kernel-fxtec-pro1x/sound/soc/codecs/wm8903.c
Mark Brown b4d06f456d ASoC: Use explicit sequence for WM8903 bias off
This makes no real difference compared to the write sequencer sequence
that was previously used but can run without a clock being provided.
Also remove the write sequencer support code as this was the last use
of it.

Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
2011-02-11 11:14:05 +00:00

2098 lines
60 KiB
C

/*
* wm8903.c -- WM8903 ALSA SoC Audio driver
*
* Copyright 2008 Wolfson Microelectronics
* Copyright 2011 NVIDIA, Inc.
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* TODO:
* - TDM mode configuration.
* - Digital microphone support.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/tlv.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/wm8903.h>
#include <trace/events/asoc.h>
#include "wm8903.h"
/* Register defaults at reset */
static u16 wm8903_reg_defaults[] = {
0x8903, /* R0 - SW Reset and ID */
0x0000, /* R1 - Revision Number */
0x0000, /* R2 */
0x0000, /* R3 */
0x0018, /* R4 - Bias Control 0 */
0x0000, /* R5 - VMID Control 0 */
0x0000, /* R6 - Mic Bias Control 0 */
0x0000, /* R7 */
0x0001, /* R8 - Analogue DAC 0 */
0x0000, /* R9 */
0x0001, /* R10 - Analogue ADC 0 */
0x0000, /* R11 */
0x0000, /* R12 - Power Management 0 */
0x0000, /* R13 - Power Management 1 */
0x0000, /* R14 - Power Management 2 */
0x0000, /* R15 - Power Management 3 */
0x0000, /* R16 - Power Management 4 */
0x0000, /* R17 - Power Management 5 */
0x0000, /* R18 - Power Management 6 */
0x0000, /* R19 */
0x0400, /* R20 - Clock Rates 0 */
0x0D07, /* R21 - Clock Rates 1 */
0x0000, /* R22 - Clock Rates 2 */
0x0000, /* R23 */
0x0050, /* R24 - Audio Interface 0 */
0x0242, /* R25 - Audio Interface 1 */
0x0008, /* R26 - Audio Interface 2 */
0x0022, /* R27 - Audio Interface 3 */
0x0000, /* R28 */
0x0000, /* R29 */
0x00C0, /* R30 - DAC Digital Volume Left */
0x00C0, /* R31 - DAC Digital Volume Right */
0x0000, /* R32 - DAC Digital 0 */
0x0000, /* R33 - DAC Digital 1 */
0x0000, /* R34 */
0x0000, /* R35 */
0x00C0, /* R36 - ADC Digital Volume Left */
0x00C0, /* R37 - ADC Digital Volume Right */
0x0000, /* R38 - ADC Digital 0 */
0x0073, /* R39 - Digital Microphone 0 */
0x09BF, /* R40 - DRC 0 */
0x3241, /* R41 - DRC 1 */
0x0020, /* R42 - DRC 2 */
0x0000, /* R43 - DRC 3 */
0x0085, /* R44 - Analogue Left Input 0 */
0x0085, /* R45 - Analogue Right Input 0 */
0x0044, /* R46 - Analogue Left Input 1 */
0x0044, /* R47 - Analogue Right Input 1 */
0x0000, /* R48 */
0x0000, /* R49 */
0x0008, /* R50 - Analogue Left Mix 0 */
0x0004, /* R51 - Analogue Right Mix 0 */
0x0000, /* R52 - Analogue Spk Mix Left 0 */
0x0000, /* R53 - Analogue Spk Mix Left 1 */
0x0000, /* R54 - Analogue Spk Mix Right 0 */
0x0000, /* R55 - Analogue Spk Mix Right 1 */
0x0000, /* R56 */
0x002D, /* R57 - Analogue OUT1 Left */
0x002D, /* R58 - Analogue OUT1 Right */
0x0039, /* R59 - Analogue OUT2 Left */
0x0039, /* R60 - Analogue OUT2 Right */
0x0100, /* R61 */
0x0139, /* R62 - Analogue OUT3 Left */
0x0139, /* R63 - Analogue OUT3 Right */
0x0000, /* R64 */
0x0000, /* R65 - Analogue SPK Output Control 0 */
0x0000, /* R66 */
0x0010, /* R67 - DC Servo 0 */
0x0100, /* R68 */
0x00A4, /* R69 - DC Servo 2 */
0x0807, /* R70 */
0x0000, /* R71 */
0x0000, /* R72 */
0x0000, /* R73 */
0x0000, /* R74 */
0x0000, /* R75 */
0x0000, /* R76 */
0x0000, /* R77 */
0x0000, /* R78 */
0x000E, /* R79 */
0x0000, /* R80 */
0x0000, /* R81 */
0x0000, /* R82 */
0x0000, /* R83 */
0x0000, /* R84 */
0x0000, /* R85 */
0x0000, /* R86 */
0x0006, /* R87 */
0x0000, /* R88 */
0x0000, /* R89 */
0x0000, /* R90 - Analogue HP 0 */
0x0060, /* R91 */
0x0000, /* R92 */
0x0000, /* R93 */
0x0000, /* R94 - Analogue Lineout 0 */
0x0060, /* R95 */
0x0000, /* R96 */
0x0000, /* R97 */
0x0000, /* R98 - Charge Pump 0 */
0x1F25, /* R99 */
0x2B19, /* R100 */
0x01C0, /* R101 */
0x01EF, /* R102 */
0x2B00, /* R103 */
0x0000, /* R104 - Class W 0 */
0x01C0, /* R105 */
0x1C10, /* R106 */
0x0000, /* R107 */
0x0000, /* R108 - Write Sequencer 0 */
0x0000, /* R109 - Write Sequencer 1 */
0x0000, /* R110 - Write Sequencer 2 */
0x0000, /* R111 - Write Sequencer 3 */
0x0000, /* R112 - Write Sequencer 4 */
0x0000, /* R113 */
0x0000, /* R114 - Control Interface */
0x0000, /* R115 */
0x00A8, /* R116 - GPIO Control 1 */
0x00A8, /* R117 - GPIO Control 2 */
0x00A8, /* R118 - GPIO Control 3 */
0x0220, /* R119 - GPIO Control 4 */
0x01A0, /* R120 - GPIO Control 5 */
0x0000, /* R121 - Interrupt Status 1 */
0xFFFF, /* R122 - Interrupt Status 1 Mask */
0x0000, /* R123 - Interrupt Polarity 1 */
0x0000, /* R124 */
0x0003, /* R125 */
0x0000, /* R126 - Interrupt Control */
0x0000, /* R127 */
0x0005, /* R128 */
0x0000, /* R129 - Control Interface Test 1 */
0x0000, /* R130 */
0x0000, /* R131 */
0x0000, /* R132 */
0x0000, /* R133 */
0x0000, /* R134 */
0x03FF, /* R135 */
0x0007, /* R136 */
0x0040, /* R137 */
0x0000, /* R138 */
0x0000, /* R139 */
0x0000, /* R140 */
0x0000, /* R141 */
0x0000, /* R142 */
0x0000, /* R143 */
0x0000, /* R144 */
0x0000, /* R145 */
0x0000, /* R146 */
0x0000, /* R147 */
0x4000, /* R148 */
0x6810, /* R149 - Charge Pump Test 1 */
0x0004, /* R150 */
0x0000, /* R151 */
0x0000, /* R152 */
0x0000, /* R153 */
0x0000, /* R154 */
0x0000, /* R155 */
0x0000, /* R156 */
0x0000, /* R157 */
0x0000, /* R158 */
0x0000, /* R159 */
0x0000, /* R160 */
0x0000, /* R161 */
0x0000, /* R162 */
0x0000, /* R163 */
0x0028, /* R164 - Clock Rate Test 4 */
0x0004, /* R165 */
0x0000, /* R166 */
0x0060, /* R167 */
0x0000, /* R168 */
0x0000, /* R169 */
0x0000, /* R170 */
0x0000, /* R171 */
0x0000, /* R172 - Analogue Output Bias 0 */
};
struct wm8903_priv {
struct snd_soc_codec *codec;
int sysclk;
int irq;
int fs;
int deemph;
int dcs_pending;
int dcs_cache[4];
/* Reference count */
int class_w_users;
struct snd_soc_jack *mic_jack;
int mic_det;
int mic_short;
int mic_last_report;
int mic_delay;
#ifdef CONFIG_GPIOLIB
struct gpio_chip gpio_chip;
#endif
};
static int wm8903_volatile_register(struct snd_soc_codec *codec, unsigned int reg)
{
switch (reg) {
case WM8903_SW_RESET_AND_ID:
case WM8903_REVISION_NUMBER:
case WM8903_INTERRUPT_STATUS_1:
case WM8903_WRITE_SEQUENCER_4:
case WM8903_POWER_MANAGEMENT_3:
case WM8903_POWER_MANAGEMENT_2:
case WM8903_DC_SERVO_READBACK_1:
case WM8903_DC_SERVO_READBACK_2:
case WM8903_DC_SERVO_READBACK_3:
case WM8903_DC_SERVO_READBACK_4:
return 1;
default:
return 0;
}
}
static void wm8903_reset(struct snd_soc_codec *codec)
{
snd_soc_write(codec, WM8903_SW_RESET_AND_ID, 0);
memcpy(codec->reg_cache, wm8903_reg_defaults,
sizeof(wm8903_reg_defaults));
}
static int wm8903_cp_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
WARN_ON(event != SND_SOC_DAPM_POST_PMU);
mdelay(4);
return 0;
}
static int wm8903_dcs_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
wm8903->dcs_pending |= 1 << w->shift;
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec, WM8903_DC_SERVO_0,
1 << w->shift, 0);
break;
}
return 0;
}
#define WM8903_DCS_MODE_WRITE_STOP 0
#define WM8903_DCS_MODE_START_STOP 2
static void wm8903_seq_notifier(struct snd_soc_dapm_context *dapm,
enum snd_soc_dapm_type event, int subseq)
{
struct snd_soc_codec *codec = container_of(dapm,
struct snd_soc_codec, dapm);
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
int dcs_mode = WM8903_DCS_MODE_WRITE_STOP;
int i, val;
/* Complete any pending DC servo starts */
if (wm8903->dcs_pending) {
dev_dbg(codec->dev, "Starting DC servo for %x\n",
wm8903->dcs_pending);
/* If we've no cached values then we need to do startup */
for (i = 0; i < ARRAY_SIZE(wm8903->dcs_cache); i++) {
if (!(wm8903->dcs_pending & (1 << i)))
continue;
if (wm8903->dcs_cache[i]) {
dev_dbg(codec->dev,
"Restore DC servo %d value %x\n",
3 - i, wm8903->dcs_cache[i]);
snd_soc_write(codec, WM8903_DC_SERVO_4 + i,
wm8903->dcs_cache[i] & 0xff);
} else {
dev_dbg(codec->dev,
"Calibrate DC servo %d\n", 3 - i);
dcs_mode = WM8903_DCS_MODE_START_STOP;
}
}
/* Don't trust the cache for analogue */
if (wm8903->class_w_users)
dcs_mode = WM8903_DCS_MODE_START_STOP;
snd_soc_update_bits(codec, WM8903_DC_SERVO_2,
WM8903_DCS_MODE_MASK, dcs_mode);
snd_soc_update_bits(codec, WM8903_DC_SERVO_0,
WM8903_DCS_ENA_MASK, wm8903->dcs_pending);
switch (dcs_mode) {
case WM8903_DCS_MODE_WRITE_STOP:
break;
case WM8903_DCS_MODE_START_STOP:
msleep(270);
/* Cache the measured offsets for digital */
if (wm8903->class_w_users)
break;
for (i = 0; i < ARRAY_SIZE(wm8903->dcs_cache); i++) {
if (!(wm8903->dcs_pending & (1 << i)))
continue;
val = snd_soc_read(codec,
WM8903_DC_SERVO_READBACK_1 + i);
dev_dbg(codec->dev, "DC servo %d: %x\n",
3 - i, val);
wm8903->dcs_cache[i] = val;
}
break;
default:
pr_warn("DCS mode %d delay not set\n", dcs_mode);
break;
}
wm8903->dcs_pending = 0;
}
}
/*
* When used with DAC outputs only the WM8903 charge pump supports
* operation in class W mode, providing very low power consumption
* when used with digital sources. Enable and disable this mode
* automatically depending on the mixer configuration.
