kernel-fxtec-pro1x/fs/hpfs/dnode.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

1096 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/hpfs/dnode.c
*
* Mikulas Patocka (mikulas@artax.karlin.mff.cuni.cz), 1998-1999
*
* handling directory dnode tree - adding, deleteing & searching for dirents
*/
#include "hpfs_fn.h"
static loff_t get_pos(struct dnode *d, struct hpfs_dirent *fde)
{
struct hpfs_dirent *de;
struct hpfs_dirent *de_end = dnode_end_de(d);
int i = 1;
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
if (de == fde) return ((loff_t) le32_to_cpu(d->self) << 4) | (loff_t)i;
i++;
}
pr_info("%s(): not_found\n", __func__);
return ((loff_t)le32_to_cpu(d->self) << 4) | (loff_t)1;
}
int hpfs_add_pos(struct inode *inode, loff_t *pos)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(inode);
int i = 0;
loff_t **ppos;
if (hpfs_inode->i_rddir_off)
for (; hpfs_inode->i_rddir_off[i]; i++)
if (hpfs_inode->i_rddir_off[i] == pos)
return 0;
if (!(i&0x0f)) {
if (!(ppos = kmalloc((i+0x11) * sizeof(loff_t*), GFP_NOFS))) {
pr_err("out of memory for position list\n");
return -ENOMEM;
}
if (hpfs_inode->i_rddir_off) {
memcpy(ppos, hpfs_inode->i_rddir_off, i * sizeof(loff_t));
kfree(hpfs_inode->i_rddir_off);
}
hpfs_inode->i_rddir_off = ppos;
}
hpfs_inode->i_rddir_off[i] = pos;
hpfs_inode->i_rddir_off[i + 1] = NULL;
return 0;
}
void hpfs_del_pos(struct inode *inode, loff_t *pos)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(inode);
loff_t **i, **j;
if (!hpfs_inode->i_rddir_off) goto not_f;
for (i = hpfs_inode->i_rddir_off; *i; i++) if (*i == pos) goto fnd;
goto not_f;
fnd:
for (j = i + 1; *j; j++) ;
*i = *(j - 1);
*(j - 1) = NULL;
if (j - 1 == hpfs_inode->i_rddir_off) {
kfree(hpfs_inode->i_rddir_off);
hpfs_inode->i_rddir_off = NULL;
}
return;
not_f:
/*pr_warn("position pointer %p->%08x not found\n",
pos, (int)*pos);*/
return;
}
static void for_all_poss(struct inode *inode, void (*f)(loff_t *, loff_t, loff_t),
loff_t p1, loff_t p2)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(inode);
loff_t **i;
if (!hpfs_inode->i_rddir_off) return;
for (i = hpfs_inode->i_rddir_off; *i; i++) (*f)(*i, p1, p2);
return;
}
static void hpfs_pos_subst(loff_t *p, loff_t f, loff_t t)
{
if (*p == f) *p = t;
}
/*void hpfs_hpfs_pos_substd(loff_t *p, loff_t f, loff_t t)
{
if ((*p & ~0x3f) == (f & ~0x3f)) *p = (t & ~0x3f) | (*p & 0x3f);
}*/
static void hpfs_pos_ins(loff_t *p, loff_t d, loff_t c)
{
if ((*p & ~0x3f) == (d & ~0x3f) && (*p & 0x3f) >= (d & 0x3f)) {
int n = (*p & 0x3f) + c;
if (n > 0x3f)
pr_err("%s(): %08x + %d\n",
__func__, (int)*p, (int)c >> 8);
else
*p = (*p & ~0x3f) | n;
}
}
static void hpfs_pos_del(loff_t *p, loff_t d, loff_t c)
{
if ((*p & ~0x3f) == (d & ~0x3f) && (*p & 0x3f) >= (d & 0x3f)) {
int n = (*p & 0x3f) - c;
if (n < 1)
pr_err("%s(): %08x - %d\n",
__func__, (int)*p, (int)c >> 8);
else
*p = (*p & ~0x3f) | n;
}
}
static struct hpfs_dirent *dnode_pre_last_de(struct dnode *d)
{
struct hpfs_dirent *de, *de_end, *dee = NULL, *deee = NULL;
de_end = dnode_end_de(d);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
deee = dee; dee = de;
}
return deee;
}
static struct hpfs_dirent *dnode_last_de(struct dnode *d)
{
struct hpfs_dirent *de, *de_end, *dee = NULL;
de_end = dnode_end_de(d);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
dee = de;
}
return dee;
}
static void set_last_pointer(struct super_block *s, struct dnode *d, dnode_secno ptr)
{
struct hpfs_dirent *de;
if (!(de = dnode_last_de(d))) {
hpfs_error(s, "set_last_pointer: empty dnode %08x", le32_to_cpu(d->self));
return;
}
if (hpfs_sb(s)->sb_chk) {
if (de->down) {
hpfs_error(s, "set_last_pointer: dnode %08x has already last pointer %08x",
le32_to_cpu(d->self), de_down_pointer(de));
return;
}
if (le16_to_cpu(de->length) != 32) {
