kernel-fxtec-pro1x/drivers/media/video/cx88/cx88-core.c
Hans Verkuil 0e0809a588 V4L/DVB: videobuf: add queue argument to videobuf_waiton()
videobuf_waiton() must unlock and relock ext_lock if it has to wait.
For that to happen it needs the videobuf_queue pointer.

Don't attempt to unlock/relock q->ext_lock unless it was locked in the
first place.

vb->state has to be protected by a spinlock to be safe.

This patch is based on code from Mauro Carvalho Chehab <mchehab@redhat.com>.

[mchehab@redhat.com: add extra argument to a few missing places]
Signed-off-by: Hans Verkuil <hverkuil@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2010-10-21 01:06:14 -02:00

1126 lines
31 KiB
C

/*
*
* device driver for Conexant 2388x based TV cards
* driver core
*
* (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
*
* (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
* - Multituner support
* - video_ioctl2 conversion
* - PAL/M fixes
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/kmod.h>
#include <linux/sound.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <linux/mutex.h>
#include "cx88.h"
#include <media/v4l2-common.h>
#include <media/v4l2-ioctl.h>
MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
MODULE_LICENSE("GPL");
/* ------------------------------------------------------------------ */
static unsigned int core_debug;
module_param(core_debug,int,0644);
MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
static unsigned int nicam;
module_param(nicam,int,0644);
MODULE_PARM_DESC(nicam,"tv audio is nicam");
static unsigned int nocomb;
module_param(nocomb,int,0644);
MODULE_PARM_DESC(nocomb,"disable comb filter");
#define dprintk(level,fmt, arg...) if (core_debug >= level) \
printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
static unsigned int cx88_devcount;
static LIST_HEAD(cx88_devlist);
static DEFINE_MUTEX(devlist);
#define NO_SYNC_LINE (-1U)
/* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
generated _after_ lpi lines are transferred. */
static __le32* cx88_risc_field(__le32 *rp, struct scatterlist *sglist,
unsigned int offset, u32 sync_line,
unsigned int bpl, unsigned int padding,
unsigned int lines, unsigned int lpi)
{
struct scatterlist *sg;
unsigned int line,todo,sol;
/* sync instruction */
if (sync_line != NO_SYNC_LINE)
*(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
/* scan lines */
sg = sglist;
for (line = 0; line < lines; line++) {
while (offset && offset >= sg_dma_len(sg)) {
offset -= sg_dma_len(sg);
sg++;
}
if (lpi && line>0 && !(line % lpi))
sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
else
sol = RISC_SOL;
if (bpl <= sg_dma_len(sg)-offset) {
/* fits into current chunk */
*(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl);
*(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
offset+=bpl;
} else {
/* scanline needs to be split */
todo = bpl;
*(rp++)=cpu_to_le32(RISC_WRITE|sol|
(sg_dma_len(sg)-offset));
*(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
todo -= (sg_dma_len(sg)-offset);
offset = 0;
sg++;
while (todo > sg_dma_len(sg)) {
*(rp++)=cpu_to_le32(RISC_WRITE|
sg_dma_len(sg));
*(rp++)=cpu_to_le32(sg_dma_address(sg));
todo -= sg_dma_len(sg);
sg++;
}
*(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
*(rp++)=cpu_to_le32(sg_dma_address(sg));
offset += todo;
}
offset += padding;
}
return rp;
}
int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
