5c92d12411
Impact: add new perf-counter type The 'CPU clock' counter counts the amount of CPU clock time that is elapsing, in nanoseconds. (regardless of how much of it the task is spending on a CPU executing) This counter type is a Linux kernel based abstraction, it is available even if the hardware does not support native hardware performance counters. Signed-off-by: Ingo Molnar <mingo@elte.hu>
563 lines
14 KiB
C
563 lines
14 KiB
C
/*
|
|
* Performance counter x86 architecture code
|
|
*
|
|
* Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/perf_counter.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/intel_arch_perfmon.h>
|
|
#include <asm/apic.h>
|
|
|
|
static bool perf_counters_initialized __read_mostly;
|
|
|
|
/*
|
|
* Number of (generic) HW counters:
|
|
*/
|
|
static int nr_hw_counters __read_mostly;
|
|
static u32 perf_counter_mask __read_mostly;
|
|
|
|
/* No support for fixed function counters yet */
|
|
|
|
#define MAX_HW_COUNTERS 8
|
|
|
|
struct cpu_hw_counters {
|
|
struct perf_counter *counters[MAX_HW_COUNTERS];
|
|
unsigned long used[BITS_TO_LONGS(MAX_HW_COUNTERS)];
|
|
};
|
|
|
|
/*
|
|
* Intel PerfMon v3. Used on Core2 and later.
|
|
*/
|
|
static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
|
|
|
|
const int intel_perfmon_event_map[] =
|
|
{
|
|
[PERF_COUNT_CYCLES] = 0x003c,
|
|
[PERF_COUNT_INSTRUCTIONS] = 0x00c0,
|
|
[PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
|
|
[PERF_COUNT_CACHE_MISSES] = 0x412e,
|
|
[PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
|
|
[PERF_COUNT_BRANCH_MISSES] = 0x00c5,
|
|
};
|
|
|
|
const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map);
|
|
|
|
/*
|
|
* Setup the hardware configuration for a given hw_event_type
|
|
*/
|
|
static int __hw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter_hw_event *hw_event = &counter->hw_event;
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
|
|
if (unlikely(!perf_counters_initialized))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Count user events, and generate PMC IRQs:
|
|
* (keep 'enabled' bit clear for now)
|
|
*/
|
|
hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT;
|
|
|
|
/*
|
|
* If privileged enough, count OS events too, and allow
|
|
* NMI events as well:
|
|
*/
|
|
hwc->nmi = 0;
|
|
if (capable(CAP_SYS_ADMIN)) {
|
|
hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
|
|
if (hw_event->nmi)
|
|
hwc->nmi = 1;
|
|
}
|
|
|
|
hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0;
|
|
hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0;
|
|
|
|
hwc->irq_period = hw_event->irq_period;
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32 bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic counter period:
|
|
*/
|
|
if (!hwc->irq_period)
|
|
hwc->irq_period = 0x7FFFFFFF;
|
|
|
|
hwc->next_count = -(s32)hwc->irq_period;
|
|
|
|
/*
|
|
* Raw event type provide the config in the event structure
|
|
*/
|
|
if (hw_event->raw) {
|
|
hwc->config |= hw_event->type;
|
|
} else {
|
|
if (hw_event->type >= max_intel_perfmon_events)
|
|
return -EINVAL;
|
|
/*
|
|
* The generic map:
|
|
*/
|
|
hwc->config |= intel_perfmon_event_map[hw_event->type];
|
|
}
|
|
counter->wakeup_pending = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void hw_perf_enable_all(void)
|
|
{
|
|
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, perf_counter_mask, 0);
|
|
}
|
|
|
|
void hw_perf_restore_ctrl(u64 ctrl)
|
|
{
|
|
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, ctrl, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hw_perf_restore_ctrl);
|
|
|
|
u64 hw_perf_disable_all(void)
|
|
{
|
|
u64 ctrl;
|
|
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
|
|
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
|
|
return ctrl;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hw_perf_disable_all);
|
|
|
|
static inline void