hpfs_error(s, "set_last_pointer: bad last dirent in dnode %08x", le32_to_cpu(d->self));
return;
}
}
if (ptr) {
le32_add_cpu(&d->first_free, 4);
if (le32_to_cpu(d->first_free) > 2048) {
hpfs_error(s, "set_last_pointer: too long dnode %08x", le32_to_cpu(d->self));
le32_add_cpu(&d->first_free, -4);
return;
}
de->length = cpu_to_le16(36);
de->down = 1;
*(__le32 *)((char *)de + 32) = cpu_to_le32(ptr);
}
}
/* Add an entry to dnode and don't care if it grows over 2048 bytes */
struct hpfs_dirent *hpfs_add_de(struct super_block *s, struct dnode *d,
const unsigned char *name,
unsigned namelen, secno down_ptr)
{
struct hpfs_dirent *de;
struct hpfs_dirent *de_end = dnode_end_de(d);
unsigned d_size = de_size(namelen, down_ptr);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
int c = hpfs_compare_names(s, name, namelen, de->name, de->namelen, de->last);
if (!c) {
hpfs_error(s, "name (%c,%d) already exists in dnode %08x", *name, namelen, le32_to_cpu(d->self));
return NULL;
}
if (c < 0) break;
}
memmove((char *)de + d_size, de, (char *)de_end - (char *)de);
memset(de, 0, d_size);
if (down_ptr) {
*(__le32 *)((char *)de + d_size - 4) = cpu_to_le32(down_ptr);
de->down = 1;
}
de->length = cpu_to_le16(d_size);
de->not_8x3 = hpfs_is_name_long(name, namelen);
de->namelen = namelen;
memcpy(de->name, name, namelen);
le32_add_cpu(&d->first_free, d_size);
return de;
}
/* Delete dirent and don't care about its subtree */
static void hpfs_delete_de(struct super_block *s, struct dnode *d,
struct hpfs_dirent *de)
{
if (de->last) {
hpfs_error(s, "attempt to delete last dirent in dnode %08x", le32_to_cpu(d->self));
return;
}
d->first_free = cpu_to_le32(le32_to_cpu(d->first_free) - le16_to_cpu(de->length));
memmove(de, de_next_de(de), le32_to_cpu(d->first_free) + (char *)d - (char *)de);
}
static void fix_up_ptrs(struct super_block *s, struct dnode *d)
{
struct hpfs_dirent *de;
struct hpfs_dirent *de_end = dnode_end_de(d);
dnode_secno dno = le32_to_cpu(d->self);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de))
if (de->down) {
struct quad_buffer_head qbh;
struct dnode *dd;
if ((dd = hpfs_map_dnode(s, de_down_pointer(de), &qbh))) {
if (le32_to_cpu(dd->up) != dno || dd->root_dnode) {
dd->up = cpu_to_le32(dno);
dd->root_dnode = 0;
hpfs_mark_4buffers_dirty(&qbh);
}
hpfs_brelse4(&qbh);
}
}
}
/* Add an entry to dnode and do dnode splitting if required */
static int hpfs_add_to_dnode(struct inode *i, dnode_secno dno,
const unsigned char *name, unsigned namelen,
struct hpfs_dirent *new_de, dnode_secno down_ptr)
{
struct quad_buffer_head qbh, qbh1, qbh2;
struct dnode *d, *ad, *rd, *nd = NULL;
dnode_secno adno, rdno;
struct hpfs_dirent *de;
struct hpfs_dirent nde;
unsigned char *nname;
int h;
int pos;
struct buffer_head *bh;
struct fnode *fnode;
int c1, c2 = 0;
if (!(nname = kmalloc(256, GFP_NOFS))) {
pr_err("out of memory, can't add to dnode\n");
return 1;
}
go_up:
if (namelen >= 256) {
hpfs_error(i->i_sb, "%s(): namelen == %d", __func__, namelen);
kfree(nd);
kfree(nname);
return 1;
}
if (!(d = hpfs_map_dnode(i->i_sb, dno, &qbh))) {
kfree(nd);
kfree(nname);
return 1;
}
go_up_a:
if (hpfs_sb(i->i_sb)->sb_chk)
if (hpfs_stop_cycles(i->i_sb, dno, &c1, &c2, "hpfs_add_to_dnode")) {
hpfs_brelse4(&qbh);
kfree(nd);
kfree(nname);
return 1;
}
if (le32_to_cpu(d->first_free) + de_size(namelen, down_ptr) <= 2048) {
loff_t t;
copy_de(de=hpfs_add_de(i->i_sb, d, name, namelen, down_ptr), new_de);
t = get_pos(d, de);
for_all_poss(i, hpfs_pos_ins, t, 1);
for_all_poss(i, hpfs_pos_subst, 4, t);
for_all_poss(i, hpfs_pos_subst, 5, t + 1);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
kfree(nd);
kfree(nname);
return 0;
}
if (!nd) if (!(nd = kmalloc(0x924, GFP_NOFS))) {
/* 0x924 is a max size of dnode after adding a dirent with