*
* All the relevant controls are simple switches.
*/
static int wm8903_class_w_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
struct snd_soc_codec *codec = widget->codec;
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
u16 reg;
int ret;
reg = snd_soc_read(codec, WM8903_CLASS_W_0);
/* Turn it off if we're about to enable bypass */
if (ucontrol->value.integer.value[0]) {
if (wm8903->class_w_users == 0) {
dev_dbg(codec->dev, "Disabling Class W\n");
snd_soc_write(codec, WM8903_CLASS_W_0, reg &
~(WM8903_CP_DYN_FREQ | WM8903_CP_DYN_V));
}
wm8903->class_w_users++;
}
/* Implement the change */
ret = snd_soc_dapm_put_volsw(kcontrol, ucontrol);
/* If we've just disabled the last bypass path turn Class W on */
if (!ucontrol->value.integer.value[0]) {
if (wm8903->class_w_users == 1) {
dev_dbg(codec->dev, "Enabling Class W\n");
snd_soc_write(codec, WM8903_CLASS_W_0, reg |
WM8903_CP_DYN_FREQ | WM8903_CP_DYN_V);
}
wm8903->class_w_users--;
}
dev_dbg(codec->dev, "Bypass use count now %d\n",
wm8903->class_w_users);
return ret;
}
#define SOC_DAPM_SINGLE_W(xname, reg, shift, max, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_volsw, \
.get = snd_soc_dapm_get_volsw, .put = wm8903_class_w_put, \
.private_value = SOC_SINGLE_VALUE(reg, shift, max, invert) }
static int wm8903_deemph[] = { 0, 32000, 44100, 48000 };
static int wm8903_set_deemph(struct snd_soc_codec *codec)
{
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
int val, i, best;
/* If we're using deemphasis select the nearest available sample
* rate.
*/
if (wm8903->deemph) {
best = 1;
for (i = 2; i < ARRAY_SIZE(wm8903_deemph); i++) {
if (abs(wm8903_deemph[i] - wm8903->fs) <
abs(wm8903_deemph[best] - wm8903->fs))
best = i;
}
val = best << WM8903_DEEMPH_SHIFT;
} else {
best = 0;
val = 0;
}
dev_dbg(codec->dev, "Set deemphasis %d (%dHz)\n",
best, wm8903_deemph[best]);
return snd_soc_update_bits(codec, WM8903_DAC_DIGITAL_1,
WM8903_DEEMPH_MASK, val);
}
static int wm8903_get_deemph(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
ucontrol->value.enumerated.item[0] = wm8903->deemph;
return 0;
}
static int wm8903_put_deemph(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
int deemph = ucontrol->value.enumerated.item[0];
int ret = 0;
if (deemph > 1)
return -EINVAL;
mutex_lock(&codec->mutex);
if (wm8903->deemph != deemph) {
wm8903->deemph = deemph;
wm8903_set_deemph(codec);
ret = 1;
}
mutex_unlock(&codec->mutex);
return ret;
}
/* ALSA can only do steps of .01dB */
static const DECLARE_TLV_DB_SCALE(digital_tlv, -7200, 75, 1);
static const DECLARE_TLV_DB_SCALE(digital_sidetone_tlv, -3600, 300, 0);
static const DECLARE_TLV_DB_SCALE(out_tlv, -5700, 100, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_thresh, 0, 75, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_amp, -2250, 75, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_min, 0, 600, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_max, 1200, 600, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_startup, -300, 50, 0);
static const char *hpf_mode_text[] = {
"Hi-fi", "Voice 1", "Voice 2", "Voice 3"
};
static const struct soc_enum hpf_mode =
SOC_ENUM_SINGLE(WM8903_ADC_DIGITAL_0, 5, 4, hpf_mode_text);
static const char *osr_text[] = {
"Low power", "High performance"
};
static const struct soc_enum adc_osr =
SOC_ENUM_SINGLE(WM8903_ANALOGUE_ADC_0, 0, 2, osr_text);
static const struct soc_enum dac_osr =
SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 0, 2, osr_text);
static const char *drc_slope_text[] = {
"1", "1/2", "1/4", "1/8", "1/16", "0"
};
static const struct soc_enum drc_slope_r0 =
SOC_ENUM_SINGLE(WM8903_DRC_2, 3, 6, drc_slope_text);
static const struct soc_enum drc_slope_r1 =
SOC_ENUM_SINGLE(WM8903_DRC_2, 0, 6, drc_slope_text);
static const char *drc_attack_text[] = {
"instantaneous",
"363us", "762us", "1.45ms", "2.9ms", "5.8ms", "11.6ms", "23.2ms",
"46.4ms", "92.8ms", "185.6ms"
};
static const struct soc_enum drc_attack =
SOC_ENUM_SINGLE(WM8903_DRC_1, 12, 11, drc_attack_text);
static const char *drc_decay_text[] = {
"186ms", "372ms", "743ms", "1.49s", "2.97s", "5.94s", "11.89s",
"23.87s", "47.56s"
};
static const struct soc_enum drc_decay =
SOC_ENUM_SINGLE(WM8903_DRC_1, 8, 9, drc_decay_text);
static const char *drc_ff_delay_text[] = {
"5 samples", "9 samples"
};
static const struct soc_enum drc_ff_delay =
SOC_ENUM_SINGLE(WM8903_DRC_0, 5, 2, drc_ff_delay_text);
static const char *drc_qr_decay_text[] = {
"0.725ms", "1.45ms", "5.8ms"
};
static const struct soc_enum drc_qr_decay =
SOC_ENUM_SINGLE(WM8903_DRC_1, 4, 3, drc_qr_decay_text);
static const char *drc_smoothing_text[] = {
"Low", "Medium", "High"
};
static const struct soc_enum drc_smoothing =
SOC_ENUM_SINGLE(WM8903_DRC_0, 11, 3, drc_smoothing_text);
static const char *soft_mute_text[] = {
"Fast (fs/2)", "Slow (fs/32)"
};
static const struct soc_enum soft_mute =
SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 10, 2, soft_mute_text);
static const char *mute_mode_text[] = {
"Hard", "Soft"
};
static const struct soc_enum mute_mode =
SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 9, 2, mute_mode_text);
static const char *companding_text[] = {
"ulaw", "alaw"
};
static const struct soc_enum dac_companding =
SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 0, 2, companding_text);
static const struct soc_enum adc_companding =
SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 2, 2, companding_text);
static const char *input_mode_text[] = {
"Single-Ended", "Differential Line", "Differential Mic"
};
static const struct soc_enum linput_mode_enum =
SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 0, 3, input_mode_text);
static const struct soc_enum rinput_mode_enum =
SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 0, 3, input_mode_text);
static const char *linput_mux_text[] = {
"IN1L", "IN2L", "IN3L"
};
static const struct soc_enum linput_enum =
SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 2, 3, linput_mux_text);
static const struct soc_enum linput_inv_enum =
SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 4, 3, linput_mux_text);
static const char *rinput_mux_text[] = {
"IN1R", "IN2R", "IN3R"
};
static const struct soc_enum rinput_enum =
SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 2, 3, rinput_mux_text);
static const struct soc_enum rinput_inv_enum =
SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 4, 3, rinput_mux_text);
static const char *sidetone_text[] = {