|
|
__x86_perf_counter_disable(struct hw_perf_counter *hwc, unsigned int idx)
|
|
{
|
|
wrmsr(hwc->config_base + idx, hwc->config, 0);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(u64, prev_next_count[MAX_HW_COUNTERS]);
|
|
|
|
static void __hw_perf_counter_set_period(struct hw_perf_counter *hwc, int idx)
|
|
{
|
|
per_cpu(prev_next_count[idx], smp_processor_id()) = hwc->next_count;
|
|
|
|
wrmsr(hwc->counter_base + idx, hwc->next_count, 0);
|
|
}
|
|
|
|
static void __x86_perf_counter_enable(struct hw_perf_counter *hwc, int idx)
|
|
{
|
|
wrmsr(hwc->config_base + idx,
|
|
hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0);
|
|
}
|
|
|
|
static void x86_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
int idx = hwc->idx;
|
|
|
|
/* Try to get the previous counter again */
|
|
if (test_and_set_bit(idx, cpuc->used)) {
|
|
idx = find_first_zero_bit(cpuc->used, nr_hw_counters);
|
|
set_bit(idx, cpuc->used);
|
|
hwc->idx = idx;
|
|
}
|
|
|
|
perf_counters_lapic_init(hwc->nmi);
|
|
|
|
__x86_perf_counter_disable(hwc, idx);
|
|
|
|
cpuc->counters[idx] = counter;
|
|
|
|
__hw_perf_counter_set_period(hwc, idx);
|
|
__x86_perf_counter_enable(hwc, idx);
|
|
}
|
|
|
|
static void __hw_perf_save_counter(struct perf_counter *counter,
|
|
struct hw_perf_counter *hwc, int idx)
|
|
{
|
|
s64 raw = -1;
|
|
s64 delta;
|
|
|
|
/*
|
|
* Get the raw hw counter value:
|
|
*/
|
|
rdmsrl(hwc->counter_base + idx, raw);
|
|
|
|
/*
|
|
* Rebase it to zero (it started counting at -irq_period),
|
|
* to see the delta since ->prev_count:
|
|
*/
|
|
delta = (s64)hwc->irq_period + (s64)(s32)raw;
|
|
|
|
atomic64_counter_set(counter, hwc->prev_count + delta);
|
|
|
|
/*
|
|
* Adjust the ->prev_count offset - if we went beyond
|
|
* irq_period of units, then we got an IRQ and the counter
|
|
* was set back to -irq_period:
|
|
*/
|
|
while (delta >= (s64)hwc->irq_period) {
|
|
hwc->prev_count += hwc->irq_period;
|
|
delta -= (s64)hwc->irq_period;
|
|
}
|
|
|
|
/*
|
|
* Calculate the next raw counter value we'll write into
|
|
* the counter at the next sched-in time:
|
|
*/
|
|
delta -= (s64)hwc->irq_period;
|
|
|
|
hwc->next_count = (s32)delta;
|
|
}
|
|
|
|
void perf_counter_print_debug(void)
|
|
{
|
|
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, next_count;
|
|
int cpu, idx;
|
|
|
|
if (!nr_hw_counters)
|
|
return;
|
|
|
|
local_irq_disable();
|
|
|
|
cpu = smp_processor_id();
|
|
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
|
|
|
|
printk(KERN_INFO "\n");
|
|
printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl);
|
|
printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status);
|
|
printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow);
|
|
|
|
for (idx = 0; idx < nr_hw_counters; idx++) {
|
|
rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
|
|
rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count);
|
|
|
|
next_count = per_cpu(prev_next_count[idx], cpu);
|
|
|
|
printk(KERN_INFO "CPU#%d: PMC%d ctrl: %016llx\n",
|
|
cpu, idx, pmc_ctrl);
|
|
printk(KERN_INFO "CPU#%d: PMC%d count: %016llx\n",
|
|
cpu, idx, pmc_count);
|
|
printk(KERN_INFO "CPU#%d: PMC%d next: %016llx\n",
|
|
cpu, idx, next_count);
|
|
}
|
|
local_irq_enable();
|
|
}
|
|
|
|
static void x86_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
unsigned int idx = hwc->idx;
|
|
|
|
__x86_perf_counter_disable(hwc, idx);
|
|
|
|
clear_bit(idx, cpuc->used);
|
|
cpuc->counters[idx] = NULL;
|
|
__hw_perf_save_counter(counter, hwc, idx);
|
|
}
|
|
|
|
static void x86_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
unsigned long addr = hwc->counter_base + hwc->idx;
|
|
s64 offs, val = -1LL;
|
|
s32 val32;
|
|
|
|
/* Careful: NMI might modify the counter offset */
|
|
do {
|
|
offs = hwc->prev_count;
|
|
rdmsrl(addr, val);
|
|
} while (offs != hwc->prev_count);
|
|
|
|