max name length. We alloc this only once. There must
not be any error while splitting dnodes, otherwise the
whole directory, not only file we're adding, would
be lost. */
pr_err("out of memory for dnode splitting\n");
hpfs_brelse4(&qbh);
kfree(nname);
return 1;
}
memcpy(nd, d, le32_to_cpu(d->first_free));
copy_de(de = hpfs_add_de(i->i_sb, nd, name, namelen, down_ptr), new_de);
for_all_poss(i, hpfs_pos_ins, get_pos(nd, de), 1);
h = ((char *)dnode_last_de(nd) - (char *)nd) / 2 + 10;
if (!(ad = hpfs_alloc_dnode(i->i_sb, le32_to_cpu(d->up), &adno, &qbh1))) {
hpfs_error(i->i_sb, "unable to alloc dnode - dnode tree will be corrupted");
hpfs_brelse4(&qbh);
kfree(nd);
kfree(nname);
return 1;
}
i->i_size += 2048;
i->i_blocks += 4;
pos = 1;
for (de = dnode_first_de(nd); (char *)de_next_de(de) - (char *)nd < h; de = de_next_de(de)) {
copy_de(hpfs_add_de(i->i_sb, ad, de->name, de->namelen, de->down ? de_down_pointer(de) : 0), de);
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | pos, ((loff_t)adno << 4) | pos);
pos++;
}
copy_de(new_de = &nde, de);
memcpy(nname, de->name, de->namelen);
name = nname;
namelen = de->namelen;
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | pos, 4);
down_ptr = adno;
set_last_pointer(i->i_sb, ad, de->down ? de_down_pointer(de) : 0);
de = de_next_de(de);
memmove((char *)nd + 20, de, le32_to_cpu(nd->first_free) + (char *)nd - (char *)de);
le32_add_cpu(&nd->first_free, -((char *)de - (char *)nd - 20));
memcpy(d, nd, le32_to_cpu(nd->first_free));
for_all_poss(i, hpfs_pos_del, (loff_t)dno << 4, pos);
fix_up_ptrs(i->i_sb, ad);
if (!d->root_dnode) {
ad->up = d->up;
dno = le32_to_cpu(ad->up);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
goto go_up;
}
if (!(rd = hpfs_alloc_dnode(i->i_sb, le32_to_cpu(d->up), &rdno, &qbh2))) {
hpfs_error(i->i_sb, "unable to alloc dnode - dnode tree will be corrupted");
hpfs_brelse4(&qbh);
hpfs_brelse4(&qbh1);
kfree(nd);
kfree(nname);
return 1;
}
i->i_size += 2048;
i->i_blocks += 4;
rd->root_dnode = 1;
rd->up = d->up;
if (!(fnode = hpfs_map_fnode(i->i_sb, le32_to_cpu(d->up), &bh))) {
hpfs_free_dnode(i->i_sb, rdno);
hpfs_brelse4(&qbh);
hpfs_brelse4(&qbh1);
hpfs_brelse4(&qbh2);
kfree(nd);
kfree(nname);
return 1;
}
fnode->u.external[0].disk_secno = cpu_to_le32(rdno);
mark_buffer_dirty(bh);
brelse(bh);
hpfs_i(i)->i_dno = rdno;
d->up = ad->up = cpu_to_le32(rdno);
d->root_dnode = ad->root_dnode = 0;
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
qbh = qbh2;
set_last_pointer(i->i_sb, rd, dno);
dno = rdno;
d = rd;
goto go_up_a;
}
/*
* Add an entry to directory btree.
* I hate such crazy directory structure.
* It's easy to read but terrible to write.
* I wrote this directory code 4 times.
* I hope, now it's finally bug-free.
*/
int hpfs_add_dirent(struct inode *i,
const unsigned char *name, unsigned namelen,
struct hpfs_dirent *new_de)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(i);
struct dnode *d;
struct hpfs_dirent *de, *de_end;
struct quad_buffer_head qbh;
dnode_secno dno;
int c;
int c1, c2 = 0;
dno = hpfs_inode->i_dno;
down:
if (hpfs_sb(i->i_sb)->sb_chk)
if (hpfs_stop_cycles(i->i_sb, dno, &c1, &c2, "hpfs_add_dirent")) return 1;
if (!(d = hpfs_map_dnode(i->i_sb, dno, &qbh))) return 1;
de_end = dnode_end_de(d);
for (de = dnode_first_de(d); de < de_end; de = de_next_de(de)) {
if (!(c = hpfs_compare_names(i->i_sb, name, namelen, de->name, de->namelen, de->last))) {
hpfs_brelse4(&qbh);
return -1;
}
if (c < 0) {
if (de->down) {
dno = de_down_pointer(de);
hpfs_brelse4(&qbh);
goto down;
}
break;
}
}
hpfs_brelse4(&qbh);
if (hpfs_check_free_dnodes(i->i_sb, FREE_DNODES_ADD)) {
c = 1;
goto ret;
}
i->i_version++;
c = hpfs_add_to_dnode(i, dno, name, namelen, new_de, 0);
ret:
return c;
}
/*
* Find dirent with higher name in 'from' subtree and move it to 'to' dnode.