struct scatterlist *sglist,
unsigned int top_offset, unsigned int bottom_offset,
unsigned int bpl, unsigned int padding, unsigned int lines)
{
u32 instructions,fields;
__le32 *rp;
int rc;
fields = 0;
if (UNSET != top_offset)
fields++;
if (UNSET != bottom_offset)
fields++;
/* estimate risc mem: worst case is one write per page border +
one write per scan line + syncs + jump (all 2 dwords). Padding
can cause next bpl to start close to a page border. First DMA
region may be smaller than PAGE_SIZE */
instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
instructions += 2;
if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
return rc;
/* write risc instructions */
rp = risc->cpu;
if (UNSET != top_offset)
rp = cx88_risc_field(rp, sglist, top_offset, 0,
bpl, padding, lines, 0);
if (UNSET != bottom_offset)
rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
bpl, padding, lines, 0);
/* save pointer to jmp instruction address */
risc->jmp = rp;
BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
return 0;
}
int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
struct scatterlist *sglist, unsigned int bpl,
unsigned int lines, unsigned int lpi)
{
u32 instructions;
__le32 *rp;
int rc;
/* estimate risc mem: worst case is one write per page border +
one write per scan line + syncs + jump (all 2 dwords). Here
there is no padding and no sync. First DMA region may be smaller
than PAGE_SIZE */
instructions = 1 + (bpl * lines) / PAGE_SIZE + lines;
instructions += 1;
if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
return rc;
/* write risc instructions */
rp = risc->cpu;
rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi);
/* save pointer to jmp instruction address */
risc->jmp = rp;
BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
return 0;
}
int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
u32 reg, u32 mask, u32 value)
{
__le32 *rp;
int rc;
if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
return rc;
/* write risc instructions */
rp = risc->cpu;
*(rp++) = cpu_to_le32(RISC_WRITECR | RISC_IRQ2 | RISC_IMM);
*(rp++) = cpu_to_le32(reg);
*(rp++) = cpu_to_le32(value);
*(rp++) = cpu_to_le32(mask);
*(rp++) = cpu_to_le32(RISC_JUMP);
*(rp++) = cpu_to_le32(risc->dma);
return 0;
}
void
cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
{
struct videobuf_dmabuf *dma=videobuf_to_dma(&buf->vb);
BUG_ON(in_interrupt());
videobuf_waiton(q, &buf->vb, 0, 0);
videobuf_dma_unmap(q->dev, dma);
videobuf_dma_free(dma);
btcx_riscmem_free(to_pci_dev(q->dev), &buf->risc);
buf->vb.state = VIDEOBUF_NEEDS_INIT;
}
/* ------------------------------------------------------------------ */
/* our SRAM memory layout */
/* we are going to put all thr risc programs into host memory, so we
* can use the whole SDRAM for the DMA fifos. To simplify things, we
* use a static memory layout. That surely will waste memory in case
* we don't use all DMA channels at the same time (which will be the
* case most of the time). But that still gives us enough FIFO space
* to be able to deal with insane long pci latencies ...
*
* FIFO space allocations:
* channel 21 (y video) - 10.0k
* channel 22 (u video) - 2.0k
* channel 23 (v video) - 2.0k
* channel 24 (vbi) - 4.0k
* channels 25+26 (audio) - 4.0k
* channel 28 (mpeg) - 4.0k
* channel 27 (audio rds)- 3.0k
* TOTAL = 29.0k
*
* Every channel has 160 bytes control data (64 bytes instruction
* queue and 6 CDT entries), which is close to 2k total.
