kernel-fxtec-pro1x/arch/powerpc/perf/power8-pmu.c
Michael Ellerman 4df4899911 powerpc/perf: Add power8 EBB support
Add logic to the power8 PMU code to support EBB. Future processors would
also be expected to implement similar constraints. At that time we could
possibly factor these out into common code.

Finally mark the power8 PMU as supporting EBB, which is the actual
enable switch which allows EBBs to be configured.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-07-01 11:50:13 +10:00

630 lines
19 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Performance counter support for POWER8 processors.
*
* Copyright 2009 Paul Mackerras, IBM Corporation.
* Copyright 2013 Michael Ellerman, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <asm/firmware.h>
/*
* Some power8 event codes.
*/
#define PM_CYC 0x0001e
#define PM_GCT_NOSLOT_CYC 0x100f8
#define PM_CMPLU_STALL 0x4000a
#define PM_INST_CMPL 0x00002
#define PM_BRU_FIN 0x10068
#define PM_BR_MPRED_CMPL 0x400f6
/*
* Raw event encoding for POWER8:
*
* 60 56 52 48 44 40 36 32
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* | [ thresh_cmp ] [ thresh_ctl ]
* | |
* *- EBB (Linux) thresh start/stop OR FAB match -*
*
* 28 24 20 16 12 8 4 0
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* [ ] [ sample ] [cache] [ pmc ] [unit ] c m [ pmcxsel ]
* | | | | |
* | | | | *- mark
* | | *- L1/L2/L3 cache_sel |
* | | |
* | *- sampling mode for marked events *- combine
* |
* *- thresh_sel
*
* Below uses IBM bit numbering.
*
* MMCR1[x:y] = unit (PMCxUNIT)
* MMCR1[x] = combine (PMCxCOMB)
*
* if pmc == 3 and unit == 0 and pmcxsel[0:6] == 0b0101011
* # PM_MRK_FAB_RSP_MATCH
* MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
* else if pmc == 4 and unit == 0xf and pmcxsel[0:6] == 0b0101001
* # PM_MRK_FAB_RSP_MATCH_CYC
* MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
* else
* MMCRA[48:55] = thresh_ctl (THRESH START/END)
*
* if thresh_sel:
* MMCRA[45:47] = thresh_sel
*
* if thresh_cmp:
* MMCRA[22:24] = thresh_cmp[0:2]
* MMCRA[25:31] = thresh_cmp[3:9]
*
* if unit == 6 or unit == 7
* MMCRC[53:55] = cache_sel[1:3] (L2EVENT_SEL)
* else if unit == 8 or unit == 9:
* if cache_sel[0] == 0: # L3 bank
* MMCRC[47:49] = cache_sel[1:3] (L3EVENT_SEL0)
* else if cache_sel[0] == 1:
* MMCRC[50:51] = cache_sel[2:3] (L3EVENT_SEL1)
* else if cache_sel[1]: # L1 event
* MMCR1[16] = cache_sel[2]
 * MMCR1[17] = cache_sel[3]
*
* if mark:
* MMCRA[63] = 1 (SAMPLE_ENABLE)
* MMCRA[57:59] = sample[0:2] (RAND_SAMP_ELIG)
 * MMCRA[61:62] = sample[3:4] (RAND_SAMP_MODE)
*
*/
#define EVENT_EBB_MASK 1ull
#define EVENT_THR_CMP_SHIFT 40 /* Threshold CMP value */
#define EVENT_THR_CMP_MASK 0x3ff
#define EVENT_THR_CTL_SHIFT 32 /* Threshold control value (start/stop) */
#define EVENT_THR_CTL_MASK 0xffull
#define EVENT_THR_SEL_SHIFT 29 /* Threshold select value */
#define EVENT_THR_SEL_MASK 0x7
#define EVENT_THRESH_SHIFT 29 /* All threshold bits */
#define EVENT_THRESH_MASK 0x1fffffull
#define EVENT_SAMPLE_SHIFT 24 /* Sampling mode & eligibility */
#define EVENT_SAMPLE_MASK 0x1f