"None", "Left", "Right"
};
static const struct soc_enum lsidetone_enum =
SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_0, 2, 3, sidetone_text);
static const struct soc_enum rsidetone_enum =
SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_0, 0, 3, sidetone_text);
static const char *aif_text[] = {
"Left", "Right"
};
static const struct soc_enum lcapture_enum =
SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 7, 2, aif_text);
static const struct soc_enum rcapture_enum =
SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 6, 2, aif_text);
static const struct soc_enum lplay_enum =
SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 5, 2, aif_text);
static const struct soc_enum rplay_enum =
SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 4, 2, aif_text);
static const struct snd_kcontrol_new wm8903_snd_controls[] = {
/* Input PGAs - No TLV since the scale depends on PGA mode */
SOC_SINGLE("Left Input PGA Switch", WM8903_ANALOGUE_LEFT_INPUT_0,
7, 1, 1),
SOC_SINGLE("Left Input PGA Volume", WM8903_ANALOGUE_LEFT_INPUT_0,
0, 31, 0),
SOC_SINGLE("Left Input PGA Common Mode Switch", WM8903_ANALOGUE_LEFT_INPUT_1,
6, 1, 0),
SOC_SINGLE("Right Input PGA Switch", WM8903_ANALOGUE_RIGHT_INPUT_0,
7, 1, 1),
SOC_SINGLE("Right Input PGA Volume", WM8903_ANALOGUE_RIGHT_INPUT_0,
0, 31, 0),
SOC_SINGLE("Right Input PGA Common Mode Switch", WM8903_ANALOGUE_RIGHT_INPUT_1,
6, 1, 0),
/* ADCs */
SOC_ENUM("ADC OSR", adc_osr),
SOC_SINGLE("HPF Switch", WM8903_ADC_DIGITAL_0, 4, 1, 0),
SOC_ENUM("HPF Mode", hpf_mode),
SOC_SINGLE("DRC Switch", WM8903_DRC_0, 15, 1, 0),
SOC_ENUM("DRC Compressor Slope R0", drc_slope_r0),
SOC_ENUM("DRC Compressor Slope R1", drc_slope_r1),
SOC_SINGLE_TLV("DRC Compressor Threshold Volume", WM8903_DRC_3, 5, 124, 1,
drc_tlv_thresh),
SOC_SINGLE_TLV("DRC Volume", WM8903_DRC_3, 0, 30, 1, drc_tlv_amp),
SOC_SINGLE_TLV("DRC Minimum Gain Volume", WM8903_DRC_1, 2, 3, 1, drc_tlv_min),
SOC_SINGLE_TLV("DRC Maximum Gain Volume", WM8903_DRC_1, 0, 3, 0, drc_tlv_max),
SOC_ENUM("DRC Attack Rate", drc_attack),
SOC_ENUM("DRC Decay Rate", drc_decay),
SOC_ENUM("DRC FF Delay", drc_ff_delay),
SOC_SINGLE("DRC Anticlip Switch", WM8903_DRC_0, 1, 1, 0),
SOC_SINGLE("DRC QR Switch", WM8903_DRC_0, 2, 1, 0),
SOC_SINGLE_TLV("DRC QR Threshold Volume", WM8903_DRC_0, 6, 3, 0, drc_tlv_max),
SOC_ENUM("DRC QR Decay Rate", drc_qr_decay),
SOC_SINGLE("DRC Smoothing Switch", WM8903_DRC_0, 3, 1, 0),
SOC_SINGLE("DRC Smoothing Hysteresis Switch", WM8903_DRC_0, 0, 1, 0),
SOC_ENUM("DRC Smoothing Threshold", drc_smoothing),
SOC_SINGLE_TLV("DRC Startup Volume", WM8903_DRC_0, 6, 18, 0, drc_tlv_startup),
SOC_DOUBLE_R_TLV("Digital Capture Volume", WM8903_ADC_DIGITAL_VOLUME_LEFT,
WM8903_ADC_DIGITAL_VOLUME_RIGHT, 1, 96, 0, digital_tlv),
SOC_ENUM("ADC Companding Mode", adc_companding),
SOC_SINGLE("ADC Companding Switch", WM8903_AUDIO_INTERFACE_0, 3, 1, 0),
SOC_DOUBLE_TLV("Digital Sidetone Volume", WM8903_DAC_DIGITAL_0, 4, 8,
12, 0, digital_sidetone_tlv),
/* DAC */
SOC_ENUM("DAC OSR", dac_osr),
SOC_DOUBLE_R_TLV("Digital Playback Volume", WM8903_DAC_DIGITAL_VOLUME_LEFT,
WM8903_DAC_DIGITAL_VOLUME_RIGHT, 1, 120, 0, digital_tlv),
SOC_ENUM("DAC Soft Mute Rate", soft_mute),
SOC_ENUM("DAC Mute Mode", mute_mode),
SOC_SINGLE("DAC Mono Switch", WM8903_DAC_DIGITAL_1, 12, 1, 0),
SOC_ENUM("DAC Companding Mode", dac_companding),
SOC_SINGLE("DAC Companding Switch", WM8903_AUDIO_INTERFACE_0, 1, 1, 0),
SOC_SINGLE_BOOL_EXT("Playback Deemphasis Switch", 0,
wm8903_get_deemph, wm8903_put_deemph),
/* Headphones */
SOC_DOUBLE_R("Headphone Switch",
WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT,
8, 1, 1),
SOC_DOUBLE_R("Headphone ZC Switch",
WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT,
6, 1, 0),
SOC_DOUBLE_R_TLV("Headphone Volume",
WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT,
0, 63, 0, out_tlv),
/* Line out */
SOC_DOUBLE_R("Line Out Switch",
WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT,
8, 1, 1),
SOC_DOUBLE_R("Line Out ZC Switch",
WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT,
6, 1, 0),
SOC_DOUBLE_R_TLV("Line Out Volume",
WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT,
0, 63, 0, out_tlv),
/* Speaker */
SOC_DOUBLE_R("Speaker Switch",
WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT, 8, 1, 1),
SOC_DOUBLE_R("Speaker ZC Switch",
WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT, 6, 1, 0),
SOC_DOUBLE_R_TLV("Speaker Volume",
WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT,
0, 63, 0, out_tlv),
};
static const struct snd_kcontrol_new linput_mode_mux =
SOC_DAPM_ENUM("Left Input Mode Mux", linput_mode_enum);
static const struct snd_kcontrol_new rinput_mode_mux =
SOC_DAPM_ENUM("Right Input Mode Mux", rinput_mode_enum);
static const struct snd_kcontrol_new linput_mux =
SOC_DAPM_ENUM("Left Input Mux", linput_enum);
static const struct snd_kcontrol_new linput_inv_mux =
SOC_DAPM_ENUM("Left Inverting Input Mux", linput_inv_enum);
static const struct snd_kcontrol_new rinput_mux =
SOC_DAPM_ENUM("Right Input Mux", rinput_enum);
static const struct snd_kcontrol_new rinput_inv_mux =
SOC_DAPM_ENUM("Right Inverting Input Mux", rinput_inv_enum);
static const struct snd_kcontrol_new lsidetone_mux =
SOC_DAPM_ENUM("DACL Sidetone Mux", lsidetone_enum);
static const struct snd_kcontrol_new rsidetone_mux =
SOC_DAPM_ENUM("DACR Sidetone Mux", rsidetone_enum);
static const struct snd_kcontrol_new lcapture_mux =
SOC_DAPM_ENUM("Left Capture Mux", lcapture_enum);
static const struct snd_kcontrol_new rcapture_mux =
SOC_DAPM_ENUM("Right Capture Mux", rcapture_enum);
static const struct snd_kcontrol_new lplay_mux =
SOC_DAPM_ENUM("Left Playback Mux", lplay_enum);
static const struct snd_kcontrol_new rplay_mux =
SOC_DAPM_ENUM("Right Playback Mux", rplay_enum);
static const struct snd_kcontrol_new left_output_mixer[] = {
SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_LEFT_MIX_0, 3, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_LEFT_MIX_0, 2, 1, 0),
SOC_DAPM_SINGLE_W("Left Bypass Switch", WM8903_ANALOGUE_LEFT_MIX_0, 1, 1, 0),
SOC_DAPM_SINGLE_W("Right Bypass Switch", WM8903_ANALOGUE_LEFT_MIX_0, 0, 1, 0),
};
static const struct snd_kcontrol_new right_output_mixer[] = {
SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 3, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 2, 1, 0),
SOC_DAPM_SINGLE_W("Left Bypass Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 1, 1, 0),