* Return the dnode we moved from (to be checked later if it's empty)
*/
static secno move_to_top(struct inode *i, dnode_secno from, dnode_secno to)
{
dnode_secno dno, ddno;
dnode_secno chk_up = to;
struct dnode *dnode;
struct quad_buffer_head qbh;
struct hpfs_dirent *de, *nde;
int a;
loff_t t;
int c1, c2 = 0;
dno = from;
while (1) {
if (hpfs_sb(i->i_sb)->sb_chk)
if (hpfs_stop_cycles(i->i_sb, dno, &c1, &c2, "move_to_top"))
return 0;
if (!(dnode = hpfs_map_dnode(i->i_sb, dno, &qbh))) return 0;
if (hpfs_sb(i->i_sb)->sb_chk) {
if (le32_to_cpu(dnode->up) != chk_up) {
hpfs_error(i->i_sb, "move_to_top: up pointer from %08x should be %08x, is %08x",
dno, chk_up, le32_to_cpu(dnode->up));
hpfs_brelse4(&qbh);
return 0;
}
chk_up = dno;
}
if (!(de = dnode_last_de(dnode))) {
hpfs_error(i->i_sb, "move_to_top: dnode %08x has no last de", dno);
hpfs_brelse4(&qbh);
return 0;
}
if (!de->down) break;
dno = de_down_pointer(de);
hpfs_brelse4(&qbh);
}
while (!(de = dnode_pre_last_de(dnode))) {
dnode_secno up = le32_to_cpu(dnode->up);
hpfs_brelse4(&qbh);
hpfs_free_dnode(i->i_sb, dno);
i->i_size -= 2048;
i->i_blocks -= 4;
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | 1, 5);
if (up == to) return to;
if (!(dnode = hpfs_map_dnode(i->i_sb, up, &qbh))) return 0;
if (dnode->root_dnode) {
hpfs_error(i->i_sb, "move_to_top: got to root_dnode while moving from %08x to %08x", from, to);
hpfs_brelse4(&qbh);
return 0;
}
de = dnode_last_de(dnode);
if (!de || !de->down) {
hpfs_error(i->i_sb, "move_to_top: dnode %08x doesn't point down to %08x", up, dno);
hpfs_brelse4(&qbh);
return 0;
}
le32_add_cpu(&dnode->first_free, -4);
le16_add_cpu(&de->length, -4);
de->down = 0;
hpfs_mark_4buffers_dirty(&qbh);
dno = up;
}
t = get_pos(dnode, de);
for_all_poss(i, hpfs_pos_subst, t, 4);
for_all_poss(i, hpfs_pos_subst, t + 1, 5);
if (!(nde = kmalloc(le16_to_cpu(de->length), GFP_NOFS))) {
hpfs_error(i->i_sb, "out of memory for dirent - directory will be corrupted");
hpfs_brelse4(&qbh);
return 0;
}
memcpy(nde, de, le16_to_cpu(de->length));
ddno = de->down ? de_down_pointer(de) : 0;
hpfs_delete_de(i->i_sb, dnode, de);
set_last_pointer(i->i_sb, dnode, ddno);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
a = hpfs_add_to_dnode(i, to, nde->name, nde->namelen, nde, from);
kfree(nde);
if (a) return 0;
return dno;
}
/*
* Check if a dnode is empty and delete it from the tree
* (chkdsk doesn't like empty dnodes)
*/
static void delete_empty_dnode(struct inode *i, dnode_secno dno)
{
struct hpfs_inode_info *hpfs_inode = hpfs_i(i);
struct quad_buffer_head qbh;
struct dnode *dnode;
dnode_secno down, up, ndown;
int p;
struct hpfs_dirent *de;
int c1, c2 = 0;
try_it_again:
if (hpfs_stop_cycles(i->i_sb, dno, &c1, &c2, "delete_empty_dnode")) return;
if (!(dnode = hpfs_map_dnode(i->i_sb, dno, &qbh))) return;
if (le32_to_cpu(dnode->first_free) > 56) goto end;
if (le32_to_cpu(dnode->first_free) == 52 || le32_to_cpu(dnode->first_free) == 56) {
struct hpfs_dirent *de_end;
int root = dnode->root_dnode;
up = le32_to_cpu(dnode->up);
de = dnode_first_de(dnode);
down = de->down ? de_down_pointer(de) : 0;
if (hpfs_sb(i->i_sb)->sb_chk) if (root && !down) {
hpfs_error(i->i_sb, "delete_empty_dnode: root dnode %08x is empty", dno);
goto end;
}
hpfs_brelse4(&qbh);
hpfs_free_dnode(i->i_sb, dno);
i->i_size -= 2048;
i->i_blocks -= 4;
if (root) {
struct fnode *fnode;
struct buffer_head *bh;
struct dnode *d1;
struct quad_buffer_head qbh1;
if (hpfs_sb(i->i_sb)->sb_chk)
if (up != i->i_ino) {
hpfs_error(i->i_sb,
"bad pointer to fnode, dnode %08x, pointing to %08x, should be %08lx",
dno, up,
(unsigned long)i->i_ino);
return;
}
if ((d1 = hpfs_map_dnode(i->i_sb, down, &qbh1))) {