#define EVENT_CACHE_SEL_SHIFT 20 /* L2/L3 cache select */
#define EVENT_CACHE_SEL_MASK 0xf
#define EVENT_IS_L1 (4 << EVENT_CACHE_SEL_SHIFT)
#define EVENT_PMC_SHIFT 16 /* PMC number (1-based) */
#define EVENT_PMC_MASK 0xf
#define EVENT_UNIT_SHIFT 12 /* Unit */
#define EVENT_UNIT_MASK 0xf
#define EVENT_COMBINE_SHIFT 11 /* Combine bit */
#define EVENT_COMBINE_MASK 0x1
#define EVENT_MARKED_SHIFT 8 /* Marked bit */
#define EVENT_MARKED_MASK 0x1
#define EVENT_IS_MARKED (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT)
#define EVENT_PSEL_MASK 0xff /* PMCxSEL value */
#define EVENT_VALID_MASK \
((EVENT_THRESH_MASK << EVENT_THRESH_SHIFT) | \
(EVENT_SAMPLE_MASK << EVENT_SAMPLE_SHIFT) | \
(EVENT_CACHE_SEL_MASK << EVENT_CACHE_SEL_SHIFT) | \
(EVENT_PMC_MASK << EVENT_PMC_SHIFT) | \
(EVENT_UNIT_MASK << EVENT_UNIT_SHIFT) | \
(EVENT_COMBINE_MASK << EVENT_COMBINE_SHIFT) | \
(EVENT_MARKED_MASK << EVENT_MARKED_SHIFT) | \
(EVENT_EBB_MASK << EVENT_CONFIG_EBB_SHIFT) | \
EVENT_PSEL_MASK)
/* MMCRA IFM bits - POWER8 */
#define POWER8_MMCRA_IFM1 0x0000000040000000UL
#define POWER8_MMCRA_IFM2 0x0000000080000000UL
#define POWER8_MMCRA_IFM3 0x00000000C0000000UL
#define ONLY_PLM \
(PERF_SAMPLE_BRANCH_USER |\
PERF_SAMPLE_BRANCH_KERNEL |\
PERF_SAMPLE_BRANCH_HV)
/*
* Layout of constraint bits:
*
* 60 56 52 48 44 40 36 32
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* [ fab_match ] [ thresh_cmp ] [ thresh_ctl ] [ ]
* |
* thresh_sel -*
*
* 28 24 20 16 12 8 4 0
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* | [ ] [ sample ] [ ] [6] [5] [4] [3] [2] [1]
* EBB -* | |
* | | Count of events for each PMC.
* L1 I/D qualifier -* | p1, p2, p3, p4, p5, p6.
* nc - number of counters -*
*
* The PMC fields P1..P6, and NC, are adder fields. As we accumulate constraints
* we want the low bit of each field to be added to any existing value.
*
* Everything else is a value field.
*/
#define CNST_FAB_MATCH_VAL(v) (((v) & EVENT_THR_CTL_MASK) << 56)
#define CNST_FAB_MATCH_MASK CNST_FAB_MATCH_VAL(EVENT_THR_CTL_MASK)
/* We just throw all the threshold bits into the constraint */
#define CNST_THRESH_VAL(v) (((v) & EVENT_THRESH_MASK) << 32)
#define CNST_THRESH_MASK CNST_THRESH_VAL(EVENT_THRESH_MASK)
#define CNST_EBB_VAL(v) (((v) & EVENT_EBB_MASK) << 24)
#define CNST_EBB_MASK CNST_EBB_VAL(EVENT_EBB_MASK)
#define CNST_L1_QUAL_VAL(v) (((v) & 3) << 22)
#define CNST_L1_QUAL_MASK CNST_L1_QUAL_VAL(3)
#define CNST_SAMPLE_VAL(v) (((v) & EVENT_SAMPLE_MASK) << 16)
#define CNST_SAMPLE_MASK CNST_SAMPLE_VAL(EVENT_SAMPLE_MASK)
/*
* For NC we are counting up to 4 events. This requires three bits, and we need
* the fifth event to overflow and set the 4th bit. To achieve that we bias the
* fields by 3 in test_adder.
*/
#define CNST_NC_SHIFT 12
#define CNST_NC_VAL (1 << CNST_NC_SHIFT)
#define CNST_NC_MASK (8 << CNST_NC_SHIFT)
#define POWER8_TEST_ADDER (3 << CNST_NC_SHIFT)
/*
* For the per-PMC fields we have two bits. The low bit is added, so if two
* events ask for the same PMC the sum will overflow, setting the high bit,
* indicating an error. So our mask sets the high bit.