SOC_DAPM_SINGLE_W("Right Bypass Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 0, 1, 0),
};
static const struct snd_kcontrol_new left_speaker_mixer[] = {
SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 3, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 2, 1, 0),
SOC_DAPM_SINGLE("Left Bypass Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 1, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0,
0, 1, 0),
};
static const struct snd_kcontrol_new right_speaker_mixer[] = {
SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0, 3, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0, 2, 1, 0),
SOC_DAPM_SINGLE("Left Bypass Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0,
1, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0,
0, 1, 0),
};
static const struct snd_soc_dapm_widget wm8903_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("IN1L"),
SND_SOC_DAPM_INPUT("IN1R"),
SND_SOC_DAPM_INPUT("IN2L"),
SND_SOC_DAPM_INPUT("IN2R"),
SND_SOC_DAPM_INPUT("IN3L"),
SND_SOC_DAPM_INPUT("IN3R"),
SND_SOC_DAPM_OUTPUT("HPOUTL"),
SND_SOC_DAPM_OUTPUT("HPOUTR"),
SND_SOC_DAPM_OUTPUT("LINEOUTL"),
SND_SOC_DAPM_OUTPUT("LINEOUTR"),
SND_SOC_DAPM_OUTPUT("LOP"),
SND_SOC_DAPM_OUTPUT("LON"),
SND_SOC_DAPM_OUTPUT("ROP"),
SND_SOC_DAPM_OUTPUT("RON"),
SND_SOC_DAPM_MICBIAS("Mic Bias", WM8903_MIC_BIAS_CONTROL_0, 0, 0),
SND_SOC_DAPM_MUX("Left Input Mux", SND_SOC_NOPM, 0, 0, &linput_mux),
SND_SOC_DAPM_MUX("Left Input Inverting Mux", SND_SOC_NOPM, 0, 0,
&linput_inv_mux),
SND_SOC_DAPM_MUX("Left Input Mode Mux", SND_SOC_NOPM, 0, 0, &linput_mode_mux),
SND_SOC_DAPM_MUX("Right Input Mux", SND_SOC_NOPM, 0, 0, &rinput_mux),
SND_SOC_DAPM_MUX("Right Input Inverting Mux", SND_SOC_NOPM, 0, 0,
&rinput_inv_mux),
SND_SOC_DAPM_MUX("Right Input Mode Mux", SND_SOC_NOPM, 0, 0, &rinput_mode_mux),
SND_SOC_DAPM_PGA("Left Input PGA", WM8903_POWER_MANAGEMENT_0, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Input PGA", WM8903_POWER_MANAGEMENT_0, 0, 0, NULL, 0),
SND_SOC_DAPM_ADC("ADCL", NULL, WM8903_POWER_MANAGEMENT_6, 1, 0),
SND_SOC_DAPM_ADC("ADCR", NULL, WM8903_POWER_MANAGEMENT_6, 0, 0),
SND_SOC_DAPM_MUX("Left Capture Mux", SND_SOC_NOPM, 0, 0, &lcapture_mux),
SND_SOC_DAPM_MUX("Right Capture Mux", SND_SOC_NOPM, 0, 0, &rcapture_mux),
SND_SOC_DAPM_AIF_OUT("AIFTXL", "Left HiFi Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIFTXR", "Right HiFi Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_MUX("DACL Sidetone", SND_SOC_NOPM, 0, 0, &lsidetone_mux),
SND_SOC_DAPM_MUX("DACR Sidetone", SND_SOC_NOPM, 0, 0, &rsidetone_mux),
SND_SOC_DAPM_AIF_IN("AIFRXL", "Left Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("AIFRXR", "Right Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_MUX("Left Playback Mux", SND_SOC_NOPM, 0, 0, &lplay_mux),
SND_SOC_DAPM_MUX("Right Playback Mux", SND_SOC_NOPM, 0, 0, &rplay_mux),
SND_SOC_DAPM_DAC("DACL", NULL, WM8903_POWER_MANAGEMENT_6, 3, 0),
SND_SOC_DAPM_DAC("DACR", NULL, WM8903_POWER_MANAGEMENT_6, 2, 0),
SND_SOC_DAPM_MIXER("Left Output Mixer", WM8903_POWER_MANAGEMENT_1, 1, 0,
left_output_mixer, ARRAY_SIZE(left_output_mixer)),
SND_SOC_DAPM_MIXER("Right Output Mixer", WM8903_POWER_MANAGEMENT_1, 0, 0,
right_output_mixer, ARRAY_SIZE(right_output_mixer)),
SND_SOC_DAPM_MIXER("Left Speaker Mixer", WM8903_POWER_MANAGEMENT_4, 1, 0,
left_speaker_mixer, ARRAY_SIZE(left_speaker_mixer)),
SND_SOC_DAPM_MIXER("Right Speaker Mixer", WM8903_POWER_MANAGEMENT_4, 0, 0,
right_speaker_mixer, ARRAY_SIZE(right_speaker_mixer)),
SND_SOC_DAPM_PGA_S("Left Headphone Output PGA", 0, WM8903_ANALOGUE_HP_0,
4, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Right Headphone Output PGA", 0, WM8903_ANALOGUE_HP_0,
0, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("Left Line Output PGA", 0, WM8903_ANALOGUE_LINEOUT_0, 4, 0,
NULL, 0),
SND_SOC_DAPM_PGA_S("Right Line Output PGA", 0, WM8903_ANALOGUE_LINEOUT_0, 0, 0,
NULL, 0),
SND_SOC_DAPM_PGA_S("HPL_RMV_SHORT", 4, WM8903_ANALOGUE_HP_0, 7, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HPL_ENA_OUTP", 3, WM8903_ANALOGUE_HP_0, 6, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HPL_ENA_DLY", 1, WM8903_ANALOGUE_HP_0, 5, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HPR_RMV_SHORT", 4, WM8903_ANALOGUE_HP_0, 3, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HPR_ENA_OUTP", 3, WM8903_ANALOGUE_HP_0, 2, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HPR_ENA_DLY", 1, WM8903_ANALOGUE_HP_0, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("LINEOUTL_RMV_SHORT", 4, WM8903_ANALOGUE_LINEOUT_0, 7, 0,
NULL, 0),
SND_SOC_DAPM_PGA_S("LINEOUTL_ENA_OUTP", 3, WM8903_ANALOGUE_LINEOUT_0, 6, 0,
NULL, 0),
SND_SOC_DAPM_PGA_S("LINEOUTL_ENA_DLY", 1, WM8903_ANALOGUE_LINEOUT_0, 5, 0,
NULL, 0),
SND_SOC_DAPM_PGA_S("LINEOUTR_RMV_SHORT", 4, WM8903_ANALOGUE_LINEOUT_0, 3, 0,
NULL, 0),
SND_SOC_DAPM_PGA_S("LINEOUTR_ENA_OUTP", 3, WM8903_ANALOGUE_LINEOUT_0, 2, 0,
NULL, 0),
SND_SOC_DAPM_PGA_S("LINEOUTR_ENA_DLY", 1, WM8903_ANALOGUE_LINEOUT_0, 1, 0,
NULL, 0),
SND_SOC_DAPM_SUPPLY("DCS Master", WM8903_DC_SERVO_0, 4, 0, NULL, 0),
SND_SOC_DAPM_PGA_S("HPL_DCS", 3, SND_SOC_NOPM, 3, 0, wm8903_dcs_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_S("HPR_DCS", 3, SND_SOC_NOPM, 2, 0, wm8903_dcs_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_S("LINEOUTL_DCS", 3, SND_SOC_NOPM, 1, 0, wm8903_dcs_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_S("LINEOUTR_DCS", 3, SND_SOC_NOPM, 0, 0, wm8903_dcs_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA("Left Speaker PGA", WM8903_POWER_MANAGEMENT_5, 1, 0,
NULL, 0),
SND_SOC_DAPM_PGA("Right Speaker PGA", WM8903_POWER_MANAGEMENT_5, 0, 0,
NULL, 0),
SND_SOC_DAPM_SUPPLY("Charge Pump", WM8903_CHARGE_PUMP_0, 0, 0,
wm8903_cp_event, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_SUPPLY("CLK_DSP", WM8903_CLOCK_RATES_2, 1, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("CLK_SYS", WM8903_CLOCK_RATES_2, 2, 0, NULL, 0),
};
static const struct snd_soc_dapm_route intercon[] = {
{ "CLK_DSP", NULL, "CLK_SYS" },
{ "Mic Bias", NULL, "CLK_SYS" },
{ "HPL_DCS", NULL, "CLK_SYS" },
{ "HPR_DCS", NULL, "CLK_SYS" },
{ "LINEOUTL_DCS", NULL, "CLK_SYS" },
{ "LINEOUTR_DCS", NULL, "CLK_SYS" },
{ "Left Input Mux", "IN1L", "IN1L" },
{ "Left Input Mux", "IN2L", "IN2L" },
{ "Left Input Mux", "IN3L", "IN3L" },
{ "Left Input Inverting Mux", "IN1L", "IN1L" },
{ "Left Input Inverting Mux", "IN2L", "IN2L" },
{ "Left Input Inverting Mux", "IN3L", "IN3L" },
{ "Right Input Mux", "IN1R", "IN1R" },
{ "Right Input Mux", "IN2R", "IN2R" },