d1->up = cpu_to_le32(up);
d1->root_dnode = 1;
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
}
if ((fnode = hpfs_map_fnode(i->i_sb, up, &bh))) {
fnode->u.external[0].disk_secno = cpu_to_le32(down);
mark_buffer_dirty(bh);
brelse(bh);
}
hpfs_inode->i_dno = down;
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | 1, (loff_t) 12);
return;
}
if (!(dnode = hpfs_map_dnode(i->i_sb, up, &qbh))) return;
p = 1;
de_end = dnode_end_de(dnode);
for (de = dnode_first_de(dnode); de < de_end; de = de_next_de(de), p++)
if (de->down) if (de_down_pointer(de) == dno) goto fnd;
hpfs_error(i->i_sb, "delete_empty_dnode: pointer to dnode %08x not found in dnode %08x", dno, up);
goto end;
fnd:
for_all_poss(i, hpfs_pos_subst, ((loff_t)dno << 4) | 1, ((loff_t)up << 4) | p);
if (!down) {
de->down = 0;
le16_add_cpu(&de->length, -4);
le32_add_cpu(&dnode->first_free, -4);
memmove(de_next_de(de), (char *)de_next_de(de) + 4,
(char *)dnode + le32_to_cpu(dnode->first_free) - (char *)de_next_de(de));
} else {
struct dnode *d1;
struct quad_buffer_head qbh1;
*(dnode_secno *) ((void *) de + le16_to_cpu(de->length) - 4) = down;
if ((d1 = hpfs_map_dnode(i->i_sb, down, &qbh1))) {
d1->up = cpu_to_le32(up);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
}
}
} else {
hpfs_error(i->i_sb, "delete_empty_dnode: dnode %08x, first_free == %03x", dno, le32_to_cpu(dnode->first_free));
goto end;
}
if (!de->last) {
struct hpfs_dirent *de_next = de_next_de(de);
struct hpfs_dirent *de_cp;
struct dnode *d1;
struct quad_buffer_head qbh1;
if (!de_next->down) goto endm;
ndown = de_down_pointer(de_next);
if (!(de_cp = kmalloc(le16_to_cpu(de->length), GFP_NOFS))) {
pr_err("out of memory for dtree balancing\n");
goto endm;
}
memcpy(de_cp, de, le16_to_cpu(de->length));
hpfs_delete_de(i->i_sb, dnode, de);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
for_all_poss(i, hpfs_pos_subst, ((loff_t)up << 4) | p, 4);
for_all_poss(i, hpfs_pos_del, ((loff_t)up << 4) | p, 1);
if (de_cp->down) if ((d1 = hpfs_map_dnode(i->i_sb, de_down_pointer(de_cp), &qbh1))) {
d1->up = cpu_to_le32(ndown);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
}
hpfs_add_to_dnode(i, ndown, de_cp->name, de_cp->namelen, de_cp, de_cp->down ? de_down_pointer(de_cp) : 0);
/*pr_info("UP-TO-DNODE: %08x (ndown = %08x, down = %08x, dno = %08x)\n",
up, ndown, down, dno);*/
dno = up;
kfree(de_cp);
goto try_it_again;
} else {
struct hpfs_dirent *de_prev = dnode_pre_last_de(dnode);
struct hpfs_dirent *de_cp;
struct dnode *d1;
struct quad_buffer_head qbh1;
dnode_secno dlp;
if (!de_prev) {
hpfs_error(i->i_sb, "delete_empty_dnode: empty dnode %08x", up);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
dno = up;
goto try_it_again;
}
if (!de_prev->down) goto endm;
ndown = de_down_pointer(de_prev);
if ((d1 = hpfs_map_dnode(i->i_sb, ndown, &qbh1))) {
struct hpfs_dirent *del = dnode_last_de(d1);
dlp = del->down ? de_down_pointer(del) : 0;
if (!dlp && down) {
if (le32_to_cpu(d1->first_free) > 2044) {
if (hpfs_sb(i->i_sb)->sb_chk >= 2) {
pr_err("unbalanced dnode tree, see hpfs.txt 4 more info\n");
pr_err("terminating balancing operation\n");
}
hpfs_brelse4(&qbh1);
goto endm;
}
if (hpfs_sb(i->i_sb)->sb_chk >= 2) {
pr_err("unbalanced dnode tree, see hpfs.txt 4 more info\n");
pr_err("goin'on\n");
}
le16_add_cpu(&del->length, 4);
del->down = 1;
le32_add_cpu(&d1->first_free, 4);
}
if (dlp && !down) {
le16_add_cpu(&del->length, -4);
del->down = 0;
le32_add_cpu(&d1->first_free, -4);
} else if (down)
*(__le32 *) ((void *) del + le16_to_cpu(del->length) - 4) = cpu_to_le32(down);
} else goto endm;
if (!(de_cp = kmalloc(le16_to_cpu(de_prev->length), GFP_NOFS))) {