*/
#define CNST_PMC_SHIFT(pmc) ((pmc - 1) * 2)
#define CNST_PMC_VAL(pmc) (1 << CNST_PMC_SHIFT(pmc))
#define CNST_PMC_MASK(pmc) (2 << CNST_PMC_SHIFT(pmc))
/* Our add_fields is defined as: */
#define POWER8_ADD_FIELDS \
CNST_PMC_VAL(1) | CNST_PMC_VAL(2) | CNST_PMC_VAL(3) | \
CNST_PMC_VAL(4) | CNST_PMC_VAL(5) | CNST_PMC_VAL(6) | CNST_NC_VAL
/* Bits in MMCR1 for POWER8 */
#define MMCR1_UNIT_SHIFT(pmc) (60 - (4 * ((pmc) - 1)))
#define MMCR1_COMBINE_SHIFT(pmc) (35 - ((pmc) - 1))
#define MMCR1_PMCSEL_SHIFT(pmc) (24 - (((pmc) - 1)) * 8)
#define MMCR1_DC_QUAL_SHIFT 47
#define MMCR1_IC_QUAL_SHIFT 46
/* Bits in MMCRA for POWER8 */
#define MMCRA_SAMP_MODE_SHIFT 1
#define MMCRA_SAMP_ELIG_SHIFT 4
#define MMCRA_THR_CTL_SHIFT 8
#define MMCRA_THR_SEL_SHIFT 16
#define MMCRA_THR_CMP_SHIFT 32
#define MMCRA_SDAR_MODE_TLB (1ull << 42)
static inline bool event_is_fab_match(u64 event)
{
/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
event &= 0xff0fe;
/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
return (event == 0x30056 || event == 0x4f052);
}
static int power8_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp)
{
unsigned int unit, pmc, cache, ebb;
unsigned long mask, value;
mask = value = 0;
if (event & ~EVENT_VALID_MASK)
return -1;
pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
cache = (event >> EVENT_CACHE_SEL_SHIFT) & EVENT_CACHE_SEL_MASK;
ebb = (event >> EVENT_CONFIG_EBB_SHIFT) & EVENT_EBB_MASK;
/* Clear the EBB bit in the event, so event checks work below */
event &= ~(EVENT_EBB_MASK << EVENT_CONFIG_EBB_SHIFT);
if (pmc) {
if (pmc > 6)
return -1;
mask |= CNST_PMC_MASK(pmc);
value |= CNST_PMC_VAL(pmc);
if (pmc >= 5 && event != 0x500fa && event != 0x600f4)
return -1;
}
if (pmc <= 4) {
/*
* Add to number of counters in use. Note this includes events with
* a PMC of 0 - they still need a PMC, it's just assigned later.
* Don't count events on PMC 5 & 6, there is only one valid event
* on each of those counters, and they are handled above.
*/
mask |= CNST_NC_MASK;
value |= CNST_NC_VAL;
}
if (unit >= 6 && unit <= 9) {
/*
* L2/L3 events contain a cache selector field, which is
* supposed to be programmed into MMCRC. However MMCRC is only
* HV writable, and there is no API for guest kernels to modify
* it. The solution is for the hypervisor to initialise the
* field to zeroes, and for us to only ever allow events that
* have a cache selector of zero.
*/
if (cache)
return -1;
} else if (event & EVENT_IS_L1) {
mask |= CNST_L1_QUAL_MASK;
value |= CNST_L1_QUAL_VAL(cache);
}
if (event & EVENT_IS_MARKED) {
mask |= CNST_SAMPLE_MASK;
value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
}
/*
* Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
* the threshold control bits are used for the match value.
*/
if (event_is_fab_match(event)) {
mask |= CNST_FAB_MATCH_MASK;
value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
} else {
/*
* Check the mantissa upper two bits are not zero, unless the
* exponent is also zero. See the THRESH_CMP_MANTISSA doc.
*/
unsigned int cmp, exp;
cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
exp = cmp >> 7;
if (exp && (cmp & 0x60) == 0)
return -1;
mask |= CNST_THRESH_MASK;
value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
}
if (!pmc && ebb)
/* EBB events must specify the PMC */
return -1;
/*
* All events must agree on EBB, either all request it or none.
* EBB events are pinned & exclusive, so this should never actually
* hit, but we leave it as a fallback in case.