*
* Address layout:
* 0x0000 - 0x03ff CMDs / reserved
* 0x0400 - 0x0bff instruction queues + CDs
* 0x0c00 - FIFOs
*/
const struct sram_channel const cx88_sram_channels[] = {
[SRAM_CH21] = {
.name = "video y / packed",
.cmds_start = 0x180040,
.ctrl_start = 0x180400,
.cdt = 0x180400 + 64,
.fifo_start = 0x180c00,
.fifo_size = 0x002800,
.ptr1_reg = MO_DMA21_PTR1,
.ptr2_reg = MO_DMA21_PTR2,
.cnt1_reg = MO_DMA21_CNT1,
.cnt2_reg = MO_DMA21_CNT2,
},
[SRAM_CH22] = {
.name = "video u",
.cmds_start = 0x180080,
.ctrl_start = 0x1804a0,
.cdt = 0x1804a0 + 64,
.fifo_start = 0x183400,
.fifo_size = 0x000800,
.ptr1_reg = MO_DMA22_PTR1,
.ptr2_reg = MO_DMA22_PTR2,
.cnt1_reg = MO_DMA22_CNT1,
.cnt2_reg = MO_DMA22_CNT2,
},
[SRAM_CH23] = {
.name = "video v",
.cmds_start = 0x1800c0,
.ctrl_start = 0x180540,
.cdt = 0x180540 + 64,
.fifo_start = 0x183c00,
.fifo_size = 0x000800,
.ptr1_reg = MO_DMA23_PTR1,
.ptr2_reg = MO_DMA23_PTR2,
.cnt1_reg = MO_DMA23_CNT1,
.cnt2_reg = MO_DMA23_CNT2,
},
[SRAM_CH24] = {
.name = "vbi",
.cmds_start = 0x180100,
.ctrl_start = 0x1805e0,
.cdt = 0x1805e0 + 64,
.fifo_start = 0x184400,
.fifo_size = 0x001000,
.ptr1_reg = MO_DMA24_PTR1,
.ptr2_reg = MO_DMA24_PTR2,
.cnt1_reg = MO_DMA24_CNT1,
.cnt2_reg = MO_DMA24_CNT2,
},
[SRAM_CH25] = {
.name = "audio from",
.cmds_start = 0x180140,
.ctrl_start = 0x180680,
.cdt = 0x180680 + 64,
.fifo_start = 0x185400,
.fifo_size = 0x001000,
.ptr1_reg = MO_DMA25_PTR1,
.ptr2_reg = MO_DMA25_PTR2,
.cnt1_reg = MO_DMA25_CNT1,
.cnt2_reg = MO_DMA25_CNT2,
},
[SRAM_CH26] = {
.name = "audio to",
.cmds_start = 0x180180,
.ctrl_start = 0x180720,
.cdt = 0x180680 + 64, /* same as audio IN */
.fifo_start = 0x185400, /* same as audio IN */
.fifo_size = 0x001000, /* same as audio IN */
.ptr1_reg = MO_DMA26_PTR1,
.ptr2_reg = MO_DMA26_PTR2,
.cnt1_reg = MO_DMA26_CNT1,
.cnt2_reg = MO_DMA26_CNT2,
},
[SRAM_CH28] = {
.name = "mpeg",
.cmds_start = 0x180200,
.ctrl_start = 0x1807C0,
.cdt = 0x1807C0 + 64,
.fifo_start = 0x186400,
.fifo_size = 0x001000,
.ptr1_reg = MO_DMA28_PTR1,
.ptr2_reg = MO_DMA28_PTR2,
.cnt1_reg = MO_DMA28_CNT1,
.cnt2_reg = MO_DMA28_CNT2,
},
[SRAM_CH27] = {
.name = "audio rds",
.cmds_start = 0x1801C0,
.ctrl_start = 0x180860,
.cdt = 0x180860 + 64,
.fifo_start = 0x187400,
.fifo_size = 0x000C00,
.ptr1_reg = MO_DMA27_PTR1,
.ptr2_reg = MO_DMA27_PTR2,
.cnt1_reg = MO_DMA27_CNT1,
.cnt2_reg = MO_DMA27_CNT2,
},
};
int cx88_sram_channel_setup(struct cx88_core *core,
const struct sram_channel *ch,
unsigned int bpl, u32 risc)
{
unsigned int i,lines;
u32 cdt;
bpl = (bpl + 7) & ~7; /* alignment */
cdt = ch->cdt;
lines = ch->fifo_size / bpl;
if (lines > 6)
lines = 6;
BUG_ON(lines < 2);
/* write CDT */
for (i = 0; i < lines; i++)
cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
/* write CMDS */
cx_write(ch->cmds_start + 0, risc);
cx_write(ch->cmds_start + 4, cdt);
cx_write(ch->cmds_start + 8, (lines*16) >> 3);
cx_write(ch->cmds_start + 12, ch->ctrl_start);
cx_write(ch->cmds_start + 16, 64 >> 2);
for (i = 20; i < 64; i += 4)
cx_write(ch->cmds_start + i, 0);
/* fill registers */
cx_write(ch->ptr1_reg, ch->fifo_start);
cx_write(ch->ptr2_reg, cdt);
cx_write(ch->cnt1_reg, (bpl >> 3) -1);
cx_write(ch->cnt2_reg, (lines*16) >> 3);
dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
return 0;
}
/* ------------------------------------------------------------------ */
/* debug helper code */
static int cx88_risc_decode(u32 risc)
