kernel-fxtec-pro1x/drivers/net/Kconfig
Jeff Kirsher 58565a35ea r6040: Move the RDC driver
Move the RDC driver into drivers/net/ethernet/rdc/ and make the
necessary Kconfig and Makefile changes.

CC: Florian Fainelli <florian@openwrt.org>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2011-08-12 12:38:34 -07:00

972 lines
34 KiB
Text

#
# Network device configuration
#
menuconfig NETDEVICES
default y if UML
depends on NET
bool "Network device support"
---help---
You can say N here if you don't intend to connect your Linux box to
any other computer at all.
You'll have to say Y if your computer contains a network card that
you want to use under Linux. If you are going to run SLIP or PPP over
telephone line or null modem cable you need say Y here. Connecting
two machines with parallel ports using PLIP needs this, as well as
AX.25/KISS for sending Internet traffic over amateur radio links.
See also "The Linux Network Administrator's Guide" by Olaf Kirch and
Terry Dawson. Available at <http://www.tldp.org/guides.html>.
If unsure, say Y.
# All the following symbols are dependent on NETDEVICES - do not repeat
# that for each of the symbols.
if NETDEVICES
config IFB
tristate "Intermediate Functional Block support"
depends on NET_CLS_ACT
---help---
This is an intermediate driver that allows sharing of
resources.
To compile this driver as a module, choose M here: the module
will be called ifb. If you want to use more than one ifb
device at a time, you need to compile this driver as a module.
Instead of 'ifb', the devices will then be called 'ifb0',
'ifb1' etc.
Look at the iproute2 documentation directory for usage etc
config DUMMY
tristate "Dummy net driver support"
---help---
This is essentially a bit-bucket device (i.e. traffic you send to
this device is consigned into oblivion) with a configurable IP
address. It is most commonly used in order to make your currently
inactive SLIP address seem like a real address for local programs.
If you use SLIP or PPP, you might want to say Y here. Since this
thing often comes in handy, the default is Y. It won't enlarge your
kernel either. What a deal. Read about it in the Network
Administrator's Guide, available from
<http://www.tldp.org/docs.html#guide>.
To compile this driver as a module, choose M here: the module
will be called dummy. If you want to use more than one dummy
device at a time, you need to compile this driver as a module.
Instead of 'dummy', the devices will then be called 'dummy0',
'dummy1' etc.
config BONDING
tristate "Bonding driver support"
depends on INET
depends on IPV6 || IPV6=n
---help---
Say 'Y' or 'M' if you wish to be able to 'bond' multiple Ethernet
Channels together. This is called 'Etherchannel' by Cisco,
'Trunking' by Sun, 802.3ad by the IEEE, and 'Bonding' in Linux.
The driver supports multiple bonding modes to allow for both high
performance and high availability operation.
Refer to <file:Documentation/networking/bonding.txt> for more
information.
To compile this driver as a module, choose M here: the module
will be called bonding.
config MACVLAN
tristate "MAC-VLAN support (EXPERIMENTAL)"
depends on EXPERIMENTAL
---help---
This allows one to create virtual interfaces that map packets to
or from specific MAC addresses to a particular interface.
Macvlan devices can be added using the "ip" command from the
iproute2 package starting with the iproute2-2.6.23 release:
"ip link add link <real dev> [ address MAC ] [ NAME ] type macvlan"
To compile this driver as a module, choose M here: the module
will be called macvlan.
config MACVTAP
tristate "MAC-VLAN based tap driver (EXPERIMENTAL)"
depends on MACVLAN
help
This adds a specialized tap character device driver that is based
on the MAC-VLAN network interface, called macvtap. A macvtap device
can be added in the same way as a macvlan device, using 'type
macvlan', and then be accessed through the tap user space interface.
To compile this driver as a module, choose M here: the module
will be called macvtap.
config EQUALIZER
tristate "EQL (serial line load balancing) support"
---help---
If you have two serial connections to some other computer (this
usually requires two modems and two telephone lines) and you use
SLIP (the protocol for sending Internet traffic over telephone
lines) or PPP (a better SLIP) on them, you can make them behave like
one double speed connection using this driver. Naturally, this has
to be supported at the other end as well, either with a similar EQL
Linux driver or with a Livingston Portmaster 2e.
