|
struct rq_flags {
|
|
unsigned long flags;
|
|
struct pin_cookie cookie;
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
/*
|
|
* A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
|
|
* current pin context is stashed here in case it needs to be
|
|
* restored in rq_repin_lock().
|
|
*/
|
|
unsigned int clock_update_flags;
|
|
#endif
|
|
};
|
|
|
|
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
|
|
{
|
|
rf->cookie = lockdep_pin_lock(&rq->lock);
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
|
|
rf->clock_update_flags = 0;
|
|
#endif
|
|
}
|
|
|
|
static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
if (rq->clock_update_flags > RQCF_ACT_SKIP)
|
|
rf->clock_update_flags = RQCF_UPDATED;
|
|
#endif
|
|
|
|
lockdep_unpin_lock(&rq->lock, rf->cookie);
|
|
}
|
|
|
|
static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
|
|
{
|
|
lockdep_repin_lock(&rq->lock, rf->cookie);
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
/*
|
|
* Restore the value we stashed in @rf for this pin context.
|
|
*/
|
|
rq->clock_update_flags |= rf->clock_update_flags;
|
|
#endif
|
|
}
|
|
|
|
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
|
__acquires(rq->lock);
|
|
|
|
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
|
__acquires(p->pi_lock)
|
|
__acquires(rq->lock);
|
|
|
|
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
static inline void
|
|
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
__releases(p->pi_lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
|
|
}
|
|
|
|
static inline void
|
|
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
raw_spin_lock_irqsave(&rq->lock, rf->flags);
|
|
rq_pin_lock(rq, rf);
|
|
}
|
|
|
|
static inline void
|
|
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
raw_spin_lock_irq(&rq->lock);
|
|
rq_pin_lock(rq, rf);
|
|
}
|
|
|
|
static inline void
|
|
rq_lock(struct rq *rq, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
raw_spin_lock(&rq->lock);
|
|
rq_pin_lock(rq, rf);
|
|
}
|
|
|
|
static inline void
|
|
rq_relock(struct rq *rq, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
raw_spin_lock(&rq->lock);
|
|
rq_repin_lock(rq, rf);
|
|
}
|
|
|
|
static inline void
|
|
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
|
|
}
|
|
|
|
static inline void
|
|
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock_irq(&rq->lock);
|
|
}
|
|
|
|
static inline void
|
|
rq_unlock(struct rq *rq, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
static inline struct rq *
|
|
this_rq_lock_irq(struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
struct rq *rq;
|
|
|
|
local_irq_disable();
|
|
rq = this_rq();
|
|
rq_lock(rq, rf);
|
|
return rq;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
enum numa_topology_type {
|
|
NUMA_DIRECT,
|
|
NUMA_GLUELESS_MESH,
|
|
NUMA_BACKPLANE,
|
|
};
|
|
extern enum numa_topology_type sched_numa_topology_type;
|
|
extern int sched_max_numa_distance;
|
|
extern bool find_numa_distance(int distance);
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern void sched_init_numa(void);
|
|
extern void sched_domains_numa_masks_set(unsigned int cpu);
|
|
extern void sched_domains_numa_masks_clear(unsigned int cpu);
|
|
#else
|
|
static inline void sched_init_numa(void) { }
|
|
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
|
|
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/* The regions in numa_faults array from task_struct */
|
|
enum numa_faults_stats {
|
|
NUMA_MEM = 0,
|
|
NUMA_CPU,
|
|
NUMA_MEMBUF,
|
|
NUMA_CPUBUF
|
|
};
|
|
extern void sched_setnuma(struct task_struct *p, int node);
|
|
extern int migrate_task_to(struct task_struct *p, int cpu);
|
|
extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
|
|
#else
|
|
static inline void
|
|
init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
|
|
{
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
|
|
int cpu, int scpu);
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline void
|
|
queue_balance_callback(struct rq *rq,
|
|
struct callback_head *head,
|
|
void (*func)(struct rq *rq))
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
if (unlikely(head->next))
|
|
return;
|
|
|
|
head->func = (void (*)(struct callback_head *))func;
|
|
head->next = rq->balance_callback;
|
|
rq->balance_callback = head;
|
|
}
|
|
|
|
extern void sched_ttwu_pending(void);
|
|
|
|
#define rcu_dereference_check_sched_domain(p) \
|
|
rcu_dereference_check((p), \
|
|
lockdep_is_held(&sched_domains_mutex))
|
|
|
|
/*
|
|
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
|
|
* See detach_destroy_domains: synchronize_sched for details.
|
|
*
|
|
* The domain tree of any CPU may only be accessed from within
|
|
* preempt-disabled sections.
|
|
*/
|
|
#define for_each_domain(cpu, __sd) \
|
|
for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
|
|
__sd; __sd = __sd->parent)
|
|
|
|
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
|
|
|
|
/**
|
|
* highest_flag_domain - Return highest sched_domain containing flag.
|
|
* @cpu: The CPU whose highest level of sched domain is to
|
|
* be returned.
|
|
* @flag: The flag to check for the highest sched_domain
|
|
* for the given CPU.
|
|
*
|
|
* Returns the highest sched_domain of a CPU which contains the given flag.
|
|
*/
|
|
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
|
|
{
|
|
struct sched_domain *sd, *hsd = NULL;
|
|
|
|
for_each_domain(cpu, sd) {
|
|
if (!(sd->flags & flag))
|
|
break;
|
|
hsd = sd;
|
|
}
|
|
|
|
return hsd;
|
|
}
|
|
|
|
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
|
|
{
|
|
struct sched_domain *sd;
|
|
|
|
for_each_domain(cpu, sd) {
|
|
if (sd->flags & flag)
|
|
break;
|
|
}
|
|
|
|
return sd;
|
|
}
|
|
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
|
|
DECLARE_PER_CPU(int, sd_llc_size);
|
|
DECLARE_PER_CPU(int, sd_llc_id);
|
|
DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
|
|
extern struct static_key_false sched_asym_cpucapacity;
|
|
|
|
struct sched_group_capacity {
|
|
atomic_t ref;
|
|
/*
|
|
* CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
|
|
* for a single CPU.
|
|
*/
|
|
unsigned long capacity;
|
|
unsigned long min_capacity; /* Min per-CPU capacity in group */
|
|
unsigned long max_capacity; /* Max per-CPU capacity in group */
|
|
unsigned long next_update;
|
|
int imbalance; /* XXX unrelated to capacity but shared group state */
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
int id;
|
|
#endif
|
|
|
|
unsigned long cpumask[0]; /* Balance mask */
|
|
};
|
|
|
|
struct sched_group {
|
|
struct sched_group *next; /* Must be a circular list */
|
|
atomic_t ref;
|
|
|
|
unsigned int group_weight;
|
|
struct sched_group_capacity *sgc;
|
|
int asym_prefer_cpu; /* CPU of highest priority in group */
|
|
|
|
/*
|
|
* The CPUs this group covers.
|
|
*
|
|
* NOTE: this field is variable length. (Allocated dynamically
|
|
* by attaching extra space to the end of the structure,
|
|
* depending on how many CPUs the kernel has booted up with)
|
|
*/
|
|
unsigned long cpumask[0];
|
|
};
|
|
|
|
static inline struct cpumask *sched_group_span(struct sched_group *sg)
|
|
{
|
|
return to_cpumask(sg->cpumask);
|
|
}
|
|
|
|
/*
|
|
* See build_balance_mask().