{
static const char * const instr[16] = {
[ RISC_SYNC >> 28 ] = "sync",
[ RISC_WRITE >> 28 ] = "write",
[ RISC_WRITEC >> 28 ] = "writec",
[ RISC_READ >> 28 ] = "read",
[ RISC_READC >> 28 ] = "readc",
[ RISC_JUMP >> 28 ] = "jump",
[ RISC_SKIP >> 28 ] = "skip",
[ RISC_WRITERM >> 28 ] = "writerm",
[ RISC_WRITECM >> 28 ] = "writecm",
[ RISC_WRITECR >> 28 ] = "writecr",
};
static int const incr[16] = {
[ RISC_WRITE >> 28 ] = 2,
[ RISC_JUMP >> 28 ] = 2,
[ RISC_WRITERM >> 28 ] = 3,
[ RISC_WRITECM >> 28 ] = 3,
[ RISC_WRITECR >> 28 ] = 4,
};
static const char * const bits[] = {
"12", "13", "14", "resync",
"cnt0", "cnt1", "18", "19",
"20", "21", "22", "23",
"irq1", "irq2", "eol", "sol",
};
int i;
printk("0x%08x [ %s", risc,
instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
if (risc & (1 << (i + 12)))
printk(" %s",bits[i]);
printk(" count=%d ]\n", risc & 0xfff);
return incr[risc >> 28] ? incr[risc >> 28] : 1;
}
void cx88_sram_channel_dump(struct cx88_core *core,
const struct sram_channel *ch)
{
static const char * const name[] = {
"initial risc",
"cdt base",
"cdt size",
"iq base",
"iq size",
"risc pc",
"iq wr ptr",
"iq rd ptr",
"cdt current",
"pci target",
"line / byte",
};
u32 risc;
unsigned int i,j,n;
printk("%s: %s - dma channel status dump\n",
core->name,ch->name);
for (i = 0; i < ARRAY_SIZE(name); i++)
printk("%s: cmds: %-12s: 0x%08x\n",
core->name,name[i],
cx_read(ch->cmds_start + 4*i));
for (n = 1, i = 0; i < 4; i++) {
risc = cx_read(ch->cmds_start + 4 * (i+11));
printk("%s: risc%d: ", core->name, i);
if (--n)
printk("0x%08x [ arg #%d ]\n", risc, n);
else
n = cx88_risc_decode(risc);
}
for (i = 0; i < 16; i += n) {
risc = cx_read(ch->ctrl_start + 4 * i);
printk("%s: iq %x: ", core->name, i);
n = cx88_risc_decode(risc);
for (j = 1; j < n; j++) {
risc = cx_read(ch->ctrl_start + 4 * (i+j));
printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
core->name, i+j, risc, j);
}
}
printk("%s: fifo: 0x%08x -> 0x%x\n",
core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
printk("%s: ctrl: 0x%08x -> 0x%x\n",
core->name, ch->ctrl_start, ch->ctrl_start+6*16);
printk("%s: ptr1_reg: 0x%08x\n",
core->name,cx_read(ch->ptr1_reg));
printk("%s: ptr2_reg: 0x%08x\n",
core->name,cx_read(ch->ptr2_reg));
printk("%s: cnt1_reg: 0x%08x\n",
core->name,cx_read(ch->cnt1_reg));
printk("%s: cnt2_reg: 0x%08x\n",
core->name,cx_read(ch->cnt2_reg));
}
static const char *cx88_pci_irqs[32] = {
"vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
"src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
"brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
"i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
};
void cx88_print_irqbits(const char *name, const char *tag, const char *strings[],
int len, u32 bits, u32 mask)
{
unsigned int i;
printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
for (i = 0; i < len; i++) {
if (!(bits & (1 << i)))
continue;
if (strings[i])
printk(" %s", strings[i]);
else
printk(" %d", i);
if (!(mask & (1 << i)))
continue;
printk("*");
}
printk("\n");
}
/* ------------------------------------------------------------------ */
int cx88_core_irq(struct cx88_core *core, u32 status)
{
int handled = 0;
if (status & PCI_INT_IR_SMPINT) {
cx88_ir_irq(core);
handled++;
}
if (!handled)
cx88_print_irqbits(core->name, "irq pci",
cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
status, core->pci_irqmask);
return handled;
}