pr_err("out of memory for dtree balancing\n");
hpfs_brelse4(&qbh1);
goto endm;
}
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
memcpy(de_cp, de_prev, le16_to_cpu(de_prev->length));
hpfs_delete_de(i->i_sb, dnode, de_prev);
if (!de_prev->down) {
le16_add_cpu(&de_prev->length, 4);
de_prev->down = 1;
le32_add_cpu(&dnode->first_free, 4);
}
*(__le32 *) ((void *) de_prev + le16_to_cpu(de_prev->length) - 4) = cpu_to_le32(ndown);
hpfs_mark_4buffers_dirty(&qbh);
hpfs_brelse4(&qbh);
for_all_poss(i, hpfs_pos_subst, ((loff_t)up << 4) | (p - 1), 4);
for_all_poss(i, hpfs_pos_subst, ((loff_t)up << 4) | p, ((loff_t)up << 4) | (p - 1));
if (down) if ((d1 = hpfs_map_dnode(i->i_sb, de_down_pointer(de), &qbh1))) {
d1->up = cpu_to_le32(ndown);
hpfs_mark_4buffers_dirty(&qbh1);
hpfs_brelse4(&qbh1);
}
hpfs_add_to_dnode(i, ndown, de_cp->name, de_cp->namelen, de_cp, dlp);
dno = up;
kfree(de_cp);
goto try_it_again;
}
endm:
hpfs_mark_4buffers_dirty(&qbh);
end:
hpfs_brelse4(&qbh);
}
/* Delete dirent from directory */
int hpfs_remove_dirent(struct inode *i, dnode_secno dno, struct hpfs_dirent *de,
struct quad_buffer_head *qbh, int depth)
{
struct dnode *dnode = qbh->data;
dnode_secno down = 0;
loff_t t;
if (de->first || de->last) {
hpfs_error(i->i_sb, "hpfs_remove_dirent: attempt to delete first or last dirent in dnode %08x", dno);
hpfs_brelse4(qbh);
return 1;
}
if (de->down) down = de_down_pointer(de);
if (depth && (de->down || (de == dnode_first_de(dnode) && de_next_de(de)->last))) {
if (hpfs_check_free_dnodes(i->i_sb, FREE_DNODES_DEL)) {
hpfs_brelse4(qbh);
return 2;
}
}
i->i_version++;
for_all_poss(i, hpfs_pos_del, (t = get_pos(dnode, de)) + 1, 1);
hpfs_delete_de(i->i_sb, dnode, de);
hpfs_mark_4buffers_dirty(qbh);
hpfs_brelse4(qbh);
if (down) {
dnode_secno a = move_to_top(i, down, dno);
for_all_poss(i, hpfs_pos_subst, 5, t);
if (a) delete_empty_dnode(i, a);
return !a;
}
delete_empty_dnode(i, dno);
return 0;
}
void hpfs_count_dnodes(struct super_block *s, dnode_secno dno, int *n_dnodes,
int *n_subdirs, int *n_items)
{
struct dnode *dnode;
struct quad_buffer_head qbh;
struct hpfs_dirent *de;
dnode_secno ptr, odno = 0;
int c1, c2 = 0;
int d1, d2 = 0;
go_down:
if (n_dnodes) (*n_dnodes)++;
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, dno, &c1, &c2, "hpfs_count_dnodes #1")) return;
ptr = 0;
go_up:
if (!(dnode = hpfs_map_dnode(s, dno, &qbh))) return;
if (hpfs_sb(s)->sb_chk) if (odno && odno != -1 && le32_to_cpu(dnode->up) != odno)
hpfs_error(s, "hpfs_count_dnodes: bad up pointer; dnode %08x, down %08x points to %08x", odno, dno, le32_to_cpu(dnode->up));
de = dnode_first_de(dnode);
if (ptr) while(1) {
if (de->down) if (de_down_pointer(de) == ptr) goto process_de;
if (de->last) {
hpfs_brelse4(&qbh);
hpfs_error(s, "hpfs_count_dnodes: pointer to dnode %08x not found in dnode %08x, got here from %08x",
ptr, dno, odno);
return;
}
de = de_next_de(de);
}
next_de:
if (de->down) {
odno = dno;
dno = de_down_pointer(de);
hpfs_brelse4(&qbh);
goto go_down;
}
process_de:
if (!de->first && !de->last && de->directory && n_subdirs) (*n_subdirs)++;
if (!de->first && !de->last && n_items) (*n_items)++;
if ((de = de_next_de(de)) < dnode_end_de(dnode)) goto next_de;
ptr = dno;
dno = le32_to_cpu(dnode->up);
if (dnode->root_dnode) {
hpfs_brelse4(&qbh);
return;
}
hpfs_brelse4(&qbh);
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, ptr, &d1, &d2, "hpfs_count_dnodes #2")) return;
odno = -1;
goto go_up;
}
static struct hpfs_dirent *map_nth_dirent(struct super_block *s, dnode_secno dno, int n,
struct quad_buffer_head *qbh, struct dnode **dn)
{
int i;
struct hpfs_dirent *de, *de_end;
struct dnode *dnode;
dnode = hpfs_map_dnode(s, dno, qbh);