|
|
*/
|
|
static inline struct cpumask *group_balance_mask(struct sched_group *sg)
|
|
{
|
|
return to_cpumask(sg->sgc->cpumask);
|
|
}
|
|
|
|
/**
|
|
* group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
|
|
* @group: The group whose first CPU is to be returned.
|
|
*/
|
|
static inline unsigned int group_first_cpu(struct sched_group *group)
|
|
{
|
|
return cpumask_first(sched_group_span(group));
|
|
}
|
|
|
|
extern int group_balance_cpu(struct sched_group *sg);
|
|
|
|
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
|
|
void register_sched_domain_sysctl(void);
|
|
void dirty_sched_domain_sysctl(int cpu);
|
|
void unregister_sched_domain_sysctl(void);
|
|
#else
|
|
static inline void register_sched_domain_sysctl(void)
|
|
{
|
|
}
|
|
static inline void dirty_sched_domain_sysctl(int cpu)
|
|
{
|
|
}
|
|
static inline void unregister_sched_domain_sysctl(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
static inline void sched_ttwu_pending(void) { }
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#include "stats.h"
|
|
#include "autogroup.h"
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
/*
|
|
* Return the group to which this tasks belongs.
|
|
*
|
|
* We cannot use task_css() and friends because the cgroup subsystem
|
|
* changes that value before the cgroup_subsys::attach() method is called,
|
|
* therefore we cannot pin it and might observe the wrong value.
|
|
*
|
|
* The same is true for autogroup's p->signal->autogroup->tg, the autogroup
|
|
* core changes this before calling sched_move_task().
|
|
*
|
|
* Instead we use a 'copy' which is updated from sched_move_task() while
|
|
* holding both task_struct::pi_lock and rq::lock.
|
|
*/
|
|
static inline struct task_group *task_group(struct task_struct *p)
|
|
{
|
|
return p->sched_task_group;
|
|
}
|
|
|
|
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
|
|
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
|
|
{
|
|
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
|
|
struct task_group *tg = task_group(p);
|
|
#endif
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
|
|
p->se.cfs_rq = tg->cfs_rq[cpu];
|
|
p->se.parent = tg->se[cpu];
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
p->rt.rt_rq = tg->rt_rq[cpu];
|
|
p->rt.parent = tg->rt_se[cpu];
|
|
#endif
|
|
}
|
|
|
|
#else /* CONFIG_CGROUP_SCHED */
|
|
|
|
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
|
|
static inline struct task_group *task_group(struct task_struct *p)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
|
|
{
|
|
set_task_rq(p, cpu);
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
|
|
* successfuly executed on another CPU. We must ensure that updates of
|
|
* per-task data have been completed by this moment.
|
|
*/
|
|
smp_wmb();
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
WRITE_ONCE(p->cpu, cpu);
|
|
#else
|
|
WRITE_ONCE(task_thread_info(p)->cpu, cpu);
|
|
#endif
|
|
p->wake_cpu = cpu;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Tunables that become constants when CONFIG_SCHED_DEBUG is off:
|
|
*/
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
# include <linux/static_key.h>
|
|
# define const_debug __read_mostly
|
|
#else
|
|
# define const_debug const
|
|
#endif
|
|
|
|
#define SCHED_FEAT(name, enabled) \
|
|
__SCHED_FEAT_##name ,
|
|
|
|
enum {
|
|
#include "features.h"
|
|
__SCHED_FEAT_NR,
|
|
};
|
|
|
|
#undef SCHED_FEAT
|
|
|
|
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
|
|
|
|
/*
|
|
* To support run-time toggling of sched features, all the translation units
|
|
* (but core.c) reference the sysctl_sched_features defined in core.c.
|
|
*/
|
|
extern const_debug unsigned int sysctl_sched_features;
|
|
|
|
#define SCHED_FEAT(name, enabled) \
|
|
static __always_inline bool static_branch_##name(struct static_key *key) \
|
|
{ \
|
|
return static_key_##enabled(key); \
|
|
}
|
|
|
|
#include "features.h"
|
|
#undef SCHED_FEAT
|
|
|
|
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
|
|
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
|
|
|
|
#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
|
|
|
|
/*
|
|
* Each translation unit has its own copy of sysctl_sched_features to allow
|
|
* constants propagation at compile time and compiler optimization based on
|
|
* features default.
|
|
*/
|
|
#define SCHED_FEAT(name, enabled) \
|
|
(1UL << __SCHED_FEAT_##name) * enabled |
|
|
static const_debug __maybe_unused unsigned int sysctl_sched_features =
|
|
#include "features.h"
|
|
0;
|
|
#undef SCHED_FEAT
|
|
|
|
#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
|
|
|
|
#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
|
|
|
|
extern struct static_key_false sched_numa_balancing;
|
|
extern struct static_key_false sched_schedstats;
|
|
|
|
static inline u64 global_rt_period(void)
|
|
{
|
|
return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
|
|
}
|
|
|
|
static inline u64 global_rt_runtime(void)
|
|
{
|
|
if (sysctl_sched_rt_runtime < 0)
|
|
return RUNTIME_INF;
|
|
|
|
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
|
|
}
|
|
|
|
static inline int task_current(struct rq *rq, struct task_struct *p)
|
|
{
|
|
return rq->curr == p;
|
|
}
|
|
|
|
static inline int task_running(struct rq *rq, struct task_struct *p)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return p->on_cpu;
|
|
#else
|
|
return task_current(rq, p);
|
|
#endif
|
|
}
|
|
|
|
static inline int task_on_rq_queued(struct task_struct *p)
|
|
{
|
|
return p->on_rq == TASK_ON_RQ_QUEUED;
|
|
}
|
|
|
|
static inline int task_on_rq_migrating(struct task_struct *p)
|
|
{
|
|
return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
|
|
}
|
|
|
|
/*
|
|
* wake flags
|
|
*/
|
|
#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
|
|
#define WF_FORK 0x02 /* Child wakeup after fork */
|
|
#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
|
|
|
|
/*
|
|
* To aid in avoiding the subversion of "niceness" due to uneven distribution
|
|
* of tasks with abnormal "nice" values across CPUs the contribution that
|
|
* each task makes to its run queue's load is weighted according to its
|
|
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
|
|
* scaled version of the new time slice allocation that they receive on time
|
|
* slice expiry etc.
|
|
*/
|
|
|
|
#define WEIGHT_IDLEPRIO 3
|
|
#define WMULT_IDLEPRIO 1431655765
|
|
|
|
extern const int sched_prio_to_weight[40];
|
|
extern const u32 sched_prio_to_wmult[40];
|
|
|
|
/*
|
|
* {de,en}queue flags:
|
|
*
|
|
* DEQUEUE_SLEEP - task is no longer runnable
|
|
* ENQUEUE_WAKEUP - task just became runnable
|
|
*
|
|
* SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
|
|
* are in a known state which allows modification. Such pairs
|
|
* should preserve as much state as possible.
|
|
*
|
|
* MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
|
|
* in the runqueue.