Say Y if you want this and read
<file:Documentation/networking/eql.txt>. You may also want to read
section 6.2 of the NET-3-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
To compile this driver as a module, choose M here: the module
will be called eql. If unsure, say N.
config TUN
tristate "Universal TUN/TAP device driver support"
select CRC32
---help---
TUN/TAP provides packet reception and transmission for user space
programs. It can be viewed as a simple Point-to-Point or Ethernet
device, which instead of receiving packets from a physical media,
receives them from user space program and instead of sending packets
via physical media writes them to the user space program.
When a program opens /dev/net/tun, driver creates and registers
corresponding net device tunX or tapX. After a program closed above
devices, driver will automatically delete tunXX or tapXX device and
all routes corresponding to it.
Please read <file:Documentation/networking/tuntap.txt> for more
information.
To compile this driver as a module, choose M here: the module
will be called tun.
If you don't know what to use this for, you don't need it.
config VETH
tristate "Virtual ethernet pair device"
---help---
This device is a local ethernet tunnel. Devices are created in pairs.
When one end receives the packet it appears on its pair and vice
versa.
config NET_SB1000
tristate "General Instruments Surfboard 1000"
depends on PNP
---help---
This is a driver for the General Instrument (also known as
NextLevel) SURFboard 1000 internal
cable modem. This is an ISA card which is used by a number of cable
TV companies to provide cable modem access. It's a one-way
downstream-only cable modem, meaning that your upstream net link is
provided by your regular phone modem.
At present this driver only compiles as a module, so say M here if
you have this card. The module will be called sb1000. Then read
<file:Documentation/networking/README.sb1000> for information on how
to use this module, as it needs special ppp scripts for establishing
a connection. Further documentation and the necessary scripts can be
found at:
<http://www.jacksonville.net/~fventuri/>
<http://home.adelphia.net/~siglercm/sb1000.html>
<http://linuxpower.cx/~cable/>
If you don't have this card, of course say N.
source "drivers/net/arcnet/Kconfig"
config MII
tristate "Generic Media Independent Interface device support"
help
Most ethernet controllers have MII transceiver either as an external
or internal device. It is safe to say Y or M here even if your
ethernet card lacks MII.
source "drivers/net/phy/Kconfig"
#
# Ethernet
#
source "drivers/net/ethernet/Kconfig"
menuconfig NET_ETHERNET
bool "Ethernet (10 or 100Mbit)"
depends on !UML
---help---
Ethernet (also called IEEE 802.3 or ISO 8802-2) is the most common
type of Local Area Network (LAN) in universities and companies.
Common varieties of Ethernet are: 10BASE-2 or Thinnet (10 Mbps over
coaxial cable, linking computers in a chain), 10BASE-T or twisted
pair (10 Mbps over twisted pair cable, linking computers to central
hubs), 10BASE-F (10 Mbps over optical fiber links, using hubs),
100BASE-TX (100 Mbps over two twisted pair cables, using hubs),
100BASE-T4 (100 Mbps over 4 standard voice-grade twisted pair
cables, using hubs), 100BASE-FX (100 Mbps over optical fiber links)
[the 100BASE varieties are also known as Fast Ethernet], and Gigabit
Ethernet (1 Gbps over optical fiber or short copper links).
If your Linux machine will be connected to an Ethernet and you have
an Ethernet network interface card (NIC) installed in your computer,
say Y here and read the Ethernet-HOWTO, available from
<http://www.tldp.org/docs.html#howto>. You will then also have
to say Y to the driver for your particular NIC.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about Ethernet network cards. If unsure, say N.
if NET_ETHERNET
config SH_ETH
tristate "Renesas SuperH Ethernet support"
depends on SUPERH && \
(CPU_SUBTYPE_SH7710 || CPU_SUBTYPE_SH7712 || \
CPU_SUBTYPE_SH7763 || CPU_SUBTYPE_SH7619 || \
CPU_SUBTYPE_SH7724 || CPU_SUBTYPE_SH7757)
select CRC32
select MII
select MDIO_BITBANG
select PHYLIB
help
Renesas SuperH Ethernet device driver.