if (!dnode) return NULL;
if (dn) *dn=dnode;
de = dnode_first_de(dnode);
de_end = dnode_end_de(dnode);
for (i = 1; de < de_end; i++, de = de_next_de(de)) {
if (i == n) {
return de;
}
if (de->last) break;
}
hpfs_brelse4(qbh);
hpfs_error(s, "map_nth_dirent: n too high; dnode = %08x, requested %08x", dno, n);
return NULL;
}
dnode_secno hpfs_de_as_down_as_possible(struct super_block *s, dnode_secno dno)
{
struct quad_buffer_head qbh;
dnode_secno d = dno;
dnode_secno up = 0;
struct hpfs_dirent *de;
int c1, c2 = 0;
again:
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, d, &c1, &c2, "hpfs_de_as_down_as_possible"))
return d;
if (!(de = map_nth_dirent(s, d, 1, &qbh, NULL))) return dno;
if (hpfs_sb(s)->sb_chk)
if (up && le32_to_cpu(((struct dnode *)qbh.data)->up) != up)
hpfs_error(s, "hpfs_de_as_down_as_possible: bad up pointer; dnode %08x, down %08x points to %08x", up, d, le32_to_cpu(((struct dnode *)qbh.data)->up));
if (!de->down) {
hpfs_brelse4(&qbh);
return d;
}
up = d;
d = de_down_pointer(de);
hpfs_brelse4(&qbh);
goto again;
}
struct hpfs_dirent *map_pos_dirent(struct inode *inode, loff_t *posp,
struct quad_buffer_head *qbh)
{
loff_t pos;
unsigned c;
dnode_secno dno;
struct hpfs_dirent *de, *d;
struct hpfs_dirent *up_de;
struct hpfs_dirent *end_up_de;
struct dnode *dnode;
struct dnode *up_dnode;
struct quad_buffer_head qbh0;
pos = *posp;
dno = pos >> 6 << 2;
pos &= 077;
if (!(de = map_nth_dirent(inode->i_sb, dno, pos, qbh, &dnode)))
goto bail;
/* Going to the next dirent */
if ((d = de_next_de(de)) < dnode_end_de(dnode)) {
if (!(++*posp & 077)) {
hpfs_error(inode->i_sb,
"map_pos_dirent: pos crossed dnode boundary; pos = %08llx",
(unsigned long long)*posp);
goto bail;
}
/* We're going down the tree */
if (d->down) {
*posp = ((loff_t) hpfs_de_as_down_as_possible(inode->i_sb, de_down_pointer(d)) << 4) + 1;
}
return de;
}
/* Going up */
if (dnode->root_dnode) goto bail;
if (!(up_dnode = hpfs_map_dnode(inode->i_sb, le32_to_cpu(dnode->up), &qbh0)))
goto bail;
end_up_de = dnode_end_de(up_dnode);
c = 0;
for (up_de = dnode_first_de(up_dnode); up_de < end_up_de;
up_de = de_next_de(up_de)) {
if (!(++c & 077)) hpfs_error(inode->i_sb,
"map_pos_dirent: pos crossed dnode boundary; dnode = %08x", le32_to_cpu(dnode->up));
if (up_de->down && de_down_pointer(up_de) == dno) {
*posp = ((loff_t) le32_to_cpu(dnode->up) << 4) + c;
hpfs_brelse4(&qbh0);
return de;
}
}
hpfs_error(inode->i_sb, "map_pos_dirent: pointer to dnode %08x not found in parent dnode %08x",
dno, le32_to_cpu(dnode->up));
hpfs_brelse4(&qbh0);
bail:
*posp = 12;
return de;
}
/* Find a dirent in tree */
struct hpfs_dirent *map_dirent(struct inode *inode, dnode_secno dno,
const unsigned char *name, unsigned len,
dnode_secno *dd, struct quad_buffer_head *qbh)
{
struct dnode *dnode;
struct hpfs_dirent *de;
struct hpfs_dirent *de_end;
int c1, c2 = 0;
if (!S_ISDIR(inode->i_mode)) hpfs_error(inode->i_sb, "map_dirent: not a directory\n");
again:
if (hpfs_sb(inode->i_sb)->sb_chk)
if (hpfs_stop_cycles(inode->i_sb, dno, &c1, &c2, "map_dirent")) return NULL;
if (!(dnode = hpfs_map_dnode(inode->i_sb, dno, qbh))) return NULL;
de_end = dnode_end_de(dnode);
for (de = dnode_first_de(dnode); de < de_end; de = de_next_de(de)) {
int t = hpfs_compare_names(inode->i_sb, name, len, de->name, de->namelen, de->last);
if (!t) {
if (dd) *dd = dno;
return de;
}
if (t < 0) {
if (de->down) {
dno = de_down_pointer(de);
hpfs_brelse4(qbh);
goto again;
}
break;
}
}
hpfs_brelse4(qbh);
return NULL;
}
/*
* Remove empty directory. In normal cases it is only one dnode with two
* entries, but we must handle also such obscure cases when it's a tree
* of empty dnodes.