|
|
*
|
|
* ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
|
|
* ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
|
|
* ENQUEUE_MIGRATED - the task was migrated during wakeup
|
|
*
|
|
*/
|
|
|
|
#define DEQUEUE_SLEEP 0x01
|
|
#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
|
|
#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
|
|
#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
|
|
|
|
#define ENQUEUE_WAKEUP 0x01
|
|
#define ENQUEUE_RESTORE 0x02
|
|
#define ENQUEUE_MOVE 0x04
|
|
#define ENQUEUE_NOCLOCK 0x08
|
|
|
|
#define ENQUEUE_HEAD 0x10
|
|
#define ENQUEUE_REPLENISH 0x20
|
|
#ifdef CONFIG_SMP
|
|
#define ENQUEUE_MIGRATED 0x40
|
|
#else
|
|
#define ENQUEUE_MIGRATED 0x00
|
|
#endif
|
|
|
|
#define RETRY_TASK ((void *)-1UL)
|
|
|
|
struct sched_class {
|
|
const struct sched_class *next;
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
int uclamp_enabled;
|
|
#endif
|
|
|
|
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
|
|
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
|
|
void (*yield_task) (struct rq *rq);
|
|
bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
|
|
|
|
void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
/*
|
|
* It is the responsibility of the pick_next_task() method that will
|
|
* return the next task to call put_prev_task() on the @prev task or
|
|
* something equivalent.
|
|
*
|
|
* May return RETRY_TASK when it finds a higher prio class has runnable
|
|
* tasks.
|
|
*/
|
|
struct task_struct * (*pick_next_task)(struct rq *rq,
|
|
struct task_struct *prev,
|
|
struct rq_flags *rf);
|
|
void (*put_prev_task)(struct rq *rq, struct task_struct *p);
|
|
|
|
#ifdef CONFIG_SMP
|
|
int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags,
|
|
int subling_count_hint);
|
|
void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
|
|
|
|
void (*task_woken)(struct rq *this_rq, struct task_struct *task);
|
|
|
|
void (*set_cpus_allowed)(struct task_struct *p,
|
|
const struct cpumask *newmask);
|
|
|
|
void (*rq_online)(struct rq *rq);
|
|
void (*rq_offline)(struct rq *rq);
|
|
#endif
|
|
|
|
void (*set_curr_task)(struct rq *rq);
|
|
void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
|
|
void (*task_fork)(struct task_struct *p);
|
|
void (*task_dead)(struct task_struct *p);
|
|
|
|
/*
|
|
* The switched_from() call is allowed to drop rq->lock, therefore we
|
|
* cannot assume the switched_from/switched_to pair is serliazed by
|
|
* rq->lock. They are however serialized by p->pi_lock.
|
|
*/
|
|
void (*switched_from)(struct rq *this_rq, struct task_struct *task);
|
|
void (*switched_to) (struct rq *this_rq, struct task_struct *task);
|
|
void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
|
|
int oldprio);
|
|
|
|
unsigned int (*get_rr_interval)(struct rq *rq,
|
|
struct task_struct *task);
|
|
|
|
void (*update_curr)(struct rq *rq);
|
|
|
|
#define TASK_SET_GROUP 0
|
|
#define TASK_MOVE_GROUP 1
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
void (*task_change_group)(struct task_struct *p, int type);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p,
|
|
u16 updated_demand_scaled,
|
|
u16 updated_pred_demand_scaled);
|
|
#endif
|
|
};
|
|
|
|
|
|
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
prev->sched_class->put_prev_task(rq, prev);
|
|
}
|
|
|
|
static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
|
|
{
|
|
curr->sched_class->set_curr_task(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define sched_class_highest (&stop_sched_class)
|
|
#else
|
|
#define sched_class_highest (&dl_sched_class)
|
|
#endif
|
|
#define for_each_class(class) \
|
|
for (class = sched_class_highest; class; class = class->next)
|
|
|
|
extern const struct sched_class stop_sched_class;
|
|
extern const struct sched_class dl_sched_class;
|
|
extern const struct sched_class rt_sched_class;
|
|
extern const struct sched_class fair_sched_class;
|
|
extern const struct sched_class idle_sched_class;
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
extern void update_group_capacity(struct sched_domain *sd, int cpu);
|
|
|
|
extern void trigger_load_balance(struct rq *rq);
|
|
|
|
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
|
|
|
|
bool __cpu_overutilized(int cpu, int delta);
|
|
bool cpu_overutilized(int cpu);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_IDLE
|
|
static inline void idle_set_state(struct rq *rq,
|
|
struct cpuidle_state *idle_state)
|
|
{
|
|
rq->idle_state = idle_state;
|
|
}
|
|
|
|
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
|
|
{
|
|
SCHED_WARN_ON(!rcu_read_lock_held());
|
|
|
|
return rq->idle_state;
|
|
}
|
|
|
|
static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
|
|
{
|
|
rq->idle_state_idx = idle_state_idx;
|
|
}
|
|
|
|
static inline int idle_get_state_idx(struct rq *rq)
|
|
{
|
|
WARN_ON(!rcu_read_lock_held());
|
|
|
|
if (rq->nr_running || cpu_of(rq) == raw_smp_processor_id())
|
|
return -1;
|
|
|
|
return rq->idle_state_idx;
|
|
}
|
|
#else
|
|
static inline void idle_set_state(struct rq *rq,
|
|
struct cpuidle_state *idle_state)
|
|
{
|
|
}
|
|
|
|
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
|
|
{
|
|
}
|
|
|
|
static inline int idle_get_state_idx(struct rq *rq)
|
|
{
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
extern void schedule_idle(void);
|
|
|
|
extern void sysrq_sched_debug_show(void);
|
|
extern void sched_init_granularity(void);
|
|
extern void update_max_interval(void);
|
|
|
|
extern void init_sched_dl_class(void);
|
|
extern void init_sched_rt_class(void);
|
|
extern void init_sched_fair_class(void);
|
|
|
|
extern void reweight_task(struct task_struct *p, int prio);
|
|
|
|
extern void resched_curr(struct rq *rq);
|
|
extern void resched_cpu(int cpu);
|
|
|
|
extern struct rt_bandwidth def_rt_bandwidth;
|
|
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
|
|
|
|
extern struct dl_bandwidth def_dl_bandwidth;
|
|
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
|
|
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
|
|
extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
|
|
extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
|
|
|
|
#define BW_SHIFT 20
|
|
#define BW_UNIT (1 << BW_SHIFT)
|
|
#define RATIO_SHIFT 8
|
|
unsigned long to_ratio(u64 period, u64 runtime);
|
|
|
|
extern void init_entity_runnable_average(struct sched_entity *se);
|
|
extern void post_init_entity_util_avg(struct sched_entity *se);
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
extern bool sched_can_stop_tick(struct rq *rq);
|
|
extern int __init sched_tick_offload_init(void);
|
|
|
|
/*
|
|
* Tick may be needed by tasks in the runqueue depending on their policy and
|
|
* requirements. If tick is needed, lets send the target an IPI to kick it out of
|
|
* nohz mode if necessary.