This driver supporting CPUs are:
- SH7710, SH7712, SH7763, SH7619, SH7724, and SH7757.
config NET_NETX
tristate "NetX Ethernet support"
select MII
depends on ARCH_NETX
help
This is support for the Hilscher netX builtin Ethernet ports
To compile this driver as a module, choose M here. The module
will be called netx-eth.
config DM9000
tristate "DM9000 support"
depends on ARM || BLACKFIN || MIPS
select CRC32
select MII
---help---
Support for DM9000 chipset.
To compile this driver as a module, choose M here. The module
will be called dm9000.
config DM9000_DEBUGLEVEL
int "DM9000 maximum debug level"
depends on DM9000
default 4
help
The maximum level of debugging code compiled into the DM9000
driver.
config DM9000_FORCE_SIMPLE_PHY_POLL
bool "Force simple NSR based PHY polling"
depends on DM9000
---help---
This configuration forces the DM9000 to use the NSR's LinkStatus
bit to determine if the link is up or down instead of the more
costly MII PHY reads. Note, this will not work if the chip is
operating with an external PHY.
config ENC28J60
tristate "ENC28J60 support"
depends on EXPERIMENTAL && SPI && NET_ETHERNET
select CRC32
---help---
Support for the Microchip EN28J60 ethernet chip.
To compile this driver as a module, choose M here. The module will be
called enc28j60.
config ENC28J60_WRITEVERIFY
bool "Enable write verify"
depends on ENC28J60
---help---
Enable the verify after the buffer write useful for debugging purpose.
If unsure, say N.
config ETHOC
tristate "OpenCores 10/100 Mbps Ethernet MAC support"
depends on NET_ETHERNET && HAS_IOMEM && HAS_DMA
select MII
select PHYLIB
select CRC32
select BITREVERSE
help
Say Y here if you want to use the OpenCores 10/100 Mbps Ethernet MAC.
config GRETH
tristate "Aeroflex Gaisler GRETH Ethernet MAC support"
depends on SPARC
select PHYLIB
select CRC32
help
Say Y here if you want to use the Aeroflex Gaisler GRETH Ethernet MAC.
config DNET
tristate "Dave ethernet support (DNET)"
depends on NET_ETHERNET && HAS_IOMEM
select PHYLIB
help
The Dave ethernet interface (DNET) is found on Qong Board FPGA.
Say Y to include support for the DNET chip.
To compile this driver as a module, choose M here: the module
will be called dnet.
config HP100
tristate "HP 10/100VG PCLAN (ISA, EISA, PCI) support"
depends on ISA || EISA || PCI
help
If you have a network (Ethernet) card of this type, say Y and read
the Ethernet-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
To compile this driver as a module, choose M here. The module
will be called hp100.
config NET_PCI
bool "EISA, VLB, PCI and on board controllers"
depends on ISA || EISA || PCI
help
This is another class of network cards which attach directly to the
bus. If you have one of those, say Y and read the Ethernet-HOWTO,
available from <http://www.tldp.org/docs.html#howto>.
Note that the answer to this question doesn't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about this class of network cards. If you say Y, you
will be asked for your specific card in the following questions. If
you are unsure, say Y.
config ADAPTEC_STARFIRE
tristate "Adaptec Starfire/DuraLAN support"
depends on NET_PCI && PCI
select CRC32
select MII
help
Say Y here if you have an Adaptec Starfire (or DuraLAN) PCI network
adapter. The DuraLAN chip is used on the 64 bit PCI boards from
Adaptec e.g. the ANA-6922A. The older 32 bit boards use the tulip
driver.