val32 = (s32) val;
|
|
val = (s64)hwc->irq_period + (s64)val32;
|
|
atomic64_counter_set(counter, hwc->prev_count + val);
|
|
}
|
|
|
|
static void perf_store_irq_data(struct perf_counter *counter, u64 data)
|
|
{
|
|
struct perf_data *irqdata = counter->irqdata;
|
|
|
|
if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
|
|
irqdata->overrun++;
|
|
} else {
|
|
u64 *p = (u64 *) &irqdata->data[irqdata->len];
|
|
|
|
*p = data;
|
|
irqdata->len += sizeof(u64);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* NMI-safe enable method:
|
|
*/
|
|
static void perf_save_and_restart(struct perf_counter *counter)
|
|
{
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
int idx = hwc->idx;
|
|
u64 pmc_ctrl;
|
|
|
|
rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl);
|
|
|
|
__hw_perf_save_counter(counter, hwc, idx);
|
|
__hw_perf_counter_set_period(hwc, idx);
|
|
|
|
if (pmc_ctrl & ARCH_PERFMON_EVENTSEL0_ENABLE)
|
|
__x86_perf_counter_enable(hwc, idx);
|
|
}
|
|
|
|
static void
|
|
perf_handle_group(struct perf_counter *sibling, u64 *status, u64 *overflown)
|
|
{
|
|
struct perf_counter *counter, *group_leader = sibling->group_leader;
|
|
int bit;
|
|
|
|
/*
|
|
* Store the counter's own timestamp first:
|
|
*/
|
|
perf_store_irq_data(sibling, sibling->hw_event.type);
|
|
perf_store_irq_data(sibling, atomic64_counter_read(sibling));
|
|
|
|
/*
|
|
* Then store sibling timestamps (if any):
|
|
*/
|
|
list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
|
|
if (!counter->active) {
|
|
/*
|
|
* When counter was not in the overflow mask, we have to
|
|
* read it from hardware. We read it as well, when it
|
|
* has not been read yet and clear the bit in the
|
|
* status mask.
|
|
*/
|
|
bit = counter->hw.idx;
|
|
if (!test_bit(bit, (unsigned long *) overflown) ||
|
|
test_bit(bit, (unsigned long *) status)) {
|
|
clear_bit(bit, (unsigned long *) status);
|
|
perf_save_and_restart(counter);
|
|
}
|
|
}
|
|
perf_store_irq_data(sibling, counter->hw_event.type);
|
|
perf_store_irq_data(sibling, atomic64_counter_read(counter));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This handler is triggered by the local APIC, so the APIC IRQ handling
|
|
* rules apply:
|
|
*/
|
|
static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi)
|
|
{
|
|
int bit, cpu = smp_processor_id();
|
|
u64 ack, status, saved_global;
|
|
struct cpu_hw_counters *cpuc;
|
|
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, saved_global);
|
|
|
|
/* Disable counters globally */
|
|
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0, 0);
|
|
ack_APIC_irq();
|
|
|
|
cpuc = &per_cpu(cpu_hw_counters, cpu);
|
|
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
if (!status)
|
|
goto out;
|
|
|
|
again:
|
|
ack = status;
|
|
for_each_bit(bit, (unsigned long *) &status, nr_hw_counters) {
|
|
struct perf_counter *counter = cpuc->counters[bit];
|
|
|
|
clear_bit(bit, (unsigned long *) &status);
|
|
if (!counter)
|
|
continue;
|
|
|
|
perf_save_and_restart(counter);
|
|
|
|
switch (counter->hw_event.record_type) {
|
|
case PERF_RECORD_SIMPLE:
|
|
continue;
|
|
case PERF_RECORD_IRQ:
|
|
perf_store_irq_data(counter, instruction_pointer(regs));
|
|
break;
|
|
case PERF_RECORD_GROUP:
|
|
perf_handle_group(counter, &status, &ack);
|
|
break;
|
|
}
|
|
/*
|
|
* From NMI context we cannot call into the scheduler to
|
|
* do a task wakeup - but we mark these counters as
|
|
* wakeup_pending and initate a wakeup callback:
|
|
*/
|
|
if (nmi) {
|
|
counter->wakeup_pending = 1;
|
|
set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
|
|
} else {
|
|
wake_up(&counter->waitq);
|
|
}
|
|
}
|
|
|
|
wrmsr(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack, 0);
|
|
|
|
/*
|
|
* Repeat if there is more work to be done:
|
|
*/
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
if (status)
|
|
goto again;