*/
void hpfs_remove_dtree(struct super_block *s, dnode_secno dno)
{
struct quad_buffer_head qbh;
struct dnode *dnode;
struct hpfs_dirent *de;
dnode_secno d1, d2, rdno = dno;
while (1) {
if (!(dnode = hpfs_map_dnode(s, dno, &qbh))) return;
de = dnode_first_de(dnode);
if (de->last) {
if (de->down) d1 = de_down_pointer(de);
else goto error;
hpfs_brelse4(&qbh);
hpfs_free_dnode(s, dno);
dno = d1;
} else break;
}
if (!de->first) goto error;
d1 = de->down ? de_down_pointer(de) : 0;
de = de_next_de(de);
if (!de->last) goto error;
d2 = de->down ? de_down_pointer(de) : 0;
hpfs_brelse4(&qbh);
hpfs_free_dnode(s, dno);
do {
while (d1) {
if (!(dnode = hpfs_map_dnode(s, dno = d1, &qbh))) return;
de = dnode_first_de(dnode);
if (!de->last) goto error;
d1 = de->down ? de_down_pointer(de) : 0;
hpfs_brelse4(&qbh);
hpfs_free_dnode(s, dno);
}
d1 = d2;
d2 = 0;
} while (d1);
return;
error:
hpfs_brelse4(&qbh);
hpfs_free_dnode(s, dno);
hpfs_error(s, "directory %08x is corrupted or not empty", rdno);
}
/*
* Find dirent for specified fnode. Use truncated 15-char name in fnode as
* a help for searching.
*/
struct hpfs_dirent *map_fnode_dirent(struct super_block *s, fnode_secno fno,
struct fnode *f, struct quad_buffer_head *qbh)
{
unsigned char *name1;
unsigned char *name2;
int name1len, name2len;
struct dnode *d;
dnode_secno dno, downd;
struct fnode *upf;
struct buffer_head *bh;
struct hpfs_dirent *de, *de_end;
int c;
int c1, c2 = 0;
int d1, d2 = 0;
name1 = f->name;
if (!(name2 = kmalloc(256, GFP_NOFS))) {
pr_err("out of memory, can't map dirent\n");
return NULL;
}
if (f->len <= 15)
memcpy(name2, name1, name1len = name2len = f->len);
else {
memcpy(name2, name1, 15);
memset(name2 + 15, 0xff, 256 - 15);
/*name2[15] = 0xff;*/
name1len = 15; name2len = 256;
}
if (!(upf = hpfs_map_fnode(s, le32_to_cpu(f->up), &bh))) {
kfree(name2);
return NULL;
}
if (!fnode_is_dir(upf)) {
brelse(bh);
hpfs_error(s, "fnode %08x has non-directory parent %08x", fno, le32_to_cpu(f->up));
kfree(name2);
return NULL;
}
dno = le32_to_cpu(upf->u.external[0].disk_secno);
brelse(bh);
go_down:
downd = 0;
go_up:
if (!(d = hpfs_map_dnode(s, dno, qbh))) {
kfree(name2);
return NULL;
}
de_end = dnode_end_de(d);
de = dnode_first_de(d);
if (downd) {
while (de < de_end) {
if (de->down) if (de_down_pointer(de) == downd) goto f;
de = de_next_de(de);
}
hpfs_error(s, "pointer to dnode %08x not found in dnode %08x", downd, dno);
hpfs_brelse4(qbh);
kfree(name2);
return NULL;
}
next_de:
if (le32_to_cpu(de->fnode) == fno) {
kfree(name2);
return de;
}
c = hpfs_compare_names(s, name1, name1len, de->name, de->namelen, de->last);
if (c < 0 && de->down) {
dno = de_down_pointer(de);
hpfs_brelse4(qbh);
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, dno, &c1, &c2, "map_fnode_dirent #1")) {
kfree(name2);
return NULL;
}
goto go_down;
}
f:
if (le32_to_cpu(de->fnode) == fno) {
kfree(name2);
return de;
}
c = hpfs_compare_names(s, name2, name2len, de->name, de->namelen, de->last);
if (c < 0 && !de->last) goto not_found;
if ((de = de_next_de(de)) < de_end) goto next_de;
if (d->root_dnode) goto not_found;
downd = dno;
dno = le32_to_cpu(d->up);
hpfs_brelse4(qbh);
if (hpfs_sb(s)->sb_chk)
if (hpfs_stop_cycles(s, downd, &d1, &d2, "map_fnode_dirent #2")) {
kfree(name2);
return NULL;
}
goto go_up;
not_found:
hpfs_brelse4(qbh);
hpfs_error(s, "dirent for fnode %08x not found", fno);
kfree(name2);
return NULL;
}