To compile this driver as a module, choose M here: the module
will be called starfire. This is recommended.
config FORCEDETH
tristate "nForce Ethernet support"
depends on NET_PCI && PCI
help
If you have a network (Ethernet) controller of this type, say Y and
read the Ethernet-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
To compile this driver as a module, choose M here. The module
will be called forcedeth.
config FEALNX
tristate "Myson MTD-8xx PCI Ethernet support"
depends on NET_PCI && PCI
select CRC32
select MII
help
Say Y here to support the Myson MTD-800 family of PCI-based Ethernet
cards. <http://www.myson.com.tw/>
config NET_POCKET
bool "Pocket and portable adapters"
depends on PARPORT
---help---
Cute little network (Ethernet) devices which attach to the parallel
port ("pocket adapters"), commonly used with laptops. If you have
one of those, say Y and read the Ethernet-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
If you want to plug a network (or some other) card into the PCMCIA
(or PC-card) slot of your laptop instead (PCMCIA is the standard for
credit card size extension cards used by all modern laptops), you
need the pcmcia-cs package (location contained in the file
<file:Documentation/Changes>) and you can say N here.
Laptop users should read the Linux Laptop home page at
<http://www.linux-on-laptops.com/> or
Tuxmobil - Linux on Mobile Computers at <http://www.tuxmobil.org/>.
Note that the answer to this question doesn't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about this class of network devices. If you say Y, you
will be asked for your specific device in the following questions.
endif # NET_ETHERNET
#
# Gigabit Ethernet
#
menuconfig NETDEV_1000
bool "Ethernet (1000 Mbit)"
depends on !UML
default y
---help---
Ethernet (also called IEEE 802.3 or ISO 8802-2) is the most common
type of Local Area Network (LAN) in universities and companies.
Say Y here to get to see options for Gigabit Ethernet drivers.
This option alone does not add any kernel code.
Note that drivers supporting both 100 and 1000 MBit may be listed
under "Ethernet (10 or 100MBit)" instead.
If you say N, all options in this submenu will be skipped and disabled.
if NETDEV_1000
endif # NETDEV_1000
#
# 10 Gigabit Ethernet
#
menuconfig NETDEV_10000
bool "Ethernet (10000 Mbit)"
depends on !UML
default y
---help---
Say Y here to get to see options for 10 Gigabit Ethernet drivers.
This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and disabled.
if NETDEV_10000
config MDIO
tristate
config SUNGEM_PHY
tristate
endif # NETDEV_10000
source "drivers/net/tokenring/Kconfig"
source "drivers/net/wireless/Kconfig"
source "drivers/net/wimax/Kconfig"
source "drivers/net/usb/Kconfig"
source "drivers/net/pcmcia/Kconfig"
source "drivers/net/wan/Kconfig"
source "drivers/atm/Kconfig"
source "drivers/ieee802154/Kconfig"
source "drivers/s390/net/Kconfig"
source "drivers/net/caif/Kconfig"
config TILE_NET
tristate "Tilera GBE/XGBE network driver support"
depends on TILE
default y
select CRC32
help
This is a standard Linux network device driver for the
on-chip Tilera Gigabit Ethernet and XAUI interfaces.
To compile this driver as a module, choose M here: the module
will be called tile_net.
config XEN_NETDEV_FRONTEND
tristate "Xen network device frontend driver"
depends on XEN
select XEN_XENBUS_FRONTEND
default y
help
This driver provides support for Xen paravirtual network
devices exported by a Xen network driver domain (often
domain 0).
The corresponding Linux backend driver is enabled by the
CONFIG_XEN_NETDEV_BACKEND option.
If you are compiling a kernel for use as Xen guest, you
should say Y here. To compile this driver as a module, chose
M here: the module will be called xen-netfront.
config XEN_NETDEV_BACKEND
tristate "Xen backend network device"
depends on XEN_BACKEND
help
This driver allows the kernel to act as a Xen network driver
domain which exports paravirtual network devices to other
Xen domains. These devices can be accessed by any operating
system that implements a compatible front end.
The corresponding Linux frontend driver is enabled by the
CONFIG_XEN_NETDEV_FRONTEND configuration option.
The backend driver presents a standard network device
endpoint for each paravirtual network device to the driver
domain network stack. These can then be bridged or routed
etc in order to provide full network connectivity.