|
|
out:
|
|
/*
|
|
* Restore - do not reenable when global enable is off:
|
|
*/
|
|
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, saved_global, 0);
|
|
}
|
|
|
|
void smp_perf_counter_interrupt(struct pt_regs *regs)
|
|
{
|
|
irq_enter();
|
|
#ifdef CONFIG_X86_64
|
|
add_pda(apic_perf_irqs, 1);
|
|
#else
|
|
per_cpu(irq_stat, smp_processor_id()).apic_perf_irqs++;
|
|
#endif
|
|
apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
|
|
__smp_perf_counter_interrupt(regs, 0);
|
|
|
|
irq_exit();
|
|
}
|
|
|
|
/*
|
|
* This handler is triggered by NMI contexts:
|
|
*/
|
|
void perf_counter_notify(struct pt_regs *regs)
|
|
{
|
|
struct cpu_hw_counters *cpuc;
|
|
unsigned long flags;
|
|
int bit, cpu;
|
|
|
|
local_irq_save(flags);
|
|
cpu = smp_processor_id();
|
|
cpuc = &per_cpu(cpu_hw_counters, cpu);
|
|
|
|
for_each_bit(bit, cpuc->used, nr_hw_counters) {
|
|
struct perf_counter *counter = cpuc->counters[bit];
|
|
|
|
if (!counter)
|
|
continue;
|
|
|
|
if (counter->wakeup_pending) {
|
|
counter->wakeup_pending = 0;
|
|
wake_up(&counter->waitq);
|
|
}
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void __cpuinit perf_counters_lapic_init(int nmi)
|
|
{
|
|
u32 apic_val;
|
|
|
|
if (!perf_counters_initialized)
|
|
return;
|
|
/*
|
|
* Enable the performance counter vector in the APIC LVT:
|
|
*/
|
|
apic_val = apic_read(APIC_LVTERR);
|
|
|
|
apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED);
|
|
if (nmi)
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
else
|
|
apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR);
|
|
apic_write(APIC_LVTERR, apic_val);
|
|
}
|
|
|
|
static int __kprobes
|
|
perf_counter_nmi_handler(struct notifier_block *self,
|
|
unsigned long cmd, void *__args)
|
|
{
|
|
struct die_args *args = __args;
|
|
struct pt_regs *regs;
|
|
|
|
if (likely(cmd != DIE_NMI_IPI))
|
|
return NOTIFY_DONE;
|
|
|
|
regs = args->regs;
|
|
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
__smp_perf_counter_interrupt(regs, 1);
|
|
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
|
|
.notifier_call = perf_counter_nmi_handler
|
|
};
|
|
|
|
void __init init_hw_perf_counters(void)
|
|
{
|
|
union cpuid10_eax eax;
|
|
unsigned int unused;
|
|
unsigned int ebx;
|
|
|
|
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
|
|
return;
|
|
|
|
/*
|
|
* Check whether the Architectural PerfMon supports
|
|
* Branch Misses Retired Event or not.
|
|
*/
|
|
cpuid(10, &(eax.full), &ebx, &unused, &unused);
|
|
if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
|
|
return;
|
|
|
|
printk(KERN_INFO "Intel Performance Monitoring support detected.\n");
|
|
|
|
printk(KERN_INFO "... version: %d\n", eax.split.version_id);
|
|
printk(KERN_INFO "... num_counters: %d\n", eax.split.num_counters);
|
|
nr_hw_counters = eax.split.num_counters;
|
|
if (nr_hw_counters > MAX_HW_COUNTERS) {
|
|
nr_hw_counters = MAX_HW_COUNTERS;
|
|
WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
|
|
nr_hw_counters, MAX_HW_COUNTERS);
|
|
}
|
|
perf_counter_mask = (1 << nr_hw_counters) - 1;
|
|
perf_max_counters = nr_hw_counters;
|
|
|
|
printk(KERN_INFO "... bit_width: %d\n", eax.split.bit_width);
|
|
printk(KERN_INFO "... mask_length: %d\n", eax.split.mask_length);
|
|
|
|
perf_counters_lapic_init(0);
|
|
register_die_notifier(&perf_counter_nmi_notifier);
|
|
|
|
perf_counters_initialized = true;
|
|
}
|
|
|
|
static const struct hw_perf_counter_ops x86_perf_counter_ops = {
|
|
.hw_perf_counter_enable = x86_perf_counter_enable,
|
|
.hw_perf_counter_disable = x86_perf_counter_disable,
|
|
.hw_perf_counter_read = x86_perf_counter_read,
|
|
};
|
|
|
|
const struct hw_perf_counter_ops *
|
|
hw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
int err;
|
|
|
|
err = __hw_perf_counter_init(counter);
|
|
if (err)
|
|
return NULL;
|
|
|
|
return &x86_perf_counter_ops;
|
|
}
|