|
|
*/
|
|
static inline void sched_update_tick_dependency(struct rq *rq)
|
|
{
|
|
int cpu;
|
|
|
|
if (!tick_nohz_full_enabled())
|
|
return;
|
|
|
|
cpu = cpu_of(rq);
|
|
|
|
if (!tick_nohz_full_cpu(cpu))
|
|
return;
|
|
|
|
if (sched_can_stop_tick(rq))
|
|
tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
|
|
else
|
|
tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
|
|
}
|
|
#else
|
|
static inline int sched_tick_offload_init(void) { return 0; }
|
|
static inline void sched_update_tick_dependency(struct rq *rq) { }
|
|
#endif
|
|
|
|
static inline void add_nr_running(struct rq *rq, unsigned count)
|
|
{
|
|
unsigned prev_nr = rq->nr_running;
|
|
|
|
sched_update_nr_prod(cpu_of(rq), count, true);
|
|
rq->nr_running = prev_nr + count;
|
|
|
|
if (prev_nr < 2 && rq->nr_running >= 2) {
|
|
#ifdef CONFIG_SMP
|
|
if (!READ_ONCE(rq->rd->overload))
|
|
WRITE_ONCE(rq->rd->overload, 1);
|
|
#endif
|
|
}
|
|
|
|
sched_update_tick_dependency(rq);
|
|
}
|
|
|
|
static inline void sub_nr_running(struct rq *rq, unsigned count)
|
|
{
|
|
sched_update_nr_prod(cpu_of(rq), count, false);
|
|
rq->nr_running -= count;
|
|
/* Check if we still need preemption */
|
|
sched_update_tick_dependency(rq);
|
|
}
|
|
|
|
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
|
|
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
extern const_debug unsigned int sysctl_sched_nr_migrate;
|
|
extern const_debug unsigned int sysctl_sched_migration_cost;
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
|
|
/*
|
|
* Use hrtick when:
|
|
* - enabled by features
|
|
* - hrtimer is actually high res
|
|
*/
|
|
static inline int hrtick_enabled(struct rq *rq)
|
|
{
|
|
if (!sched_feat(HRTICK))
|
|
return 0;
|
|
if (!cpu_active(cpu_of(rq)))
|
|
return 0;
|
|
return hrtimer_is_hres_active(&rq->hrtick_timer);
|
|
}
|
|
|
|
void hrtick_start(struct rq *rq, u64 delay);
|
|
|
|
#else
|
|
|
|
static inline int hrtick_enabled(struct rq *rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_SCHED_HRTICK */
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
u64 sched_ktime_clock(void);
|
|
unsigned long
|
|
cpu_util_freq_walt(int cpu, struct sched_walt_cpu_load *walt_load);
|
|
#else
|
|
#define sched_ravg_window TICK_NSEC
|
|
static inline u64 sched_ktime_clock(void)
|
|
{
|
|
return sched_clock();
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_scale_freq_capacity
|
|
static __always_inline
|
|
unsigned long arch_scale_freq_capacity(int cpu)
|
|
{
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
#endif
|
|
|
|
#ifndef arch_scale_max_freq_capacity
|
|
struct sched_domain;
|
|
static __always_inline
|
|
unsigned long arch_scale_max_freq_capacity(struct sched_domain *sd, int cpu)
|
|
{
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline unsigned long capacity_of(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cpu_capacity;
|
|
}
|
|
|
|
static inline unsigned long capacity_orig_of(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cpu_capacity_orig;
|
|
}
|
|
|
|
static inline unsigned long task_util(struct task_struct *p)
|
|
{
|
|
#ifdef CONFIG_SCHED_WALT
|
|
return p->ravg.demand_scaled;
|
|
#endif
|
|
return READ_ONCE(p->se.avg.util_avg);
|
|
}
|
|
|
|
/**
|
|
* Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
|
|
* @cpu: the CPU to get the utilization of
|
|
*
|
|
* The unit of the return value must be the one of capacity so we can compare
|
|
* the utilization with the capacity of the CPU that is available for CFS task
|
|
* (ie cpu_capacity).
|
|
*
|
|
* cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
|
|
* recent utilization of currently non-runnable tasks on a CPU. It represents
|
|
* the amount of utilization of a CPU in the range [0..capacity_orig] where
|
|
* capacity_orig is the cpu_capacity available at the highest frequency
|
|
* (arch_scale_freq_capacity()).
|
|
* The utilization of a CPU converges towards a sum equal to or less than the
|
|
* current capacity (capacity_curr <= capacity_orig) of the CPU because it is
|
|
* the running time on this CPU scaled by capacity_curr.
|
|
*
|
|
* The estimated utilization of a CPU is defined to be the maximum between its
|
|
* cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
|
|
* currently RUNNABLE on that CPU.
|
|
* This allows to properly represent the expected utilization of a CPU which
|
|
* has just got a big task running since a long sleep period. At the same time
|
|
* however it preserves the benefits of the "blocked utilization" in
|
|
* describing the potential for other tasks waking up on the same CPU.
|
|
*
|
|
* Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
|
|
* higher than capacity_orig because of unfortunate rounding in
|
|
* cfs.avg.util_avg or just after migrating tasks and new task wakeups until
|
|
* the average stabilizes with the new running time. We need to check that the
|
|
* utilization stays within the range of [0..capacity_orig] and cap it if
|
|
* necessary. Without utilization capping, a group could be seen as overloaded
|
|
* (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
|
|
* available capacity. We allow utilization to overshoot capacity_curr (but not
|
|
* capacity_orig) as it useful for predicting the capacity required after task
|
|
* migrations (scheduler-driven DVFS).
|
|
*
|
|
* Return: the (estimated) utilization for the specified CPU
|
|
*/
|
|
static inline unsigned long cpu_util(int cpu)
|
|
{
|
|
struct cfs_rq *cfs_rq;
|
|
unsigned int util;
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
u64 walt_cpu_util =
|
|
cpu_rq(cpu)->walt_stats.cumulative_runnable_avg_scaled;
|
|
|
|
return min_t(unsigned long, walt_cpu_util, capacity_orig_of(cpu));
|
|
#endif
|
|
|
|
cfs_rq = &cpu_rq(cpu)->cfs;
|
|
util = READ_ONCE(cfs_rq->avg.util_avg);
|
|
|
|
if (sched_feat(UTIL_EST))
|
|
util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
|
|
|
|
return min_t(unsigned long, util, capacity_orig_of(cpu));
|
|
}
|
|
|
|
static inline unsigned long cpu_util_cum(int cpu, int delta)
|
|
{
|
|
u64 util = cpu_rq(cpu)->cfs.avg.util_avg;
|
|
unsigned long capacity = capacity_orig_of(cpu);
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
util = cpu_rq(cpu)->cum_window_demand_scaled;
|
|
#endif
|
|
delta += util;
|
|
if (delta < 0)
|
|
return 0;
|
|
|
|
return (delta >= capacity) ? capacity : delta;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_TUNE
|
|
extern unsigned long stune_util(int cpu, unsigned long other_util,
|
|
struct sched_walt_cpu_load *walt_load);
|
|
#endif
|
|
|
|
static inline unsigned long
|
|
cpu_util_freq(int cpu, struct sched_walt_cpu_load *walt_load)
|
|
{
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
return cpu_util_freq_walt(cpu, walt_load);
|
|
#else
|
|
return cpu_util(cpu);
|
|
#endif
|
|
}
|
|
|
|
extern unsigned int capacity_margin_freq;
|
|
|
|
static inline unsigned long
|
|
add_capacity_margin(unsigned long cpu_capacity, int cpu)
|
|
{
|
|
cpu_capacity = cpu_capacity * capacity_margin_freq *
|
|
(100 + per_cpu(sched_load_boost, cpu));
|
|
cpu_capacity /= 100;
|
|
cpu_capacity /= SCHED_CAPACITY_SCALE;
|
|
return cpu_capacity;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_PREEMPT
|
|
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
|
|
|
|
/*
|
|
* fair double_lock_balance: Safely acquires both rq->locks in a fair
|
|
* way at the expense of forcing extra atomic operations in all
|
|
* invocations. This assures that the double_lock is acquired using the
|
|
* same underlying policy as the spinlock_t on this architecture, which
|
|
* reduces latency compared to the unfair variant below. However, it
|
|
* also adds more overhead and therefore may reduce throughput.