{ "Right Input Mux", "IN3R", "IN3R" },
{ "Right Input Inverting Mux", "IN1R", "IN1R" },
{ "Right Input Inverting Mux", "IN2R", "IN2R" },
{ "Right Input Inverting Mux", "IN3R", "IN3R" },
{ "Left Input Mode Mux", "Single-Ended", "Left Input Inverting Mux" },
{ "Left Input Mode Mux", "Differential Line",
"Left Input Mux" },
{ "Left Input Mode Mux", "Differential Line",
"Left Input Inverting Mux" },
{ "Left Input Mode Mux", "Differential Mic",
"Left Input Mux" },
{ "Left Input Mode Mux", "Differential Mic",
"Left Input Inverting Mux" },
{ "Right Input Mode Mux", "Single-Ended",
"Right Input Inverting Mux" },
{ "Right Input Mode Mux", "Differential Line",
"Right Input Mux" },
{ "Right Input Mode Mux", "Differential Line",
"Right Input Inverting Mux" },
{ "Right Input Mode Mux", "Differential Mic",
"Right Input Mux" },
{ "Right Input Mode Mux", "Differential Mic",
"Right Input Inverting Mux" },
{ "Left Input PGA", NULL, "Left Input Mode Mux" },
{ "Right Input PGA", NULL, "Right Input Mode Mux" },
{ "Left Capture Mux", "Left", "ADCL" },
{ "Left Capture Mux", "Right", "ADCR" },
{ "Right Capture Mux", "Left", "ADCL" },
{ "Right Capture Mux", "Right", "ADCR" },
{ "AIFTXL", NULL, "Left Capture Mux" },
{ "AIFTXR", NULL, "Right Capture Mux" },
{ "ADCL", NULL, "Left Input PGA" },
{ "ADCL", NULL, "CLK_DSP" },
{ "ADCR", NULL, "Right Input PGA" },
{ "ADCR", NULL, "CLK_DSP" },
{ "Left Playback Mux", "Left", "AIFRXL" },
{ "Left Playback Mux", "Right", "AIFRXR" },
{ "Right Playback Mux", "Left", "AIFRXL" },
{ "Right Playback Mux", "Right", "AIFRXR" },
{ "DACL Sidetone", "Left", "ADCL" },
{ "DACL Sidetone", "Right", "ADCR" },
{ "DACR Sidetone", "Left", "ADCL" },
{ "DACR Sidetone", "Right", "ADCR" },
{ "DACL", NULL, "Left Playback Mux" },
{ "DACL", NULL, "DACL Sidetone" },
{ "DACL", NULL, "CLK_DSP" },
{ "DACR", NULL, "Right Playback Mux" },
{ "DACR", NULL, "DACR Sidetone" },
{ "DACR", NULL, "CLK_DSP" },
{ "Left Output Mixer", "Left Bypass Switch", "Left Input PGA" },
{ "Left Output Mixer", "Right Bypass Switch", "Right Input PGA" },
{ "Left Output Mixer", "DACL Switch", "DACL" },
{ "Left Output Mixer", "DACR Switch", "DACR" },
{ "Right Output Mixer", "Left Bypass Switch", "Left Input PGA" },
{ "Right Output Mixer", "Right Bypass Switch", "Right Input PGA" },
{ "Right Output Mixer", "DACL Switch", "DACL" },
{ "Right Output Mixer", "DACR Switch", "DACR" },
{ "Left Speaker Mixer", "Left Bypass Switch", "Left Input PGA" },
{ "Left Speaker Mixer", "Right Bypass Switch", "Right Input PGA" },
{ "Left Speaker Mixer", "DACL Switch", "DACL" },
{ "Left Speaker Mixer", "DACR Switch", "DACR" },
{ "Right Speaker Mixer", "Left Bypass Switch", "Left Input PGA" },
{ "Right Speaker Mixer", "Right Bypass Switch", "Right Input PGA" },
{ "Right Speaker Mixer", "DACL Switch", "DACL" },
{ "Right Speaker Mixer", "DACR Switch", "DACR" },
{ "Left Line Output PGA", NULL, "Left Output Mixer" },
{ "Right Line Output PGA", NULL, "Right Output Mixer" },
{ "Left Headphone Output PGA", NULL, "Left Output Mixer" },
{ "Right Headphone Output PGA", NULL, "Right Output Mixer" },
{ "Left Speaker PGA", NULL, "Left Speaker Mixer" },
{ "Right Speaker PGA", NULL, "Right Speaker Mixer" },
{ "HPL_ENA_DLY", NULL, "Left Headphone Output PGA" },
{ "HPR_ENA_DLY", NULL, "Right Headphone Output PGA" },
{ "LINEOUTL_ENA_DLY", NULL, "Left Line Output PGA" },
{ "LINEOUTR_ENA_DLY", NULL, "Right Line Output PGA" },
{ "HPL_DCS", NULL, "DCS Master" },
{ "HPR_DCS", NULL, "DCS Master" },
{ "LINEOUTL_DCS", NULL, "DCS Master" },
{ "LINEOUTR_DCS", NULL, "DCS Master" },
{ "HPL_DCS", NULL, "HPL_ENA_DLY" },
{ "HPR_DCS", NULL, "HPR_ENA_DLY" },
{ "LINEOUTL_DCS", NULL, "LINEOUTL_ENA_DLY" },
{ "LINEOUTR_DCS", NULL, "LINEOUTR_ENA_DLY" },
{ "HPL_ENA_OUTP", NULL, "HPL_DCS" },
{ "HPR_ENA_OUTP", NULL, "HPR_DCS" },
{ "LINEOUTL_ENA_OUTP", NULL, "LINEOUTL_DCS" },
{ "LINEOUTR_ENA_OUTP", NULL, "LINEOUTR_DCS" },
{ "HPL_RMV_SHORT", NULL, "HPL_ENA_OUTP" },
{ "HPR_RMV_SHORT", NULL, "HPR_ENA_OUTP" },
{ "LINEOUTL_RMV_SHORT", NULL, "LINEOUTL_ENA_OUTP" },
{ "LINEOUTR_RMV_SHORT", NULL, "LINEOUTR_ENA_OUTP" },
{ "HPOUTL", NULL, "HPL_RMV_SHORT" },
{ "HPOUTR", NULL, "HPR_RMV_SHORT" },
{ "LINEOUTL", NULL, "LINEOUTL_RMV_SHORT" },
{ "LINEOUTR", NULL, "LINEOUTR_RMV_SHORT" },
{ "LOP", NULL, "Left Speaker PGA" },
{ "LON", NULL, "Left Speaker PGA" },
{ "ROP", NULL, "Right Speaker PGA" },
{ "RON", NULL, "Right Speaker PGA" },
{ "Left Headphone Output PGA", NULL, "Charge Pump" },
{ "Right Headphone Output PGA", NULL, "Charge Pump" },
{ "Left Line Output PGA", NULL, "Charge Pump" },
{ "Right Line Output PGA", NULL, "Charge Pump" },
};
static int wm8903_add_widgets(struct snd_soc_codec *codec)
{
struct snd_soc_dapm_context *dapm = &codec->dapm;
snd_soc_dapm_new_controls(dapm, wm8903_dapm_widgets,
ARRAY_SIZE(wm8903_dapm_widgets));
snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
return 0;
}
static int wm8903_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
snd_soc_update_bits(codec, WM8903_VMID_CONTROL_0,
WM8903_VMID_RES_MASK,
WM8903_VMID_RES_50K);
break;
case SND_SOC_BIAS_STANDBY:
if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
snd_soc_update_bits(codec, WM8903_BIAS_CONTROL_0,
WM8903_POBCTRL | WM8903_ISEL_MASK |
WM8903_STARTUP_BIAS_ENA |
WM8903_BIAS_ENA,
WM8903_POBCTRL |
(2 << WM8903_ISEL_SHIFT) |
WM8903_STARTUP_BIAS_ENA);
snd_soc_update_bits(codec,
WM8903_ANALOGUE_SPK_OUTPUT_CONTROL_0,
WM8903_SPK_DISCHARGE,
WM8903_SPK_DISCHARGE);
msleep(33);
snd_soc_update_bits(codec, WM8903_POWER_MANAGEMENT_5,
WM8903_SPKL_ENA | WM8903_SPKR_ENA,
WM8903_SPKL_ENA | WM8903_SPKR_ENA);
snd_soc_update_bits(codec,
WM8903_ANALOGUE_SPK_OUTPUT_CONTROL_0,
WM8903_SPK_DISCHARGE, 0);
snd_soc_update_bits(codec, WM8903_VMID_CONTROL_0,
WM8903_VMID_TIE_ENA |
WM8903_BUFIO_ENA |
WM8903_VMID_IO_ENA |
WM8903_VMID_SOFT_MASK |
WM8903_VMID_RES_MASK |
WM8903_VMID_BUF_ENA,
WM8903_VMID_TIE_ENA |
WM8903_BUFIO_ENA |
WM8903_VMID_IO_ENA |
(2 << WM8903_VMID_SOFT_SHIFT) |
WM8903_VMID_RES_250K |
WM8903_VMID_BUF_ENA);
msleep(129);
snd_soc_update_bits(codec, WM8903_POWER_MANAGEMENT_5,
WM8903_SPKL_ENA | WM8903_SPKR_ENA,
0);
snd_soc_update_bits(codec, WM8903_VMID_CONTROL_0,
WM8903_VMID_SOFT_MASK, 0);
snd_soc_update_bits(codec, WM8903_VMID_CONTROL_0,
WM8903_VMID_RES_MASK,
WM8903_VMID_RES_50K);
snd_soc_update_bits(codec, WM8903_BIAS_CONTROL_0,
WM8903_BIAS_ENA | WM8903_POBCTRL,
WM8903_BIAS_ENA);
/* By default no bypass paths are enabled so
* enable Class W support.