If you are compiling a kernel to run in a Xen network driver
domain (often this is domain 0) you should say Y here. To
compile this driver as a module, chose M here: the module
will be called xen-netback.
config RIONET
tristate "RapidIO Ethernet over messaging driver support"
depends on RAPIDIO
config RIONET_TX_SIZE
int "Number of outbound queue entries"
depends on RIONET
default "128"
config RIONET_RX_SIZE
int "Number of inbound queue entries"
depends on RIONET
default "128"
config FDDI
tristate "FDDI driver support"
depends on (PCI || EISA || TC)
help
Fiber Distributed Data Interface is a high speed local area network
design; essentially a replacement for high speed Ethernet. FDDI can
run over copper or fiber. If you are connected to such a network and
want a driver for the FDDI card in your computer, say Y here (and
then also Y to the driver for your FDDI card, below). Most people
will say N.
config DEFXX
tristate "Digital DEFTA/DEFEA/DEFPA adapter support"
depends on FDDI && (PCI || EISA || TC)
---help---
This is support for the DIGITAL series of TURBOchannel (DEFTA),
EISA (DEFEA) and PCI (DEFPA) controllers which can connect you
to a local FDDI network.
To compile this driver as a module, choose M here: the module
will be called defxx. If unsure, say N.
config DEFXX_MMIO
bool
prompt "Use MMIO instead of PIO" if PCI || EISA
depends on DEFXX
default n if PCI || EISA
default y
---help---
This instructs the driver to use EISA or PCI memory-mapped I/O
(MMIO) as appropriate instead of programmed I/O ports (PIO).
Enabling this gives an improvement in processing time in parts
of the driver, but it may cause problems with EISA (DEFEA)
adapters. TURBOchannel does not have the concept of I/O ports,
so MMIO is always used for these (DEFTA) adapters.
If unsure, say N.
config SKFP
tristate "SysKonnect FDDI PCI support"
depends on FDDI && PCI
select BITREVERSE
---help---
Say Y here if you have a SysKonnect FDDI PCI adapter.
The following adapters are supported by this driver:
- SK-5521 (SK-NET FDDI-UP)
- SK-5522 (SK-NET FDDI-UP DAS)
- SK-5541 (SK-NET FDDI-FP)
- SK-5543 (SK-NET FDDI-LP)
- SK-5544 (SK-NET FDDI-LP DAS)
- SK-5821 (SK-NET FDDI-UP64)
- SK-5822 (SK-NET FDDI-UP64 DAS)
- SK-5841 (SK-NET FDDI-FP64)
- SK-5843 (SK-NET FDDI-LP64)
- SK-5844 (SK-NET FDDI-LP64 DAS)
- Netelligent 100 FDDI DAS Fibre SC
- Netelligent 100 FDDI SAS Fibre SC
- Netelligent 100 FDDI DAS UTP
- Netelligent 100 FDDI SAS UTP
- Netelligent 100 FDDI SAS Fibre MIC
Read <file:Documentation/networking/skfp.txt> for information about
the driver.
Questions concerning this driver can be addressed to:
<linux@syskonnect.de>
To compile this driver as a module, choose M here: the module
will be called skfp. This is recommended.
config HIPPI
bool "HIPPI driver support (EXPERIMENTAL)"
depends on EXPERIMENTAL && INET && PCI
help
HIgh Performance Parallel Interface (HIPPI) is a 800Mbit/sec and
1600Mbit/sec dual-simplex switched or point-to-point network. HIPPI
can run over copper (25m) or fiber (300m on multi-mode or 10km on
single-mode). HIPPI networks are commonly used for clusters and to
connect to super computers. If you are connected to a HIPPI network
and have a HIPPI network card in your computer that you want to use
under Linux, say Y here (you must also remember to enable the driver
for your HIPPI card below). Most people will say N here.
config ROADRUNNER
tristate "Essential RoadRunner HIPPI PCI adapter support (EXPERIMENTAL)"
depends on HIPPI && PCI
help
Say Y here if this is your PCI HIPPI network card.