void cx88_wakeup(struct cx88_core *core,
struct cx88_dmaqueue *q, u32 count)
{
struct cx88_buffer *buf;
int bc;
for (bc = 0;; bc++) {
if (list_empty(&q->active))
break;
buf = list_entry(q->active.next,
struct cx88_buffer, vb.queue);
/* count comes from the hw and is is 16bit wide --
* this trick handles wrap-arounds correctly for
* up to 32767 buffers in flight... */
if ((s16) (count - buf->count) < 0)
break;
do_gettimeofday(&buf->vb.ts);
dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
count, buf->count);
buf->vb.state = VIDEOBUF_DONE;
list_del(&buf->vb.queue);
wake_up(&buf->vb.done);
}
if (list_empty(&q->active)) {
del_timer(&q->timeout);
} else {
mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
}
if (bc != 1)
dprintk(2, "%s: %d buffers handled (should be 1)\n",
__func__, bc);
}
void cx88_shutdown(struct cx88_core *core)
{
/* disable RISC controller + IRQs */
cx_write(MO_DEV_CNTRL2, 0);
/* stop dma transfers */
cx_write(MO_VID_DMACNTRL, 0x0);
cx_write(MO_AUD_DMACNTRL, 0x0);
cx_write(MO_TS_DMACNTRL, 0x0);
cx_write(MO_VIP_DMACNTRL, 0x0);
cx_write(MO_GPHST_DMACNTRL, 0x0);
/* stop interrupts */
cx_write(MO_PCI_INTMSK, 0x0);
cx_write(MO_VID_INTMSK, 0x0);
cx_write(MO_AUD_INTMSK, 0x0);
cx_write(MO_TS_INTMSK, 0x0);
cx_write(MO_VIP_INTMSK, 0x0);
cx_write(MO_GPHST_INTMSK, 0x0);
/* stop capturing */
cx_write(VID_CAPTURE_CONTROL, 0);
}
int cx88_reset(struct cx88_core *core)
{
dprintk(1,"%s\n",__func__);
cx88_shutdown(core);
/* clear irq status */
cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
/* wait a bit */
msleep(100);
/* init sram */
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27], 128, 0);
/* misc init ... */
cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
(1 << 12) | // agc gain
(1 << 11) | // adaptibe agc
(0 << 10) | // chroma agc
(0 << 9) | // ckillen
(7)));
/* setup image format */
cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
/* setup FIFO Thresholds */
cx_write(MO_PDMA_STHRSH, 0x0807);
cx_write(MO_PDMA_DTHRSH, 0x0807);
/* fixes flashing of image */
cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
cx_write(MO_AGC_BACK_VBI, 0x00E00555);
cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
/* Reset on-board parts */
cx_write(MO_SRST_IO, 0);
msleep(10);
cx_write(MO_SRST_IO, 1);
return 0;
}
/* ------------------------------------------------------------------ */
static unsigned int inline norm_swidth(v4l2_std_id norm)
{
return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
}
static unsigned int inline norm_hdelay(v4l2_std_id norm)
{
return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
}
static unsigned int inline norm_vdelay(v4l2_std_id norm)
{
return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
}
static unsigned int inline norm_fsc8(v4l2_std_id norm)
{
if (norm & V4L2_STD_PAL_M)
return 28604892; // 3.575611 MHz
if (norm & (V4L2_STD_PAL_Nc))
return 28656448; // 3.582056 MHz
if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
return 28636360; // 3.57954545 MHz +/- 10 Hz
/* SECAM have also different sub carrier for chroma,
but step_db and step_dr, at cx88_set_tvnorm already handles that.
The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
*/
return 35468950; // 4.43361875 MHz +/- 5 Hz
}
static unsigned int inline norm_htotal(v4l2_std_id norm)
{
unsigned int fsc4=norm_fsc8(norm)/2;
/* returns 4*FSC / vtotal / frames per seconds */
return (norm & V4L2_STD_625_50) ?