*/
dev_dbg(codec->dev, "Enabling Class W\n");
snd_soc_update_bits(codec, WM8903_CLASS_W_0,
WM8903_CP_DYN_FREQ |
WM8903_CP_DYN_V,
WM8903_CP_DYN_FREQ |
WM8903_CP_DYN_V);
}
snd_soc_update_bits(codec, WM8903_VMID_CONTROL_0,
WM8903_VMID_RES_MASK,
WM8903_VMID_RES_250K);
break;
case SND_SOC_BIAS_OFF:
snd_soc_update_bits(codec, WM8903_BIAS_CONTROL_0,
WM8903_BIAS_ENA, 0);
snd_soc_update_bits(codec, WM8903_VMID_CONTROL_0,
WM8903_VMID_SOFT_MASK,
2 << WM8903_VMID_SOFT_SHIFT);
snd_soc_update_bits(codec, WM8903_VMID_CONTROL_0,
WM8903_VMID_BUF_ENA, 0);
msleep(290);
snd_soc_update_bits(codec, WM8903_VMID_CONTROL_0,
WM8903_VMID_TIE_ENA | WM8903_BUFIO_ENA |
WM8903_VMID_IO_ENA | WM8903_VMID_RES_MASK |
WM8903_VMID_SOFT_MASK |
WM8903_VMID_BUF_ENA, 0);
snd_soc_update_bits(codec, WM8903_BIAS_CONTROL_0,
WM8903_STARTUP_BIAS_ENA, 0);
break;
}
codec->dapm.bias_level = level;
return 0;
}
static int wm8903_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
wm8903->sysclk = freq;
return 0;
}
static int wm8903_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
u16 aif1 = snd_soc_read(codec, WM8903_AUDIO_INTERFACE_1);
aif1 &= ~(WM8903_LRCLK_DIR | WM8903_BCLK_DIR | WM8903_AIF_FMT_MASK |
WM8903_AIF_LRCLK_INV | WM8903_AIF_BCLK_INV);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
break;
case SND_SOC_DAIFMT_CBS_CFM:
aif1 |= WM8903_LRCLK_DIR;
break;
case SND_SOC_DAIFMT_CBM_CFM:
aif1 |= WM8903_LRCLK_DIR | WM8903_BCLK_DIR;
break;
case SND_SOC_DAIFMT_CBM_CFS:
aif1 |= WM8903_BCLK_DIR;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
aif1 |= 0x3;
break;
case SND_SOC_DAIFMT_DSP_B:
aif1 |= 0x3 | WM8903_AIF_LRCLK_INV;
break;
case SND_SOC_DAIFMT_I2S:
aif1 |= 0x2;
break;
case SND_SOC_DAIFMT_RIGHT_J:
aif1 |= 0x1;
break;
case SND_SOC_DAIFMT_LEFT_J:
break;
default:
return -EINVAL;
}
/* Clock inversion */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
/* frame inversion not valid for DSP modes */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
aif1 |= WM8903_AIF_BCLK_INV;
break;
default:
return -EINVAL;
}
break;
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_RIGHT_J:
case SND_SOC_DAIFMT_LEFT_J:
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_IF:
aif1 |= WM8903_AIF_BCLK_INV | WM8903_AIF_LRCLK_INV;
break;
case SND_SOC_DAIFMT_IB_NF:
aif1 |= WM8903_AIF_BCLK_INV;
break;
case SND_SOC_DAIFMT_NB_IF:
aif1 |= WM8903_AIF_LRCLK_INV;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
snd_soc_write(codec, WM8903_AUDIO_INTERFACE_1, aif1);
return 0;
}
static int wm8903_digital_mute(struct snd_soc_dai *codec_dai, int mute)
{
struct snd_soc_codec *codec = codec_dai->codec;
u16 reg;
reg = snd_soc_read(codec, WM8903_DAC_DIGITAL_1);
if (mute)
reg |= WM8903_DAC_MUTE;
else
reg &= ~WM8903_DAC_MUTE;
snd_soc_write(codec, WM8903_DAC_DIGITAL_1, reg);
return 0;
}
/* Lookup table for CLK_SYS/fs ratio. 256fs or more is recommended
* for optimal performance so we list the lower rates first and match
* on the last match we find. */
static struct {
int div;
int rate;
int mode;
int mclk_div;
} clk_sys_ratios[] = {
{ 64, 0x0, 0x0, 1 },
{ 68, 0x0, 0x1, 1 },
{ 125, 0x0, 0x2, 1 },
{ 128, 0x1, 0x0, 1 },
{ 136, 0x1, 0x1, 1 },
{ 192, 0x2, 0x0, 1 },
{ 204, 0x2, 0x1, 1 },
{ 64, 0x0, 0x0, 2 },
{ 68, 0x0, 0x1, 2 },
{ 125, 0x0, 0x2, 2 },
{ 128, 0x1, 0x0, 2 },
{ 136, 0x1, 0x1, 2 },
{ 192, 0x2, 0x0, 2 },
{ 204, 0x2, 0x1, 2 },
{ 250, 0x2, 0x2, 1 },
{ 256, 0x3, 0x0, 1 },
{ 272, 0x3, 0x1, 1 },
{ 384, 0x4, 0x0, 1 },
{ 408, 0x4, 0x1, 1 },
{ 375, 0x4, 0x2, 1 },
{ 512, 0x5, 0x0, 1 },
{ 544, 0x5, 0x1, 1 },
{ 500, 0x5, 0x2, 1 },
{ 768, 0x6, 0x0, 1 },
{ 816, 0x6, 0x1, 1 },
{ 750, 0x6, 0x2, 1 },
{ 1024, 0x7, 0x0, 1 },
{ 1088, 0x7, 0x1, 1 },
{ 1000, 0x7, 0x2, 1 },
{ 1408, 0x8, 0x0, 1 },
{ 1496, 0x8, 0x1, 1 },
{ 1536, 0x9, 0x0, 1 },
{ 1632, 0x9, 0x1, 1 },
{ 1500, 0x9, 0x2, 1 },
{ 250, 0x2, 0x2, 2 },
{ 256, 0x3, 0x0, 2 },
{ 272, 0x3, 0x1, 2 },
{ 384, 0x4, 0x0, 2 },
{ 408, 0x4, 0x1, 2 },
{ 375, 0x4, 0x2, 2 },
{ 512, 0x5, 0x0, 2 },
{ 544, 0x5, 0x1, 2 },
{ 500, 0x5, 0x2, 2 },
{ 768, 0x6, 0x0, 2 },
{ 816, 0x6, 0x1, 2 },
{ 750, 0x6, 0x2, 2 },
{ 1024, 0x7, 0x0, 2 },
{ 1088, 0x7, 0x1, 2 },
{ 1000, 0x7, 0x2, 2 },
{ 1408, 0x8, 0x0, 2 },
{ 1496, 0x8, 0x1, 2 },
{ 1536, 0x9, 0x0, 2 },
{ 1632, 0x9, 0x1, 2 },
{ 1500, 0x9, 0x2, 2 },
};
/* CLK_SYS/BCLK ratios - multiplied by 10 due to .5s */
static struct {
int ratio;
int div;
} bclk_divs[] = {
{ 10, 0 },
{ 20, 2 },
{ 30, 3 },
{ 40, 4 },
{ 50, 5 },
{ 60, 7 },
{ 80, 8 },
{ 100, 9 },
{ 120, 11 },
{ 160, 12 },
{ 200, 13 },
{ 220, 14 },
{ 240, 15 },
{ 300, 17 },
{ 320, 18 },
{ 440, 19 },
{ 480, 20 },
};
/* Sample rates for DSP */
static struct {
int rate;
int value;
} sample_rates[] = {
{ 8000, 0 },
{ 11025, 1 },
{ 12000, 2 },
{ 16000, 3 },
{ 22050, 4 },
{ 24000, 5 },
{ 32000, 6 },
{ 44100, 7 },
{ 48000, 8 },
{ 88200, 9 },
{ 96000, 10 },
{ 0, 0 },
};
static int wm8903_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_codec *codec =rtd->codec;
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
int fs = params_rate(params);
int bclk;
int bclk_div;
int i;
int dsp_config;
int clk_config;
int best_val;
int cur_val;
int clk_sys;
u16 aif1 = snd_soc_read(codec, WM8903_AUDIO_INTERFACE_1);
u16 aif2 = snd_soc_read(codec, WM8903_AUDIO_INTERFACE_2);
u16 aif3 = snd_soc_read(codec, WM8903_AUDIO_INTERFACE_3);
u16 clock0 = snd_soc_read(codec, WM8903_CLOCK_RATES_0);
u16 clock1 = snd_soc_read(codec, WM8903_CLOCK_RATES_1);
u16 dac_digital1 = snd_soc_read(codec, WM8903_DAC_DIGITAL_1);
/* Enable sloping stopband filter for low sample rates */
if (fs <= 24000)
dac_digital1 |= WM8903_DAC_SB_FILT;
else
dac_digital1 &= ~WM8903_DAC_SB_FILT;
/* Configure sample rate logic for DSP - choose nearest rate */
dsp_config = 0;
best_val = abs(sample_rates[dsp_config].rate - fs);
for (i = 1; i < ARRAY_SIZE(sample_rates); i++) {
cur_val = abs(sample_rates[i].rate - fs);
if (cur_val <= best_val) {
dsp_config = i;
best_val = cur_val;
}
}
dev_dbg(codec->dev, "DSP fs = %dHz\n", sample_rates[dsp_config].rate);
clock1 &= ~WM8903_SAMPLE_RATE_MASK;
clock1 |= sample_rates[dsp_config].value;
aif1 &= ~WM8903_AIF_WL_MASK;
bclk = 2 * fs;
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
bclk *= 16;
break;
case SNDRV_PCM_FORMAT_S20_3LE:
bclk *= 20;
aif1 |= 0x4;
break;
case SNDRV_PCM_FORMAT_S24_LE:
bclk *= 24;
aif1 |= 0x8;
break;
case SNDRV_PCM_FORMAT_S32_LE:
bclk *= 32;
aif1 |= 0xc;
break;
default:
return -EINVAL;
}
dev_dbg(codec->dev, "MCLK = %dHz, target sample rate = %dHz\n",
wm8903->sysclk, fs);
/* We may not have an MCLK which allows us to generate exactly
* the clock we want, particularly with USB derived inputs, so
* approximate.
*/
clk_config = 0;
best_val = abs((wm8903->sysclk /
(clk_sys_ratios[0].mclk_div *
clk_sys_ratios[0].div)) - fs);
for (i = 1; i < ARRAY_SIZE(clk_sys_ratios); i++) {
cur_val = abs((wm8903->sysclk /
(clk_sys_ratios[i].mclk_div *
clk_sys_ratios[i].div)) - fs);
if (cur_val <= best_val) {
clk_config = i;
best_val = cur_val;
}
}
if (clk_sys_ratios[clk_config].mclk_div == 2) {
clock0 |= WM8903_MCLKDIV2;
clk_sys = wm8903->sysclk / 2;
} else {
clock0 &= ~WM8903_MCLKDIV2;
clk_sys = wm8903->sysclk;
}
clock1 &= ~(WM8903_CLK_SYS_RATE_MASK |
WM8903_CLK_SYS_MODE_MASK);
clock1 |= clk_sys_ratios[clk_config].rate << WM8903_CLK_SYS_RATE_SHIFT;
clock1 |= clk_sys_ratios[clk_config].mode << WM8903_CLK_SYS_MODE_SHIFT;
dev_dbg(codec->dev, "CLK_SYS_RATE=%x, CLK_SYS_MODE=%x div=%d\n",
clk_sys_ratios[clk_config].rate,
clk_sys_ratios[clk_config].mode,
clk_sys_ratios[clk_config].div);
dev_dbg(codec->dev, "Actual CLK_SYS = %dHz\n", clk_sys);
/* We may not get quite the right frequency if using
* approximate clocks so look for the closest match that is
* higher than the target (we need to ensure that there enough
* BCLKs to clock out the samples).