To compile this driver as a module, choose M here: the module
will be called rrunner. If unsure, say N.
config ROADRUNNER_LARGE_RINGS
bool "Use large TX/RX rings (EXPERIMENTAL)"
depends on ROADRUNNER
help
If you say Y here, the RoadRunner driver will preallocate up to 2 MB
of additional memory to allow for fastest operation, both for
transmitting and receiving. This memory cannot be used by any other
kernel code or by user space programs. Say Y here only if you have
the memory.
config PLIP
tristate "PLIP (parallel port) support"
depends on PARPORT
---help---
PLIP (Parallel Line Internet Protocol) is used to create a
reasonably fast mini network consisting of two (or, rarely, more)
local machines. A PLIP link from a Linux box is a popular means to
install a Linux distribution on a machine which doesn't have a
CD-ROM drive (a minimal system has to be transferred with floppies
first). The kernels on both machines need to have this PLIP option
enabled for this to work.
The PLIP driver has two modes, mode 0 and mode 1. The parallel
ports (the connectors at the computers with 25 holes) are connected
with "null printer" or "Turbo Laplink" cables which can transmit 4
bits at a time (mode 0) or with special PLIP cables, to be used on
bidirectional parallel ports only, which can transmit 8 bits at a
time (mode 1); you can find the wiring of these cables in
<file:Documentation/networking/PLIP.txt>. The cables can be up to
15m long. Mode 0 works also if one of the machines runs DOS/Windows
and has some PLIP software installed, e.g. the Crynwr PLIP packet
driver (<http://oak.oakland.edu/simtel.net/msdos/pktdrvr-pre.html>)
and winsock or NCSA's telnet.
If you want to use PLIP, say Y and read the PLIP mini-HOWTO as well
as the NET-3-HOWTO, both available from
<http://www.tldp.org/docs.html#howto>. Note that the PLIP
protocol has been changed and this PLIP driver won't work together
with the PLIP support in Linux versions 1.0.x. This option enlarges
your kernel by about 8 KB.
To compile this driver as a module, choose M here. The module
will be called plip. If unsure, say Y or M, in case you buy
a laptop later.
config PPP
tristate "PPP (point-to-point protocol) support"
select SLHC
---help---
PPP (Point to Point Protocol) is a newer and better SLIP. It serves
the same purpose: sending Internet traffic over telephone (and other
serial) lines. Ask your access provider if they support it, because
otherwise you can't use it; most Internet access providers these
days support PPP rather than SLIP.
To use PPP, you need an additional program called pppd as described
in the PPP-HOWTO, available at
<http://www.tldp.org/docs.html#howto>. Make sure that you have
the version of pppd recommended in <file:Documentation/Changes>.
The PPP option enlarges your kernel by about 16 KB.
There are actually two versions of PPP: the traditional PPP for
asynchronous lines, such as regular analog phone lines, and
synchronous PPP which can be used over digital ISDN lines for
example. If you want to use PPP over phone lines or other
asynchronous serial lines, you need to say Y (or M) here and also to
the next option, "PPP support for async serial ports". For PPP over
synchronous lines, you should say Y (or M) here and to "Support
synchronous PPP", below.
If you said Y to "Version information on all symbols" above, then
you cannot compile the PPP driver into the kernel; you can then only
compile it as a module. To compile this driver as a module, choose M
here. The module will be called ppp_generic.
config PPP_MULTILINK
bool "PPP multilink support (EXPERIMENTAL)"
depends on PPP && EXPERIMENTAL
help
PPP multilink is a protocol (defined in RFC 1990) which allows you
to combine several (logical or physical) lines into one logical PPP
connection, so that you can utilize your full bandwidth.
This has to be supported at the other end as well and you need a
version of the pppd daemon which understands the multilink protocol.
If unsure, say N.
config PPP_FILTER
bool "PPP filtering"
depends on PPP
help
Say Y here if you want to be able to filter the packets passing over
PPP interfaces. This allows you to control which packets count as
activity (i.e. which packets will reset the idle timer or bring up
a demand-dialed link) and which packets are to be dropped entirely.
You need to say Y here if you wish to use the pass-filter and
active-filter options to pppd.
If unsure, say N.
config PPP_ASYNC
tristate "PPP support for async serial ports"
depends on PPP
select CRC_CCITT
---help---
Say Y (or M) here if you want to be able to use PPP over standard
asynchronous serial ports, such as COM1 or COM2 on a PC. If you use
a modem (not a synchronous or ISDN modem) to contact your ISP, you
need this option.