|
|
*/
|
|
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(this_rq->lock)
|
|
__acquires(busiest->lock)
|
|
__acquires(this_rq->lock)
|
|
{
|
|
raw_spin_unlock(&this_rq->lock);
|
|
double_rq_lock(this_rq, busiest);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else
|
|
/*
|
|
* Unfair double_lock_balance: Optimizes throughput at the expense of
|
|
* latency by eliminating extra atomic operations when the locks are
|
|
* already in proper order on entry. This favors lower CPU-ids and will
|
|
* grant the double lock to lower CPUs over higher ids under contention,
|
|
* regardless of entry order into the function.
|
|
*/
|
|
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(this_rq->lock)
|
|
__acquires(busiest->lock)
|
|
__acquires(this_rq->lock)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (unlikely(!raw_spin_trylock(&busiest->lock))) {
|
|
if (busiest < this_rq) {
|
|
raw_spin_unlock(&this_rq->lock);
|
|
raw_spin_lock(&busiest->lock);
|
|
raw_spin_lock_nested(&this_rq->lock,
|
|
SINGLE_DEPTH_NESTING);
|
|
ret = 1;
|
|
} else
|
|
raw_spin_lock_nested(&busiest->lock,
|
|
SINGLE_DEPTH_NESTING);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_PREEMPT */
|
|
|
|
/*
|
|
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
|
|
*/
|
|
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
{
|
|
if (unlikely(!irqs_disabled())) {
|
|
/* printk() doesn't work well under rq->lock */
|
|
raw_spin_unlock(&this_rq->lock);
|
|
BUG_ON(1);
|
|
}
|
|
|
|
return _double_lock_balance(this_rq, busiest);
|
|
}
|
|
|
|
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(busiest->lock)
|
|
{
|
|
raw_spin_unlock(&busiest->lock);
|
|
lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
|
|
}
|
|
|
|
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
spin_lock(l1);
|
|
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
spin_lock_irq(l1);
|
|
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
raw_spin_lock(l1);
|
|
raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
/*
|
|
* double_rq_lock - safely lock two runqueues
|
|
*
|
|
* Note this does not disable interrupts like task_rq_lock,
|
|
* you need to do so manually before calling.
|
|
*/
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
|
|
__acquires(rq1->lock)
|
|
__acquires(rq2->lock)
|
|
{
|
|
BUG_ON(!irqs_disabled());
|
|
if (rq1 == rq2) {
|
|
raw_spin_lock(&rq1->lock);
|
|
__acquire(rq2->lock); /* Fake it out ;) */
|
|
} else {
|
|
if (rq1 < rq2) {
|
|
raw_spin_lock(&rq1->lock);
|
|
raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
|
|
} else {
|
|
raw_spin_lock(&rq2->lock);
|
|
raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* double_rq_unlock - safely unlock two runqueues
|
|
*
|
|
* Note this does not restore interrupts like task_rq_unlock,
|
|
* you need to do so manually after calling.
|
|
*/
|
|
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
|
|
__releases(rq1->lock)
|
|
__releases(rq2->lock)
|
|
{
|
|
raw_spin_unlock(&rq1->lock);
|
|
if (rq1 != rq2)
|
|
raw_spin_unlock(&rq2->lock);
|
|
else
|
|
__release(rq2->lock);
|
|
}
|
|
|
|
extern void set_rq_online (struct rq *rq);
|
|
extern void set_rq_offline(struct rq *rq);
|
|
extern bool sched_smp_initialized;
|
|
|
|
/*
|
|
* task_may_not_preempt - check whether a task may not be preemptible soon
|
|
*/
|
|
extern bool task_may_not_preempt(struct task_struct *task, int cpu);
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
/*
|
|
* double_rq_lock - safely lock two runqueues
|
|
*
|
|
* Note this does not disable interrupts like task_rq_lock,
|
|
* you need to do so manually before calling.
|
|
*/
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
|
|
__acquires(rq1->lock)
|
|
__acquires(rq2->lock)
|
|
{
|
|
BUG_ON(!irqs_disabled());
|
|
BUG_ON(rq1 != rq2);
|
|
raw_spin_lock(&rq1->lock);
|
|
__acquire(rq2->lock); /* Fake it out ;) */
|
|
}
|
|
|
|
/*
|
|
* double_rq_unlock - safely unlock two runqueues
|
|
*
|
|
* Note this does not restore interrupts like task_rq_unlock,
|
|
* you need to do so manually after calling.
|
|
*/
|
|
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
|
|
__releases(rq1->lock)
|
|
__releases(rq2->lock)
|
|
{
|
|
BUG_ON(rq1 != rq2);
|
|
raw_spin_unlock(&rq1->lock);
|
|
__release(rq2->lock);
|
|
}
|
|
|
|
#endif
|
|
|
|
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
|
|
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
extern bool sched_debug_enabled;
|
|
|
|
extern void print_cfs_stats(struct seq_file *m, int cpu);
|
|
extern void print_rt_stats(struct seq_file *m, int cpu);
|
|
extern void print_dl_stats(struct seq_file *m, int cpu);
|
|
extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
|
|
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
|
|
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
extern void
|
|
show_numa_stats(struct task_struct *p, struct seq_file *m);
|
|
extern void
|
|
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
|
|
unsigned long tpf, unsigned long gsf, unsigned long gpf);
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
#endif /* CONFIG_SCHED_DEBUG */
|
|
|
|
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
|
|
extern void init_rt_rq(struct rt_rq *rt_rq);
|
|
extern void init_dl_rq(struct dl_rq *dl_rq);
|
|
|
|
extern void cfs_bandwidth_usage_inc(void);
|
|
extern void cfs_bandwidth_usage_dec(void);
|
|
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
#define NOHZ_BALANCE_KICK_BIT 0
|
|
#define NOHZ_STATS_KICK_BIT 1
|
|
|
|
#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
|
|
#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
|
|
|
|
#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
|
|
|
|
#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
|
|
|
|
extern void nohz_balance_exit_idle(struct rq *rq);
|
|
#else
|
|
static inline void nohz_balance_exit_idle(struct rq *rq) { }
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline
|
|
void __dl_update(struct dl_bw *dl_b, s64 bw)
|
|
{
|
|
struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
|
|
int i;
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
|
|
"sched RCU must be held");
|
|
for_each_cpu_and(i, rd->span, cpu_active_mask) {
|
|
struct rq *rq = cpu_rq(i);
|
|
|
|
rq->dl.extra_bw += bw;
|
|
}
|
|
}
|
|
#else
|
|
static inline
|
|
void __dl_update(struct dl_bw *dl_b, s64 bw)
|
|
{
|
|
struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
|
|
|
|
dl->extra_bw += bw;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
struct irqtime {
|
|
u64 total;
|
|
u64 tick_delta;
|
|
u64 irq_start_time;
|
|
struct u64_stats_sync sync;
|
|
};
|
|
|
|
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
|
|
|
|
/*
|
|
* Returns the irqtime minus the softirq time computed by ksoftirqd.