*/
bclk_div = 0;
best_val = ((clk_sys * 10) / bclk_divs[0].ratio) - bclk;
i = 1;
while (i < ARRAY_SIZE(bclk_divs)) {
cur_val = ((clk_sys * 10) / bclk_divs[i].ratio) - bclk;
if (cur_val < 0) /* BCLK table is sorted */
break;
bclk_div = i;
best_val = cur_val;
i++;
}
aif2 &= ~WM8903_BCLK_DIV_MASK;
aif3 &= ~WM8903_LRCLK_RATE_MASK;
dev_dbg(codec->dev, "BCLK ratio %d for %dHz - actual BCLK = %dHz\n",
bclk_divs[bclk_div].ratio / 10, bclk,
(clk_sys * 10) / bclk_divs[bclk_div].ratio);
aif2 |= bclk_divs[bclk_div].div;
aif3 |= bclk / fs;
wm8903->fs = params_rate(params);
wm8903_set_deemph(codec);
snd_soc_write(codec, WM8903_CLOCK_RATES_0, clock0);
snd_soc_write(codec, WM8903_CLOCK_RATES_1, clock1);
snd_soc_write(codec, WM8903_AUDIO_INTERFACE_1, aif1);
snd_soc_write(codec, WM8903_AUDIO_INTERFACE_2, aif2);
snd_soc_write(codec, WM8903_AUDIO_INTERFACE_3, aif3);
snd_soc_write(codec, WM8903_DAC_DIGITAL_1, dac_digital1);
return 0;
}
/**
* wm8903_mic_detect - Enable microphone detection via the WM8903 IRQ
*
* @codec: WM8903 codec
* @jack: jack to report detection events on
* @det: value to report for presence detection
* @shrt: value to report for short detection
*
* Enable microphone detection via IRQ on the WM8903. If GPIOs are
* being used to bring out signals to the processor then only platform
* data configuration is needed for WM8903 and processor GPIOs should
* be configured using snd_soc_jack_add_gpios() instead.
*
* The current threasholds for detection should be configured using
* micdet_cfg in the platform data. Using this function will force on
* the microphone bias for the device.
*/
int wm8903_mic_detect(struct snd_soc_codec *codec, struct snd_soc_jack *jack,
int det, int shrt)
{
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
int irq_mask = WM8903_MICDET_EINT | WM8903_MICSHRT_EINT;
dev_dbg(codec->dev, "Enabling microphone detection: %x %x\n",
det, shrt);
/* Store the configuration */
wm8903->mic_jack = jack;
wm8903->mic_det = det;
wm8903->mic_short = shrt;
/* Enable interrupts we've got a report configured for */
if (det)
irq_mask &= ~WM8903_MICDET_EINT;
if (shrt)
irq_mask &= ~WM8903_MICSHRT_EINT;
snd_soc_update_bits(codec, WM8903_INTERRUPT_STATUS_1_MASK,
WM8903_MICDET_EINT | WM8903_MICSHRT_EINT,
irq_mask);
if (det && shrt) {
/* Enable mic detection, this may not have been set through
* platform data (eg, if the defaults are OK). */
snd_soc_update_bits(codec, WM8903_WRITE_SEQUENCER_0,
WM8903_WSEQ_ENA, WM8903_WSEQ_ENA);
snd_soc_update_bits(codec, WM8903_MIC_BIAS_CONTROL_0,
WM8903_MICDET_ENA, WM8903_MICDET_ENA);
} else {
snd_soc_update_bits(codec, WM8903_MIC_BIAS_CONTROL_0,
WM8903_MICDET_ENA, 0);
}
return 0;
}
EXPORT_SYMBOL_GPL(wm8903_mic_detect);
static irqreturn_t wm8903_irq(int irq, void *data)
{
struct snd_soc_codec *codec = data;
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
int mic_report;
int int_pol;
int int_val = 0;
int mask = ~snd_soc_read(codec, WM8903_INTERRUPT_STATUS_1_MASK);
int_val = snd_soc_read(codec, WM8903_INTERRUPT_STATUS_1) & mask;
if (int_val & WM8903_WSEQ_BUSY_EINT) {
dev_warn(codec->dev, "Write sequencer done\n");
}
/*
* The rest is microphone jack detection. We need to manually
* invert the polarity of the interrupt after each event - to
* simplify the code keep track of the last state we reported
* and just invert the relevant bits in both the report and
* the polarity register.
*/
mic_report = wm8903->mic_last_report;
int_pol = snd_soc_read(codec, WM8903_INTERRUPT_POLARITY_1);
#ifndef CONFIG_SND_SOC_WM8903_MODULE
if (int_val & (WM8903_MICSHRT_EINT | WM8903_MICDET_EINT))
trace_snd_soc_jack_irq(dev_name(codec->dev));
#endif
if (int_val & WM8903_MICSHRT_EINT) {
dev_dbg(codec->dev, "Microphone short (pol=%x)\n", int_pol);
mic_report ^= wm8903->mic_short;
int_pol ^= WM8903_MICSHRT_INV;
}
if (int_val & WM8903_MICDET_EINT) {
dev_dbg(codec->dev, "Microphone detect (pol=%x)\n", int_pol);
mic_report ^= wm8903->mic_det;
int_pol ^= WM8903_MICDET_INV;
msleep(wm8903->mic_delay);
}
snd_soc_update_bits(codec, WM8903_INTERRUPT_POLARITY_1,
WM8903_MICSHRT_INV | WM8903_MICDET_INV, int_pol);
snd_soc_jack_report(wm8903->mic_jack, mic_report,
wm8903->mic_short | wm8903->mic_det);
wm8903->mic_last_report = mic_report;
return IRQ_HANDLED;
}
#define WM8903_PLAYBACK_RATES (SNDRV_PCM_RATE_8000 |\
SNDRV_PCM_RATE_11025 | \
SNDRV_PCM_RATE_16000 | \
SNDRV_PCM_RATE_22050 | \
SNDRV_PCM_RATE_32000 | \
SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000 | \
SNDRV_PCM_RATE_88200 | \
SNDRV_PCM_RATE_96000)
#define WM8903_CAPTURE_RATES (SNDRV_PCM_RATE_8000 |\
SNDRV_PCM_RATE_11025 | \
SNDRV_PCM_RATE_16000 | \
SNDRV_PCM_RATE_22050 | \
SNDRV_PCM_RATE_32000 | \
SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000)
#define WM8903_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S20_3LE |\
SNDRV_PCM_FMTBIT_S24_LE)
static struct snd_soc_dai_ops wm8903_dai_ops = {
.hw_params = wm8903_hw_params,
.digital_mute = wm8903_digital_mute,
.set_fmt = wm8903_set_dai_fmt,
.set_sysclk = wm8903_set_dai_sysclk,
};
static struct snd_soc_dai_driver wm8903_dai = {
.name = "wm8903-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = WM8903_PLAYBACK_RATES,
.formats = WM8903_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 2,
.channels_max = 2,
.rates = WM8903_CAPTURE_RATES,
.formats = WM8903_FORMATS,
},
.ops = &wm8903_dai_ops,
.symmetric_rates = 1,
};
static int wm8903_suspend(struct snd_soc_codec *codec, pm_message_t state)
{
wm8903_set_bias_level(codec, SND_SOC_BIAS_OFF);
return 0;
}
static int wm8903_resume(struct snd_soc_codec *codec)
{
int i;
u16 *reg_cache = codec->reg_cache;
u16 *tmp_cache = kmemdup(reg_cache, sizeof(wm8903_reg_defaults),
GFP_KERNEL);
/* Bring the codec back up to standby first to minimise pop/clicks */
wm8903_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
/* Sync back everything else */
if (tmp_cache) {
for (i = 2; i < ARRAY_SIZE(wm8903_reg_defaults); i++)
if (tmp_cache[i] != reg_cache[i])
snd_soc_write(codec, i, tmp_cache[i]);
kfree(tmp_cache);
} else {
dev_err(codec->dev, "Failed to allocate temporary cache\n");
}
return 0;
}
#ifdef CONFIG_GPIOLIB
static inline struct wm8903_priv *gpio_to_wm8903(struct gpio_chip *chip)
{
return container_of(chip, struct wm8903_priv, gpio_chip);
}
static int wm8903_gpio_request(struct gpio_chip *chip, unsigned offset)
{
if (offset >= WM8903_NUM_GPIO)
return -EINVAL;
return 0;
}
static int wm8903_gpio_direction_in(struct gpio_chip *chip, unsigned offset)
{
struct wm8903_priv *wm8903 = gpio_to_wm8903(chip);
struct snd_soc_codec *codec = wm8903->codec;
unsigned int mask, val;
mask = WM8903_GP1_FN_MASK | WM8903_GP1_DIR_MASK;
val = (WM8903_GPn_FN_GPIO_INPUT << WM8903_GP1_FN_SHIFT) |
WM8903_GP1_DIR;
return snd_soc_update_bits(codec, WM8903_GPIO_CONTROL_1 + offset,
mask, val);
}
static int wm8903_gpio_get(struct gpio_chip *chip, unsigned offset)
{
struct wm8903_priv *wm8903 = gpio_to_wm8903(chip);
struct snd_soc_codec *codec = wm8903->codec;
int reg;
reg = snd_soc_read(codec, WM8903_GPIO_CONTROL_1 + offset);
return (reg & WM8903_GP1_LVL_MASK) >> WM8903_GP1_LVL_SHIFT;
}
static int wm8903_gpio_direction_out(struct gpio_chip *chip,
unsigned offset, int value)