To compile this driver as a module, choose M here.
If unsure, say Y.
config PPP_SYNC_TTY
tristate "PPP support for sync tty ports"
depends on PPP
help
Say Y (or M) here if you want to be able to use PPP over synchronous
(HDLC) tty devices, such as the SyncLink adapter. These devices
are often used for high-speed leased lines like T1/E1.
To compile this driver as a module, choose M here.
config PPP_DEFLATE
tristate "PPP Deflate compression"
depends on PPP
select ZLIB_INFLATE
select ZLIB_DEFLATE
---help---
Support for the Deflate compression method for PPP, which uses the
Deflate algorithm (the same algorithm that gzip uses) to compress
each PPP packet before it is sent over the wire. The machine at the
other end of the PPP link (usually your ISP) has to support the
Deflate compression method as well for this to be useful. Even if
they don't support it, it is safe to say Y here.
To compile this driver as a module, choose M here.
config PPP_BSDCOMP
tristate "PPP BSD-Compress compression"
depends on PPP
---help---
Support for the BSD-Compress compression method for PPP, which uses
the LZW compression method to compress each PPP packet before it is
sent over the wire. The machine at the other end of the PPP link
(usually your ISP) has to support the BSD-Compress compression
method as well for this to be useful. Even if they don't support it,
it is safe to say Y here.
The PPP Deflate compression method ("PPP Deflate compression",
above) is preferable to BSD-Compress, because it compresses better
and is patent-free.
Note that the BSD compression code will always be compiled as a
module; it is called bsd_comp and will show up in the directory
modules once you have said "make modules". If unsure, say N.
config PPP_MPPE
tristate "PPP MPPE compression (encryption) (EXPERIMENTAL)"
depends on PPP && EXPERIMENTAL
select CRYPTO
select CRYPTO_SHA1
select CRYPTO_ARC4
select CRYPTO_ECB
---help---
Support for the MPPE Encryption protocol, as employed by the
Microsoft Point-to-Point Tunneling Protocol.
See http://pptpclient.sourceforge.net/ for information on
configuring PPTP clients and servers to utilize this method.
config PPPOE
tristate "PPP over Ethernet (EXPERIMENTAL)"
depends on EXPERIMENTAL && PPP
help
Support for PPP over Ethernet.
This driver requires the latest version of pppd from the CVS
repository at cvs.samba.org. Alternatively, see the
RoaringPenguin package (<http://www.roaringpenguin.com/pppoe>)
which contains instruction on how to use this driver (under
the heading "Kernel mode PPPoE").
config PPTP
tristate "PPP over IPv4 (PPTP) (EXPERIMENTAL)"
depends on EXPERIMENTAL && PPP && NET_IPGRE_DEMUX
help
Support for PPP over IPv4.(Point-to-Point Tunneling Protocol)
This driver requires pppd plugin to work in client mode or
modified pptpd (poptop) to work in server mode.
See http://accel-pptp.sourceforge.net/ for information how to
utilize this module.
config PPPOATM
tristate "PPP over ATM"
depends on ATM && PPP
help
Support PPP (Point to Point Protocol) encapsulated in ATM frames.
This implementation does not yet comply with section 8 of RFC2364,
which can lead to bad results if the ATM peer loses state and
changes its encapsulation unilaterally.
config PPPOL2TP
tristate "PPP over L2TP (EXPERIMENTAL)"
depends on EXPERIMENTAL && L2TP && PPP
help
Support for PPP-over-L2TP socket family. L2TP is a protocol
used by ISPs and enterprises to tunnel PPP traffic over UDP
tunnels. L2TP is replacing PPTP for VPN uses.
config SLIP
tristate "SLIP (serial line) support"
---help---
Say Y if you intend to use SLIP or CSLIP (compressed SLIP) to
connect to your Internet service provider or to connect to some
other local Unix box or if you want to configure your Linux box as a
Slip/CSlip server for other people to dial in. SLIP (Serial Line
Internet Protocol) is a protocol used to send Internet traffic over
serial connections such as telephone lines or null modem cables;
nowadays, the protocol PPP is more commonly used for this same
purpose.