((fsc4+312)/625+12)/25 :
((fsc4+262)/525*1001+15000)/30000;
}
static unsigned int inline norm_vbipack(v4l2_std_id norm)
{
return (norm & V4L2_STD_625_50) ? 511 : 400;
}
int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
enum v4l2_field field)
{
unsigned int swidth = norm_swidth(core->tvnorm);
unsigned int sheight = norm_maxh(core->tvnorm);
u32 value;
dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
V4L2_FIELD_HAS_TOP(field) ? "T" : "",
V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
v4l2_norm_to_name(core->tvnorm));
if (!V4L2_FIELD_HAS_BOTH(field))
height *= 2;
// recalc H delay and scale registers
value = (width * norm_hdelay(core->tvnorm)) / swidth;
value &= 0x3fe;
cx_write(MO_HDELAY_EVEN, value);
cx_write(MO_HDELAY_ODD, value);
dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value,swidth);
value = (swidth * 4096 / width) - 4096;
cx_write(MO_HSCALE_EVEN, value);
cx_write(MO_HSCALE_ODD, value);
dprintk(1,"set_scale: hscale 0x%04x\n", value);
cx_write(MO_HACTIVE_EVEN, width);
cx_write(MO_HACTIVE_ODD, width);
dprintk(1,"set_scale: hactive 0x%04x\n", width);
// recalc V scale Register (delay is constant)
cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm));
dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm));
value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
cx_write(MO_VSCALE_EVEN, value);
cx_write(MO_VSCALE_ODD, value);
dprintk(1,"set_scale: vscale 0x%04x\n", value);
cx_write(MO_VACTIVE_EVEN, sheight);
cx_write(MO_VACTIVE_ODD, sheight);
dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
// setup filters
value = 0;
value |= (1 << 19); // CFILT (default)
if (core->tvnorm & V4L2_STD_SECAM) {
value |= (1 << 15);
value |= (1 << 16);
}
if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
value |= (1 << 13) | (1 << 5);
if (V4L2_FIELD_INTERLACED == field)
value |= (1 << 3); // VINT (interlaced vertical scaling)
if (width < 385)
value |= (1 << 0); // 3-tap interpolation
if (width < 193)
value |= (1 << 1); // 5-tap interpolation
if (nocomb)
value |= (3 << 5); // disable comb filter
cx_write(MO_FILTER_EVEN, value);
cx_write(MO_FILTER_ODD, value);
dprintk(1,"set_scale: filter 0x%04x\n", value);
return 0;
}
static const u32 xtal = 28636363;
static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
{
static const u32 pre[] = { 0, 0, 0, 3, 2, 1 };
u64 pll;
u32 reg;
int i;
if (prescale < 2)
prescale = 2;
if (prescale > 5)
prescale = 5;
pll = ofreq * 8 * prescale * (u64)(1 << 20);
do_div(pll,xtal);
reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
if (((reg >> 20) & 0x3f) < 14) {
printk("%s/0: pll out of range\n",core->name);
return -1;
}
dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
reg, cx_read(MO_PLL_REG), ofreq);
cx_write(MO_PLL_REG, reg);
for (i = 0; i < 100; i++) {
reg = cx_read(MO_DEVICE_STATUS);
if (reg & (1<<2)) {
dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
prescale,ofreq);
return 0;
}
dprintk(1,"pll not locked yet, waiting ...\n");
msleep(10);
}
dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
return -1;
}
int cx88_start_audio_dma(struct cx88_core *core)
{
/* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
int rds_bpl = cx88_sram_channels[SRAM_CH27].fifo_size/AUD_RDS_LINES;
/* If downstream RISC is enabled, bail out; ALSA is managing DMA */
if (cx_read(MO_AUD_DMACNTRL) & 0x10)
return 0;
/* setup fifo + format */
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27],
rds_bpl, 0);
cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
cx_write(MO_AUDR_LNGTH, rds_bpl); /* fifo bpl size */