|
|
* Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
|
|
* and never move forward.
|
|
*/
|
|
static inline u64 irq_time_read(int cpu)
|
|
{
|
|
struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
|
|
unsigned int seq;
|
|
u64 total;
|
|
|
|
do {
|
|
seq = __u64_stats_fetch_begin(&irqtime->sync);
|
|
total = irqtime->total;
|
|
} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
|
|
|
|
return total;
|
|
}
|
|
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
|
|
|
|
/**
|
|
* cpufreq_update_util - Take a note about CPU utilization changes.
|
|
* @rq: Runqueue to carry out the update for.
|
|
* @flags: Update reason flags.
|
|
*
|
|
* This function is called by the scheduler on the CPU whose utilization is
|
|
* being updated.
|
|
*
|
|
* It can only be called from RCU-sched read-side critical sections.
|
|
*
|
|
* The way cpufreq is currently arranged requires it to evaluate the CPU
|
|
* performance state (frequency/voltage) on a regular basis to prevent it from
|
|
* being stuck in a completely inadequate performance level for too long.
|
|
* That is not guaranteed to happen if the updates are only triggered from CFS
|
|
* and DL, though, because they may not be coming in if only RT tasks are
|
|
* active all the time (or there are RT tasks only).
|
|
*
|
|
* As a workaround for that issue, this function is called periodically by the
|
|
* RT sched class to trigger extra cpufreq updates to prevent it from stalling,
|
|
* but that really is a band-aid. Going forward it should be replaced with
|
|
* solutions targeted more specifically at RT tasks.
|
|
*/
|
|
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
|
|
{
|
|
struct update_util_data *data;
|
|
u64 clock;
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
if (!(flags & SCHED_CPUFREQ_WALT))
|
|
return;
|
|
clock = sched_ktime_clock();
|
|
#else
|
|
clock = rq_clock(rq);
|
|
#endif
|
|
|
|
data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
|
|
cpu_of(rq)));
|
|
if (data)
|
|
data->func(data, clock, flags);
|
|
}
|
|
#else
|
|
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
|
|
#endif /* CONFIG_CPU_FREQ */
|
|
|
|
#ifdef CONFIG_UCLAMP_TASK
|
|
unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
|
|
|
|
static __always_inline
|
|
unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
|
|
struct task_struct *p)
|
|
{
|
|
unsigned long min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
|
|
unsigned long max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
|
|
|
|
if (p) {
|
|
min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
|
|
max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
|
|
}
|
|
|
|
/*
|
|
* Since CPU's {min,max}_util clamps are MAX aggregated considering
|
|
* RUNNABLE tasks with _different_ clamps, we can end up with an
|
|
* inversion. Fix it now when the clamps are applied.
|
|
*/
|
|
if (unlikely(min_util >= max_util))
|
|
return min_util;
|
|
|
|
return clamp(util, min_util, max_util);
|
|
}
|
|
#else /* CONFIG_UCLAMP_TASK */
|
|
static inline
|
|
unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
|
|
struct task_struct *p)
|
|
{
|
|
return util;
|
|
}
|
|
#endif /* CONFIG_UCLAMP_TASK */
|
|
|
|
unsigned long task_util_est(struct task_struct *p);
|
|
unsigned int uclamp_task(struct task_struct *p);
|
|
bool uclamp_latency_sensitive(struct task_struct *p);
|
|
bool uclamp_boosted(struct task_struct *p);
|
|
|
|
#ifdef arch_scale_freq_capacity
|
|
# ifndef arch_scale_freq_invariant
|
|
# define arch_scale_freq_invariant() true
|
|
# endif
|
|
#else
|
|
# define arch_scale_freq_invariant() false
|
|
#endif
|
|
|
|
/**
|
|
* enum schedutil_type - CPU utilization type
|
|
* @FREQUENCY_UTIL: Utilization used to select frequency
|
|
* @ENERGY_UTIL: Utilization used during energy calculation
|
|
*
|
|
* The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
|
|
* need to be aggregated differently depending on the usage made of them. This
|
|
* enum is used within schedutil_freq_util() to differentiate the types of
|
|
* utilization expected by the callers, and adjust the aggregation accordingly.
|
|
*/
|
|
enum schedutil_type {
|
|
FREQUENCY_UTIL,
|
|
ENERGY_UTIL,
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline unsigned long cpu_util_cfs(struct rq *rq)
|
|
{
|
|
unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
|
|
|
|
if (sched_feat(UTIL_EST)) {
|
|
util = max_t(unsigned long, util,
|
|
READ_ONCE(rq->cfs.avg.util_est.enqueued));
|
|
}
|
|
|
|
return util;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
|
|
|
|
unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
|
|
unsigned long max, enum schedutil_type type,
|
|
struct task_struct *p);
|
|
|
|
static inline unsigned long cpu_bw_dl(struct rq *rq)
|
|
{
|
|
return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
|
|
}
|
|
|
|
static inline unsigned long cpu_util_dl(struct rq *rq)
|
|
{
|
|
return READ_ONCE(rq->avg_dl.util_avg);
|
|
}
|
|
|
|
static inline unsigned long cpu_util_rt(struct rq *rq)
|
|
{
|
|
return READ_ONCE(rq->avg_rt.util_avg);
|
|
}
|
|
|
|
#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
|
|
static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
|
|
unsigned long max, enum schedutil_type type,
|
|
struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
|
|
|
|
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
|
|
static inline unsigned long cpu_util_irq(struct rq *rq)
|
|
{
|
|
return rq->avg_irq.util_avg;
|
|
}
|
|
|
|
static inline
|
|
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
|
|
{
|
|
util *= (max - irq);
|
|
util /= max;
|
|
|
|
return util;
|
|
|
|
}
|
|
#else
|
|
static inline unsigned long cpu_util_irq(struct rq *rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline
|
|
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
|
|
{
|
|
return util;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ENERGY_MODEL
|
|
#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
|
|
#else
|
|
#define perf_domain_span(pd) NULL