Normally, your access provider has to support SLIP in order for you
to be able to use it, but there is now a SLIP emulator called SLiRP
around (available from
<ftp://ibiblio.org/pub/Linux/system/network/serial/>) which
allows you to use SLIP over a regular dial up shell connection. If
you plan to use SLiRP, make sure to say Y to CSLIP, below. The
NET-3-HOWTO, available from
<http://www.tldp.org/docs.html#howto>, explains how to
configure SLIP. Note that you don't need this option if you just
want to run term (term is a program which gives you almost full
Internet connectivity if you have a regular dial up shell account on
some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>). SLIP
support will enlarge your kernel by about 4 KB. If unsure, say N.
To compile this driver as a module, choose M here. The module
will be called slip.
config SLIP_COMPRESSED
bool "CSLIP compressed headers"
depends on SLIP
select SLHC
---help---
This protocol is faster than SLIP because it uses compression on the
TCP/IP headers (not on the data itself), but it has to be supported
on both ends. Ask your access provider if you are not sure and
answer Y, just in case. You will still be able to use plain SLIP. If
you plan to use SLiRP, the SLIP emulator (available from
<ftp://ibiblio.org/pub/Linux/system/network/serial/>) which
allows you to use SLIP over a regular dial up shell connection, you
definitely want to say Y here. The NET-3-HOWTO, available from
<http://www.tldp.org/docs.html#howto>, explains how to configure
CSLIP. This won't enlarge your kernel.
config SLHC
tristate
help
This option enables Van Jacobsen serial line header compression
routines.
config SLIP_SMART
bool "Keepalive and linefill"
depends on SLIP
help
Adds additional capabilities to the SLIP driver to support the
RELCOM line fill and keepalive monitoring. Ideal on poor quality
analogue lines.
config SLIP_MODE_SLIP6
bool "Six bit SLIP encapsulation"
depends on SLIP
help
Just occasionally you may need to run IP over hostile serial
networks that don't pass all control characters or are only seven
bit. Saying Y here adds an extra mode you can use with SLIP:
"slip6". In this mode, SLIP will only send normal ASCII symbols over
the serial device. Naturally, this has to be supported at the other
end of the link as well. It's good enough, for example, to run IP
over the async ports of a Camtec JNT Pad. If unsure, say N.
config NET_FC
bool "Fibre Channel driver support"
depends on SCSI && PCI
help
Fibre Channel is a high speed serial protocol mainly used to connect
large storage devices to the computer; it is compatible with and
intended to replace SCSI.
If you intend to use Fibre Channel, you need to have a Fibre channel
adaptor card in your computer; say Y here and to the driver for your
adaptor below. You also should have said Y to "SCSI support" and
"SCSI generic support".
config NETCONSOLE
tristate "Network console logging support"
---help---
If you want to log kernel messages over the network, enable this.
See <file:Documentation/networking/netconsole.txt> for details.
config NETCONSOLE_DYNAMIC
bool "Dynamic reconfiguration of logging targets"
depends on NETCONSOLE && SYSFS && CONFIGFS_FS && \
!(NETCONSOLE=y && CONFIGFS_FS=m)
help
This option enables the ability to dynamically reconfigure target
parameters (interface, IP addresses, port numbers, MAC addresses)
at runtime through a userspace interface exported using configfs.
See <file:Documentation/networking/netconsole.txt> for details.
config NETPOLL
def_bool NETCONSOLE
config NETPOLL_TRAP
bool "Netpoll traffic trapping"
default n
depends on NETPOLL
config NET_POLL_CONTROLLER
def_bool NETPOLL
config VIRTIO_NET
tristate "Virtio network driver (EXPERIMENTAL)"
depends on EXPERIMENTAL && VIRTIO
---help---
This is the virtual network driver for virtio. It can be used with
lguest or QEMU based VMMs (like KVM or Xen). Say Y or M.
config VMXNET3
tristate "VMware VMXNET3 ethernet driver"
depends on PCI && INET
help
This driver supports VMware's vmxnet3 virtual ethernet NIC.
To compile this driver as a module, choose M here: the
module will be called vmxnet3.
endif # NETDEVICES