*/
mask |= CNST_EBB_VAL(ebb);
value |= CNST_EBB_MASK;
*maskp = mask;
*valp = value;
return 0;
}
static int power8_compute_mmcr(u64 event[], int n_ev,
unsigned int hwc[], unsigned long mmcr[])
{
unsigned long mmcra, mmcr1, unit, combine, psel, cache, val;
unsigned int pmc, pmc_inuse;
int i;
pmc_inuse = 0;
/* First pass to count resource use */
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
if (pmc)
pmc_inuse |= 1 << pmc;
}
/* In continous sampling mode, update SDAR on TLB miss */
mmcra = MMCRA_SDAR_MODE_TLB;
mmcr1 = 0;
/* Second pass: assign PMCs, set all MMCR1 fields */
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
combine = (event[i] >> EVENT_COMBINE_SHIFT) & EVENT_COMBINE_MASK;
psel = event[i] & EVENT_PSEL_MASK;
if (!pmc) {
for (pmc = 1; pmc <= 4; ++pmc) {
if (!(pmc_inuse & (1 << pmc)))
break;
}
pmc_inuse |= 1 << pmc;
}
if (pmc <= 4) {
mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
mmcr1 |= combine << MMCR1_COMBINE_SHIFT(pmc);
mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
}
if (event[i] & EVENT_IS_L1) {
cache = event[i] >> EVENT_CACHE_SEL_SHIFT;
mmcr1 |= (cache & 1) << MMCR1_IC_QUAL_SHIFT;
cache >>= 1;
mmcr1 |= (cache & 1) << MMCR1_DC_QUAL_SHIFT;
}
if (event[i] & EVENT_IS_MARKED) {
mmcra |= MMCRA_SAMPLE_ENABLE;
val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
if (val) {
mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT;
mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
}
}
/*
* PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
* the threshold bits are used for the match value.
*/
if (event_is_fab_match(event[i])) {
mmcr1 |= (event[i] >> EVENT_THR_CTL_SHIFT) &
EVENT_THR_CTL_MASK;
} else {
val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
mmcra |= val << MMCRA_THR_CTL_SHIFT;
val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
mmcra |= val << MMCRA_THR_SEL_SHIFT;
val = (event[i] >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
mmcra |= val << MMCRA_THR_CMP_SHIFT;
}
hwc[i] = pmc - 1;
}
/* Return MMCRx values */
mmcr[0] = 0;
/* pmc_inuse is 1-based */
if (pmc_inuse & 2)
mmcr[0] = MMCR0_PMC1CE;
if (pmc_inuse & 0x7c)
mmcr[0] |= MMCR0_PMCjCE;
/* If we're not using PMC 5 or 6, freeze them */
if (!(pmc_inuse & 0x60))
mmcr[0] |= MMCR0_FC56;
mmcr[1] = mmcr1;
mmcr[2] = mmcra;
return 0;
}
#define MAX_ALT 2
/* Table of alternatives, sorted by column 0 */
static const unsigned int event_alternatives[][MAX_ALT] = {
{ 0x10134, 0x301e2 }, /* PM_MRK_ST_CMPL */
{ 0x10138, 0x40138 }, /* PM_BR_MRK_2PATH */
{ 0x18082, 0x3e05e }, /* PM_L3_CO_MEPF */
{ 0x1d14e, 0x401e8 }, /* PM_MRK_DATA_FROM_L2MISS */
{ 0x1e054, 0x4000a }, /* PM_CMPLU_STALL */
{ 0x20036, 0x40036 }, /* PM_BR_2PATH */
{ 0x200f2, 0x300f2 }, /* PM_INST_DISP */
{ 0x200f4, 0x600f4 }, /* PM_RUN_CYC */
{ 0x2013c, 0x3012e }, /* PM_MRK_FILT_MATCH */
{ 0x3e054, 0x400f0 }, /* PM_LD_MISS_L1 */
{ 0x400fa, 0x500fa }, /* PM_RUN_INST_CMPL */
};
/*
* Scan the alternatives table for a match and return the
* index into the alternatives table if found, else -1.
*/
static int find_alternative(u64 event)
{
int i, j;
for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) {
if (event < event_alternatives[i][0])
break;
for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j)
if (event == event_alternatives[i][j])
return i;
}
return -1;
}
static int power8_get_alternatives(u64 event, unsigned int flags, u64 alt[])
{
int i, j, num_alt = 0;
u64 alt_event;
alt[num_alt++] = event;
i = find_alternative(event);
if (i >= 0) {
/* Filter out the original event, it's already in alt[0] */
for (j = 0; j < MAX_ALT; ++j) {
alt_event = event_alternatives[i][j];
if (alt_event && alt_event != event)
alt[num_alt++] = alt_event;
}
}
if (flags & PPMU_ONLY_COUNT_RUN) {
/*
* We're only counting in RUN state, so PM_CYC is equivalent to
* PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
*/
j = num_alt;
for (i = 0; i < num_alt; ++i) {
switch (alt[i]) {
case 0x1e: /* PM_CYC */
alt[j++] = 0x600f4; /* PM_RUN_CYC */
break;
case 0x600f4: /* PM_RUN_CYC */