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern struct static_key_false sched_energy_present;
|
|
#endif
|
|
|
|
enum sched_boost_policy {
|
|
SCHED_BOOST_NONE,
|
|
SCHED_BOOST_ON_BIG,
|
|
SCHED_BOOST_ON_ALL,
|
|
};
|
|
|
|
#ifdef CONFIG_SCHED_WALT
|
|
|
|
#define WALT_MANY_WAKEUP_DEFAULT 1000
|
|
static inline bool walt_want_remote_wakeup(void)
|
|
{
|
|
return sysctl_sched_many_wakeup_threshold < WALT_MANY_WAKEUP_DEFAULT;
|
|
}
|
|
|
|
static inline int cluster_first_cpu(struct sched_cluster *cluster)
|
|
{
|
|
return cpumask_first(&cluster->cpus);
|
|
}
|
|
|
|
struct related_thread_group {
|
|
int id;
|
|
raw_spinlock_t lock;
|
|
struct list_head tasks;
|
|
struct list_head list;
|
|
bool skip_min;
|
|
struct rcu_head rcu;
|
|
u64 last_update;
|
|
u64 downmigrate_ts;
|
|
u64 start_ts;
|
|
};
|
|
|
|
extern struct sched_cluster *sched_cluster[NR_CPUS];
|
|
|
|
#define UP_MIGRATION 1
|
|
#define DOWN_MIGRATION 2
|
|
#define IRQLOAD_MIGRATION 3
|
|
|
|
extern unsigned int sched_disable_window_stats;
|
|
extern unsigned int max_possible_freq;
|
|
extern unsigned int min_max_freq;
|
|
extern unsigned int max_possible_efficiency;
|
|
extern unsigned int min_possible_efficiency;
|
|
extern unsigned int max_possible_capacity;
|
|
extern unsigned int min_max_possible_capacity;
|
|
extern unsigned int max_power_cost;
|
|
extern unsigned int __read_mostly sched_init_task_load_windows;
|
|
extern unsigned int __read_mostly sched_load_granule;
|
|
|
|
extern int register_cpu_cycle_counter_cb(struct cpu_cycle_counter_cb *cb);
|
|
extern int update_preferred_cluster(struct related_thread_group *grp,
|
|
struct task_struct *p, u32 old_load, bool from_tick);
|
|
extern void set_preferred_cluster(struct related_thread_group *grp);
|
|
extern void add_new_task_to_grp(struct task_struct *new);
|
|
|
|
#define NO_BOOST 0
|
|
#define FULL_THROTTLE_BOOST 1
|
|
#define CONSERVATIVE_BOOST 2
|
|
#define RESTRAINED_BOOST 3
|
|
#define FULL_THROTTLE_BOOST_DISABLE -1
|
|
#define CONSERVATIVE_BOOST_DISABLE -2
|
|
#define RESTRAINED_BOOST_DISABLE -3
|
|
#define MAX_NUM_BOOST_TYPE (RESTRAINED_BOOST+1)
|
|
|
|
static inline bool is_asym_cap_cpu(int cpu)
|
|
{
|
|
return cpumask_test_cpu(cpu, &asym_cap_sibling_cpus);
|
|
}
|
|
|
|
static inline int asym_cap_siblings(int cpu1, int cpu2)
|
|
{
|
|
return (cpumask_test_cpu(cpu1, &asym_cap_sibling_cpus) &&
|
|
cpumask_test_cpu(cpu2, &asym_cap_sibling_cpus));
|
|
}
|
|
|
|
static inline bool asym_cap_sibling_group_has_capacity(int dst_cpu, int margin)
|
|
{
|
|
int sib1, sib2;
|
|
int nr_running;
|
|
unsigned long total_util, total_capacity;
|
|
|
|
if (cpumask_empty(&asym_cap_sibling_cpus) ||
|
|
cpumask_test_cpu(dst_cpu, &asym_cap_sibling_cpus))
|
|
return false;
|
|
|
|
sib1 = cpumask_first(&asym_cap_sibling_cpus);
|
|
sib2 = cpumask_last(&asym_cap_sibling_cpus);
|
|
|
|
if (!cpu_active(sib1) || cpu_isolated(sib1) ||
|
|
!cpu_active(sib2) || cpu_isolated(sib2))
|
|
return false;
|
|
|
|
nr_running = cpu_rq(sib1)->cfs.h_nr_running +
|
|
cpu_rq(sib2)->cfs.h_nr_running;
|
|
|
|
if (nr_running <= 2)
|
|
return true;
|
|
|
|
total_capacity = capacity_of(sib1) + capacity_of(sib2);
|
|
total_util = cpu_util(sib1) + cpu_util(sib2);
|
|
|
|
return ((total_capacity * 100) > (total_util * margin));
|
|
}
|
|
|
|
static inline int cpu_max_possible_capacity(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->max_possible_capacity;
|
|
}
|
|
|
|
static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
|
|
{
|
|
/*
|
|
* Governor and thermal driver don't know the other party's mitigation
|
|
* voting. So struct cluster saves both and return min() for current
|
|
* cluster fmax.
|
|
*/
|
|
return min(cluster->max_mitigated_freq, cluster->max_freq);
|
|
}
|
|
|
|
static inline unsigned int cpu_max_freq(int cpu)
|
|
{
|
|
return cluster_max_freq(cpu_rq(cpu)->cluster);
|
|
}
|
|
|
|
static inline unsigned int cpu_max_possible_freq(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cluster->max_possible_freq;
|
|
}
|
|
|
|
static inline bool hmp_capable(void)
|
|
{
|
|
return max_possible_capacity != min_max_possible_capacity;
|
|
}
|
|
|
|
static inline bool is_max_capacity_cpu(int cpu)
|
|
{
|
|
return cpu_max_possible_capacity(cpu) == max_possible_capacity;
|
|
}
|
|
|
|
static inline bool is_min_capacity_cpu(int cpu)
|
|
{
|
|
return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
|
|
}
|
|
|
|
static inline unsigned int task_load(struct task_struct *p)
|
|
{
|
|
return p->ravg.demand;
|
|
}
|
|
|
|
static inline unsigned int task_pl(struct task_struct *p)
|
|
{
|
|
return p->ravg.pred_demand;
|
|
}
|
|
|
|
static inline bool task_in_related_thread_group(struct task_struct *p)
|
|
{
|
|
return !!(rcu_access_pointer(p->grp) != NULL);
|
|
}
|
|
|
|
static inline
|
|
struct related_thread_group *task_related_thread_group(struct task_struct *p)
|
|
{
|
|
return rcu_dereference(p->grp);
|
|
}
|
|
|
|
static inline bool task_rtg_high_prio(struct task_struct *p)
|
|
{
|
|
return task_in_related_thread_group(p) &&
|
|
(p->prio <= sysctl_walt_rtg_cfs_boost_prio);
|
|
}
|
|
|
|
static inline bool walt_low_latency_task(struct task_struct *p)
|
|
{
|
|
return p->low_latency &&
|
|
(task_util(p) < sysctl_walt_low_latency_task_threshold);
|
|
}
|
|
|
|
/* Is frequency of two cpus synchronized with each other? */
|
|
static inline int same_freq_domain(int src_cpu, int dst_cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(src_cpu);
|
|
|
|
if (src_cpu == dst_cpu)
|
|
return 1;
|
|
|
|
if (asym_cap_siblings(src_cpu, dst_cpu))
|
|
return 1;
|
|
|
|
return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
|
|
}
|
|
|
|
#define CPU_RESERVED 1
|
|
|
|
extern enum sched_boost_policy boost_policy;
|
|
static inline enum sched_boost_policy sched_boost_policy(void)
|
|
{
|
|
return boost_policy;
|
|
}
|
|
|
|
extern unsigned int sched_boost_type;
|
|
static inline int sched_boost(void)
|
|
{
|
|
return sched_boost_type;
|
|
}
|
|
|
|
static inline bool rt_boost_on_big(void)
|
|
{
|
|
return sched_boost() == FULL_THROTTLE_BOOST ?