/* enable Up, Down and Audio RDS fifo */
cx_write(MO_AUD_DMACNTRL, 0x0007);
return 0;
}
int cx88_stop_audio_dma(struct cx88_core *core)
{
/* If downstream RISC is enabled, bail out; ALSA is managing DMA */
if (cx_read(MO_AUD_DMACNTRL) & 0x10)
return 0;
/* stop dma */
cx_write(MO_AUD_DMACNTRL, 0x0000);
return 0;
}
static int set_tvaudio(struct cx88_core *core)
{
v4l2_std_id norm = core->tvnorm;
if (CX88_VMUX_TELEVISION != INPUT(core->input).type &&
CX88_VMUX_CABLE != INPUT(core->input).type)
return 0;
if (V4L2_STD_PAL_BG & norm) {
core->tvaudio = WW_BG;
} else if (V4L2_STD_PAL_DK & norm) {
core->tvaudio = WW_DK;
} else if (V4L2_STD_PAL_I & norm) {
core->tvaudio = WW_I;
} else if (V4L2_STD_SECAM_L & norm) {
core->tvaudio = WW_L;
} else if ((V4L2_STD_SECAM_B | V4L2_STD_SECAM_G | V4L2_STD_SECAM_H) & norm) {
core->tvaudio = WW_BG;
} else if (V4L2_STD_SECAM_DK & norm) {
core->tvaudio = WW_DK;
} else if ((V4L2_STD_NTSC_M & norm) ||
(V4L2_STD_PAL_M & norm)) {
core->tvaudio = WW_BTSC;
} else if (V4L2_STD_NTSC_M_JP & norm) {
core->tvaudio = WW_EIAJ;
} else {
printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
core->name, v4l2_norm_to_name(core->tvnorm));
core->tvaudio = WW_NONE;
return 0;
}
cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
cx88_set_tvaudio(core);
/* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
/*
This should be needed only on cx88-alsa. It seems that some cx88 chips have
bugs and does require DMA enabled for it to work.
*/
cx88_start_audio_dma(core);
return 0;
}
int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
{
u32 fsc8;
u32 adc_clock;
u32 vdec_clock;
u32 step_db,step_dr;
u64 tmp64;
u32 bdelay,agcdelay,htotal;
u32 cxiformat, cxoformat;
core->tvnorm = norm;
fsc8 = norm_fsc8(norm);
adc_clock = xtal;
vdec_clock = fsc8;
step_db = fsc8;
step_dr = fsc8;
if (norm & V4L2_STD_NTSC_M_JP) {
cxiformat = VideoFormatNTSCJapan;
cxoformat = 0x181f0008;
} else if (norm & V4L2_STD_NTSC_443) {
cxiformat = VideoFormatNTSC443;
cxoformat = 0x181f0008;
} else if (norm & V4L2_STD_PAL_M) {
cxiformat = VideoFormatPALM;
cxoformat = 0x1c1f0008;
} else if (norm & V4L2_STD_PAL_N) {
cxiformat = VideoFormatPALN;
cxoformat = 0x1c1f0008;
} else if (norm & V4L2_STD_PAL_Nc) {
cxiformat = VideoFormatPALNC;
cxoformat = 0x1c1f0008;
} else if (norm & V4L2_STD_PAL_60) {
cxiformat = VideoFormatPAL60;
cxoformat = 0x181f0008;
} else if (norm & V4L2_STD_NTSC) {
cxiformat = VideoFormatNTSC;
cxoformat = 0x181f0008;
} else if (norm & V4L2_STD_SECAM) {
step_db = 4250000 * 8;
step_dr = 4406250 * 8;
cxiformat = VideoFormatSECAM;
cxoformat = 0x181f0008;
} else { /* PAL */
cxiformat = VideoFormatPAL;
cxoformat = 0x181f0008;
}
dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
step_db, step_dr);
set_pll(core,2,vdec_clock);
dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
/* Chroma AGC must be disabled if SECAM is used, we enable it
by default on PAL and NTSC */
cx_andor(MO_INPUT_FORMAT, 0x40f,
norm & V4L2_STD_SECAM ? cxiformat : cxiformat | 0x400);
// FIXME: as-is from DScaler
dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
cxoformat, cx_read(MO_OUTPUT_FORMAT));
cx_write(MO_OUTPUT_FORMAT, cxoformat);
// MO_SCONV_REG = adc clock / video dec clock * 2^17
tmp64 = adc_clock * (u64)(1 << 17);
do_div(tmp64, vdec_clock);
dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
(u32)tmp64, cx_read(MO_SCONV_REG));
cx_write(MO_SCONV_REG, (u32)tmp64);
// MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
tmp64 = step_db * (u64)(1 << 22);
do_div(tmp64, vdec_clock);
dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
(u32)tmp64, cx_read(MO_SUB_STEP));
cx_write(MO_SUB_STEP, (u32)tmp64);
// MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
tmp64 = step_dr * (u64)(1 << 22);
do_div(tmp64, vdec_clock);
dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
(u32)tmp64, cx_read(MO_SUB_STEP_DR));
cx_write(MO_SUB_STEP_DR, (u32)tmp64);
// bdelay + agcdelay
bdelay = vdec_clock * 65 / 20000000 + 21;
agcdelay = vdec_clock * 68 / 20000000 + 15;
dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
(bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
// htotal
tmp64 = norm_htotal(norm) * (u64)vdec_clock;
do_div(tmp64, fsc8);
htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
htotal, cx_read(MO_HTOTAL), (u32)tmp64);
cx_write(MO_HTOTAL, htotal);
// vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
// the effective vbi offset ~244 samples, the same as the Bt8x8
cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
// this is needed as well to set all tvnorm parameter
cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
// audio
set_tvaudio(core);
// tell i2c chips
call_all(core, core, s_std, norm);
// done
return 0;
}
/* ------------------------------------------------------------------ */
struct video_device *cx88_vdev_init(struct cx88_core *core,
struct pci_dev *pci,
const struct video_device *template_,
const char *type)
{
struct video_device *vfd;
vfd = video_device_alloc();
if (NULL == vfd)
return NULL;
*vfd = *template_;
vfd->v4l2_dev = &core->v4l2_dev;
vfd->parent = &pci->dev;
vfd->release = video_device_release;
snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
core->name, type, core->board.name);
return vfd;
}
struct cx88_core* cx88_core_get(struct pci_dev *pci)
{
struct cx88_core *core;
mutex_lock(&devlist);
list_for_each_entry(core, &cx88_devlist, devlist) {
if (pci->bus->number != core->pci_bus)
continue;
if (PCI_SLOT(pci->devfn) != core->pci_slot)
continue;
if (0 != cx88_get_resources(core, pci)) {
mutex_unlock(&devlist);
return NULL;
}
atomic_inc(&core->refcount);
mutex_unlock(&devlist);
return core;
}
core = cx88_core_create(pci, cx88_devcount);
if (NULL != core) {
cx88_devcount++;
list_add_tail(&core->devlist, &cx88_devlist);
}
mutex_unlock(&devlist);
return core;
}
void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
{
release_mem_region(pci_resource_start(pci,0),
pci_resource_len(pci,0));
if (!atomic_dec_and_test(&core->refcount))
return;
mutex_lock(&devlist);
cx88_ir_fini(core);
if (0 == core->i2c_rc) {
if (core->i2c_rtc)
i2c_unregister_device(core->i2c_rtc);
i2c_del_adapter(&core->i2c_adap);
}
list_del(&core->devlist);
iounmap(core->lmmio);
cx88_devcount--;
mutex_unlock(&devlist);
v4l2_device_unregister(&core->v4l2_dev);
kfree(core);
}
/* ------------------------------------------------------------------ */
EXPORT_SYMBOL(cx88_print_irqbits);
EXPORT_SYMBOL(cx88_core_irq);
EXPORT_SYMBOL(cx88_wakeup);
EXPORT_SYMBOL(cx88_reset);
EXPORT_SYMBOL(cx88_shutdown);
EXPORT_SYMBOL(cx88_risc_buffer);
EXPORT_SYMBOL(cx88_risc_databuffer);
EXPORT_SYMBOL(cx88_risc_stopper);
EXPORT_SYMBOL(cx88_free_buffer);
EXPORT_SYMBOL(cx88_sram_channels);
EXPORT_SYMBOL(cx88_sram_channel_setup);
EXPORT_SYMBOL(cx88_sram_channel_dump);
EXPORT_SYMBOL(cx88_set_tvnorm);
EXPORT_SYMBOL(cx88_set_scale);
EXPORT_SYMBOL(cx88_vdev_init);
EXPORT_SYMBOL(cx88_core_get);
EXPORT_SYMBOL(cx88_core_put);
EXPORT_SYMBOL(cx88_ir_start);
EXPORT_SYMBOL(cx88_ir_stop);
/*
* Local variables:
* c-basic-offset: 8
* End:
* kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
*/