alt[j++] = 0x1e;
break;
case 0x2: /* PM_PPC_CMPL */
alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */
break;
case 0x500fa: /* PM_RUN_INST_CMPL */
alt[j++] = 0x2; /* PM_PPC_CMPL */
break;
}
}
num_alt = j;
}
return num_alt;
}
static void power8_disable_pmc(unsigned int pmc, unsigned long mmcr[])
{
if (pmc <= 3)
mmcr[1] &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
}
PMU_FORMAT_ATTR(event, "config:0-49");
PMU_FORMAT_ATTR(pmcxsel, "config:0-7");
PMU_FORMAT_ATTR(mark, "config:8");
PMU_FORMAT_ATTR(combine, "config:11");
PMU_FORMAT_ATTR(unit, "config:12-15");
PMU_FORMAT_ATTR(pmc, "config:16-19");
PMU_FORMAT_ATTR(cache_sel, "config:20-23");
PMU_FORMAT_ATTR(sample_mode, "config:24-28");
PMU_FORMAT_ATTR(thresh_sel, "config:29-31");
PMU_FORMAT_ATTR(thresh_stop, "config:32-35");
PMU_FORMAT_ATTR(thresh_start, "config:36-39");
PMU_FORMAT_ATTR(thresh_cmp, "config:40-49");
static struct attribute *power8_pmu_format_attr[] = {
&format_attr_event.attr,
&format_attr_pmcxsel.attr,
&format_attr_mark.attr,
&format_attr_combine.attr,
&format_attr_unit.attr,
&format_attr_pmc.attr,
&format_attr_cache_sel.attr,
&format_attr_sample_mode.attr,
&format_attr_thresh_sel.attr,
&format_attr_thresh_stop.attr,
&format_attr_thresh_start.attr,
&format_attr_thresh_cmp.attr,
NULL,
};
struct attribute_group power8_pmu_format_group = {
.name = "format",
.attrs = power8_pmu_format_attr,
};
static const struct attribute_group *power8_pmu_attr_groups[] = {
&power8_pmu_format_group,
NULL,
};
static int power8_generic_events[] = {
[PERF_COUNT_HW_CPU_CYCLES] = PM_CYC,
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = PM_GCT_NOSLOT_CYC,
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = PM_CMPLU_STALL,
[PERF_COUNT_HW_INSTRUCTIONS] = PM_INST_CMPL,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = PM_BRU_FIN,
[PERF_COUNT_HW_BRANCH_MISSES] = PM_BR_MPRED_CMPL,
};
static u64 power8_bhrb_filter_map(u64 branch_sample_type)
{
u64 pmu_bhrb_filter = 0;
u64 br_privilege = branch_sample_type & ONLY_PLM;
/* BHRB and regular PMU events share the same prvillege state
* filter configuration. BHRB is always recorded along with a
* regular PMU event. So privilege state filter criteria for BHRB
* and the companion PMU events has to be the same. As a default
* "perf record" tool sets all privillege bits ON when no filter
* criteria is provided in the command line. So as along as all
* privillege bits are ON or they are OFF, we are good to go.
*/
if ((br_privilege != 7) && (br_privilege != 0))
return -1;
/* No branch filter requested */
if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY)
return pmu_bhrb_filter;
/* Invalid branch filter options - HW does not support */
if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
return -1;
if (branch_sample_type & PERF_SAMPLE_BRANCH_IND_CALL)
return -1;
if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_CALL) {
pmu_bhrb_filter |= POWER8_MMCRA_IFM1;
return pmu_bhrb_filter;
}
/* Every thing else is unsupported */
return -1;
}
static void power8_config_bhrb(u64 pmu_bhrb_filter)
{
/* Enable BHRB filter in PMU */
mtspr(SPRN_MMCRA, (mfspr(SPRN_MMCRA) | pmu_bhrb_filter));
}
static struct power_pmu power8_pmu = {
.name = "POWER8",
.n_counter = 6,
.max_alternatives = MAX_ALT + 1,
.add_fields = POWER8_ADD_FIELDS,
.test_adder = POWER8_TEST_ADDER,
.compute_mmcr = power8_compute_mmcr,
.config_bhrb = power8_config_bhrb,
.bhrb_filter_map = power8_bhrb_filter_map,
.get_constraint = power8_get_constraint,
.get_alternatives = power8_get_alternatives,
.disable_pmc = power8_disable_pmc,
.flags = PPMU_HAS_SSLOT | PPMU_HAS_SIER | PPMU_BHRB | PPMU_EBB,
.n_generic = ARRAY_SIZE(power8_generic_events),
.generic_events = power8_generic_events,
.attr_groups = power8_pmu_attr_groups,
.bhrb_nr = 32,
};
static int __init init_power8_pmu(void)
{
if (!cur_cpu_spec->oprofile_cpu_type ||
strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8"))
return -ENODEV;
return register_power_pmu(&power8_pmu);
}
early_initcall(init_power8_pmu);