|
|
(sched_boost_policy() == SCHED_BOOST_ON_BIG) : false;
|
|
}
|
|
|
|
static inline bool is_full_throttle_boost(void)
|
|
{
|
|
return sched_boost() == FULL_THROTTLE_BOOST;
|
|
}
|
|
|
|
extern int preferred_cluster(struct sched_cluster *cluster,
|
|
struct task_struct *p);
|
|
extern struct sched_cluster *rq_cluster(struct rq *rq);
|
|
extern void reset_task_stats(struct task_struct *p);
|
|
extern void clear_top_tasks_bitmap(unsigned long *bitmap);
|
|
|
|
#if defined(CONFIG_SCHED_TUNE)
|
|
extern bool task_sched_boost(struct task_struct *p);
|
|
extern int sync_cgroup_colocation(struct task_struct *p, bool insert);
|
|
extern bool schedtune_task_colocated(struct task_struct *p);
|
|
extern void update_cgroup_boost_settings(void);
|
|
extern void restore_cgroup_boost_settings(void);
|
|
|
|
#else
|
|
static inline bool schedtune_task_colocated(struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool task_sched_boost(struct task_struct *p)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline void update_cgroup_boost_settings(void) { }
|
|
static inline void restore_cgroup_boost_settings(void) { }
|
|
#endif
|
|
|
|
extern int alloc_related_thread_groups(void);
|
|
|
|
extern void check_for_migration(struct rq *rq, struct task_struct *p);
|
|
|
|
static inline int is_reserved(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
return test_bit(CPU_RESERVED, &rq->walt_flags);
|
|
}
|
|
|
|
static inline int mark_reserved(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
|
|
}
|
|
|
|
static inline void clear_reserved(int cpu)
|
|
{
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
|
clear_bit(CPU_RESERVED, &rq->walt_flags);
|
|
}
|
|
|
|
static inline bool
|
|
task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
|
|
{
|
|
return cpu_of(rq) == task_cpu(p) && (p->on_rq || p->last_sleep_ts >=
|
|
rq->window_start);
|
|
}
|
|
|
|
static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
|
|
{
|
|
rq->cum_window_demand_scaled += scaled_delta;
|
|
if (unlikely((s64)rq->cum_window_demand_scaled < 0))
|
|
rq->cum_window_demand_scaled = 0;
|
|
}
|
|
|
|
extern unsigned long thermal_cap(int cpu);
|
|
|
|
extern void clear_walt_request(int cpu);
|
|
|
|
extern enum sched_boost_policy sched_boost_policy(void);
|
|
extern void sched_boost_parse_dt(void);
|
|
extern void clear_ed_task(struct task_struct *p, struct rq *rq);
|
|
extern bool early_detection_notify(struct rq *rq, u64 wallclock);
|
|
|
|
static inline unsigned int power_cost(int cpu, u64 demand)
|
|
{
|
|
return cpu_max_possible_capacity(cpu);
|
|
}
|
|
|
|
void note_task_waking(struct task_struct *p, u64 wallclock);
|
|
|
|
static inline bool task_placement_boost_enabled(struct task_struct *p)
|
|
{
|
|
if (task_sched_boost(p))
|
|
return sched_boost_policy() != SCHED_BOOST_NONE;
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline enum sched_boost_policy task_boost_policy(struct task_struct *p)
|
|
{
|
|
enum sched_boost_policy policy = task_sched_boost(p) ?
|
|
sched_boost_policy() :
|
|
SCHED_BOOST_NONE;
|
|
if (policy == SCHED_BOOST_ON_BIG) {
|
|
/*
|
|
* Filter out tasks less than min task util threshold
|
|
* under conservative boost.
|
|
*/
|
|
if (sched_boost() == CONSERVATIVE_BOOST &&
|
|
task_util(p) <= sysctl_sched_min_task_util_for_boost)
|
|
policy = SCHED_BOOST_NONE;
|
|
}
|
|
|
|
return policy;
|
|
}
|
|
|
|
static inline bool is_min_capacity_cluster(struct sched_cluster *cluster)
|
|
{
|
|
return is_min_capacity_cpu(cluster_first_cpu(cluster));
|
|
}
|
|
|
|
#else /* CONFIG_SCHED_WALT */
|
|
|
|
struct walt_sched_stats;
|
|
struct related_thread_group;
|
|
struct sched_cluster;
|
|
|
|
static inline bool task_sched_boost(struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool task_placement_boost_enabled(struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void check_for_migration(struct rq *rq, struct task_struct *p) { }
|
|
|
|
static inline int sched_boost(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline bool rt_boost_on_big(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool is_full_throttle_boost(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline enum sched_boost_policy task_boost_policy(struct task_struct *p)
|
|
{
|
|
return SCHED_BOOST_NONE;
|
|
}
|
|
|
|
static inline bool
|
|
task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool hmp_capable(void) { return false; }
|
|
static inline bool is_max_capacity_cpu(int cpu) { return true; }
|
|
static inline bool is_min_capacity_cpu(int cpu) { return true; }
|
|
|
|
static inline int
|
|
preferred_cluster(struct sched_cluster *cluster, struct task_struct *p)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline struct sched_cluster *rq_cluster(struct rq *rq)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline bool is_asym_cap_cpu(int cpu) { return false; }
|
|
|
|
static inline int asym_cap_siblings(int cpu1, int cpu2) { return 0; }
|
|
|
|
static inline bool asym_cap_sibling_group_has_capacity(int dst_cpu, int margin)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void set_preferred_cluster(struct related_thread_group *grp) { }
|
|
|
|
static inline bool task_in_related_thread_group(struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline
|
|
struct related_thread_group *task_related_thread_group(struct task_struct *p)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline bool task_rtg_high_prio(struct task_struct *p)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline u32 task_load(struct task_struct *p) { return 0; }
|
|
static inline u32 task_pl(struct task_struct *p) { return 0; }
|
|
|
|
static inline int update_preferred_cluster(struct related_thread_group *grp,
|
|
struct task_struct *p, u32 old_load, bool from_tick)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void add_new_task_to_grp(struct task_struct *new) {}
|
|
|
|
static inline int same_freq_domain(int src_cpu, int dst_cpu)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline int mark_reserved(int cpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void clear_reserved(int cpu) { }
|
|
static inline int alloc_related_thread_groups(void) { return 0; }
|
|
|
|
static inline void walt_fixup_cum_window_demand(struct rq *rq,
|
|
s64 scaled_delta) { }
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline unsigned long thermal_cap(int cpu)
|
|
{
|
|
return cpu_rq(cpu)->cpu_capacity_orig;
|
|
}
|
|
#endif
|
|
|
|
static inline void clear_walt_request(int cpu) { }
|
|
|
|
static inline int is_reserved(int cpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline enum sched_boost_policy sched_boost_policy(void)
|
|
{
|
|
return SCHED_BOOST_NONE;
|
|
}
|
|
|
|
static inline void sched_boost_parse_dt(void) { }
|
|
|
|
static inline void clear_ed_task(struct task_struct *p, struct rq *rq) { }
|
|
|
|
static inline bool early_detection_notify(struct rq *rq, u64 wallclock)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline unsigned int power_cost(int cpu, u64 demand)
|
|
{
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
#endif
|
|
|
|
static inline void note_task_waking(struct task_struct *p, u64 wallclock) { }
|
|
static inline bool walt_want_remote_wakeup(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_SCHED_WALT */
|
|
|
|
struct sched_avg_stats {
|
|
int nr;
|
|
int nr_misfit;
|
|
int nr_max;
|
|
int nr_scaled;
|
|
};
|
|
extern void sched_get_nr_running_avg(struct sched_avg_stats *stats);
|