{
struct wm8903_priv *wm8903 = gpio_to_wm8903(chip);
struct snd_soc_codec *codec = wm8903->codec;
unsigned int mask, val;
mask = WM8903_GP1_FN_MASK | WM8903_GP1_DIR_MASK | WM8903_GP1_LVL_MASK;
val = (WM8903_GPn_FN_GPIO_OUTPUT << WM8903_GP1_FN_SHIFT) |
(value << WM8903_GP2_LVL_SHIFT);
return snd_soc_update_bits(codec, WM8903_GPIO_CONTROL_1 + offset,
mask, val);
}
static void wm8903_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct wm8903_priv *wm8903 = gpio_to_wm8903(chip);
struct snd_soc_codec *codec = wm8903->codec;
snd_soc_update_bits(codec, WM8903_GPIO_CONTROL_1 + offset,
WM8903_GP1_LVL_MASK,
!!value << WM8903_GP1_LVL_SHIFT);
}
static struct gpio_chip wm8903_template_chip = {
.label = "wm8903",
.owner = THIS_MODULE,
.request = wm8903_gpio_request,
.direction_input = wm8903_gpio_direction_in,
.get = wm8903_gpio_get,
.direction_output = wm8903_gpio_direction_out,
.set = wm8903_gpio_set,
.can_sleep = 1,
};
static void wm8903_init_gpio(struct snd_soc_codec *codec)
{
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
struct wm8903_platform_data *pdata = dev_get_platdata(codec->dev);
int ret;
wm8903->gpio_chip = wm8903_template_chip;
wm8903->gpio_chip.ngpio = WM8903_NUM_GPIO;
wm8903->gpio_chip.dev = codec->dev;
if (pdata && pdata->gpio_base)
wm8903->gpio_chip.base = pdata->gpio_base;
else
wm8903->gpio_chip.base = -1;
ret = gpiochip_add(&wm8903->gpio_chip);
if (ret != 0)
dev_err(codec->dev, "Failed to add GPIOs: %d\n", ret);
}
static void wm8903_free_gpio(struct snd_soc_codec *codec)
{
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
int ret;
ret = gpiochip_remove(&wm8903->gpio_chip);
if (ret != 0)
dev_err(codec->dev, "Failed to remove GPIOs: %d\n", ret);
}
#else
static void wm8903_init_gpio(struct snd_soc_codec *codec)
{
}
static void wm8903_free_gpio(struct snd_soc_codec *codec)
{
}
#endif
static int wm8903_probe(struct snd_soc_codec *codec)
{
struct wm8903_platform_data *pdata = dev_get_platdata(codec->dev);
struct wm8903_priv *wm8903 = snd_soc_codec_get_drvdata(codec);
int ret, i;
int trigger, irq_pol;
u16 val;
wm8903->codec = codec;
ret = snd_soc_codec_set_cache_io(codec, 8, 16, SND_SOC_I2C);
if (ret != 0) {
dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
return ret;
}
val = snd_soc_read(codec, WM8903_SW_RESET_AND_ID);
if (val != wm8903_reg_defaults[WM8903_SW_RESET_AND_ID]) {
dev_err(codec->dev,
"Device with ID register %x is not a WM8903\n", val);
return -ENODEV;
}
val = snd_soc_read(codec, WM8903_REVISION_NUMBER);
dev_info(codec->dev, "WM8903 revision %c\n",
(val & WM8903_CHIP_REV_MASK) + 'A');
wm8903_reset(codec);
/* Set up GPIOs and microphone detection */
if (pdata) {
for (i = 0; i < ARRAY_SIZE(pdata->gpio_cfg); i++) {
if (pdata->gpio_cfg[i] == WM8903_GPIO_NO_CONFIG)
continue;
snd_soc_write(codec, WM8903_GPIO_CONTROL_1 + i,
pdata->gpio_cfg[i] & 0xffff);
}
snd_soc_write(codec, WM8903_MIC_BIAS_CONTROL_0,
pdata->micdet_cfg);
/* Microphone detection needs the WSEQ clock */
if (pdata->micdet_cfg)
snd_soc_update_bits(codec, WM8903_WRITE_SEQUENCER_0,
WM8903_WSEQ_ENA, WM8903_WSEQ_ENA);
wm8903->mic_delay = pdata->micdet_delay;
}
if (wm8903->irq) {
if (pdata && pdata->irq_active_low) {
trigger = IRQF_TRIGGER_LOW;
irq_pol = WM8903_IRQ_POL;
} else {
trigger = IRQF_TRIGGER_HIGH;
irq_pol = 0;
}
snd_soc_update_bits(codec, WM8903_INTERRUPT_CONTROL,
WM8903_IRQ_POL, irq_pol);
ret = request_threaded_irq(wm8903->irq, NULL, wm8903_irq,
trigger | IRQF_ONESHOT,
"wm8903", codec);
if (ret != 0) {
dev_err(codec->dev, "Failed to request IRQ: %d\n",
ret);
return ret;
}
/* Enable write sequencer interrupts */
snd_soc_update_bits(codec, WM8903_INTERRUPT_STATUS_1_MASK,
WM8903_IM_WSEQ_BUSY_EINT, 0);
}
/* power on device */
wm8903_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
/* Latch volume update bits */
val = snd_soc_read(codec, WM8903_ADC_DIGITAL_VOLUME_LEFT);
val |= WM8903_ADCVU;
snd_soc_write(codec, WM8903_ADC_DIGITAL_VOLUME_LEFT, val);
snd_soc_write(codec, WM8903_ADC_DIGITAL_VOLUME_RIGHT, val);
val = snd_soc_read(codec, WM8903_DAC_DIGITAL_VOLUME_LEFT);
val |= WM8903_DACVU;
snd_soc_write(codec, WM8903_DAC_DIGITAL_VOLUME_LEFT, val);
snd_soc_write(codec, WM8903_DAC_DIGITAL_VOLUME_RIGHT, val);
val = snd_soc_read(codec, WM8903_ANALOGUE_OUT1_LEFT);
val |= WM8903_HPOUTVU;
snd_soc_write(codec, WM8903_ANALOGUE_OUT1_LEFT, val);
snd_soc_write(codec, WM8903_ANALOGUE_OUT1_RIGHT, val);
val = snd_soc_read(codec, WM8903_ANALOGUE_OUT2_LEFT);
val |= WM8903_LINEOUTVU;
snd_soc_write(codec, WM8903_ANALOGUE_OUT2_LEFT, val);
snd_soc_write(codec, WM8903_ANALOGUE_OUT2_RIGHT, val);
val = snd_soc_read(codec, WM8903_ANALOGUE_OUT3_LEFT);
val |= WM8903_SPKVU;
snd_soc_write(codec, WM8903_ANALOGUE_OUT3_LEFT, val);
snd_soc_write(codec, WM8903_ANALOGUE_OUT3_RIGHT, val);
/* Enable DAC soft mute by default */
snd_soc_update_bits(codec, WM8903_DAC_DIGITAL_1,
WM8903_DAC_MUTEMODE | WM8903_DAC_MUTE,
WM8903_DAC_MUTEMODE | WM8903_DAC_MUTE);
snd_soc_add_controls(codec, wm8903_snd_controls,
ARRAY_SIZE(wm8903_snd_controls));
wm8903_add_widgets(codec);
wm8903_init_gpio(codec);
return ret;
}
/* power down chip */
static int wm8903_remove(struct snd_soc_codec *codec)
{
wm8903_free_gpio(codec);
wm8903_set_bias_level(codec, SND_SOC_BIAS_OFF);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_wm8903 = {
.probe = wm8903_probe,
.remove = wm8903_remove,
.suspend = wm8903_suspend,
.resume = wm8903_resume,
.set_bias_level = wm8903_set_bias_level,
.reg_cache_size = ARRAY_SIZE(wm8903_reg_defaults),
.reg_word_size = sizeof(u16),
.reg_cache_default = wm8903_reg_defaults,
.volatile_register = wm8903_volatile_register,
.seq_notifier = wm8903_seq_notifier,
};
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
static __devinit int wm8903_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct wm8903_priv *wm8903;
int ret;
wm8903 = kzalloc(sizeof(struct wm8903_priv), GFP_KERNEL);
if (wm8903 == NULL)
return -ENOMEM;
i2c_set_clientdata(i2c, wm8903);
wm8903->irq = i2c->irq;
ret = snd_soc_register_codec(&i2c->dev,
&soc_codec_dev_wm8903, &wm8903_dai, 1);
if (ret < 0)
kfree(wm8903);
return ret;
}
static __devexit int wm8903_i2c_remove(struct i2c_client *client)
{
snd_soc_unregister_codec(&client->dev);
kfree(i2c_get_clientdata(client));
return 0;
}
static const struct i2c_device_id wm8903_i2c_id[] = {
{ "wm8903", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, wm8903_i2c_id);
static struct i2c_driver wm8903_i2c_driver = {
.driver = {
.name = "wm8903",
.owner = THIS_MODULE,
},
.probe = wm8903_i2c_probe,
.remove = __devexit_p(wm8903_i2c_remove),
.id_table = wm8903_i2c_id,
};
#endif
static int __init wm8903_modinit(void)
{
int ret = 0;
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
ret = i2c_add_driver(&wm8903_i2c_driver);
if (ret != 0) {
printk(KERN_ERR "Failed to register wm8903 I2C driver: %d\n",
ret);
}
#endif
return ret;
}
module_init(wm8903_modinit);
static void __exit wm8903_exit(void)
{
#if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
i2c_del_driver(&wm8903_i2c_driver);
#endif
}
module_exit(wm8903_exit);
MODULE_DESCRIPTION("ASoC WM8903 driver");
MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.cm>");
MODULE_LICENSE("GPL");