kernel-fxtec-pro1x/crypto/pcrypt.c
Steffen Klassert 5068c7a883 crypto: pcrypt - Add pcrypt crypto parallelization wrapper
This patch adds a parallel crypto template that takes a crypto
algorithm and converts it to process the crypto transforms in
parallel. For the moment only aead algorithms are supported.

Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2010-01-07 15:57:19 +11:00

445 lines
11 KiB
C

/*
* pcrypt - Parallel crypto wrapper.
*
* Copyright (C) 2009 secunet Security Networks AG
* Copyright (C) 2009 Steffen Klassert <steffen.klassert@secunet.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <crypto/algapi.h>
#include <crypto/internal/aead.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <crypto/pcrypt.h>
static struct padata_instance *pcrypt_enc_padata;
static struct padata_instance *pcrypt_dec_padata;
static struct workqueue_struct *encwq;
static struct workqueue_struct *decwq;
struct pcrypt_instance_ctx {
struct crypto_spawn spawn;
unsigned int tfm_count;
};
struct pcrypt_aead_ctx {
struct crypto_aead *child;
unsigned int cb_cpu;
};
static int pcrypt_do_parallel(struct padata_priv *padata, unsigned int *cb_cpu,
struct padata_instance *pinst)
{
unsigned int cpu_index, cpu, i;
cpu = *cb_cpu;
if (cpumask_test_cpu(cpu, cpu_active_mask))
goto out;
cpu_index = cpu % cpumask_weight(cpu_active_mask);
cpu = cpumask_first(cpu_active_mask);
for (i = 0; i < cpu_index; i++)
cpu = cpumask_next(cpu, cpu_active_mask);
*cb_cpu = cpu;
out:
return padata_do_parallel(pinst, padata, cpu);
}
static int pcrypt_aead_setkey(struct crypto_aead *parent,
const u8 *key, unsigned int keylen)
{
struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(parent);
return crypto_aead_setkey(ctx->child, key, keylen);
}
static int pcrypt_aead_setauthsize(struct crypto_aead *parent,
unsigned int authsize)
{
struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(parent);
return crypto_aead_setauthsize(ctx->child, authsize);
}
static void pcrypt_aead_serial(struct padata_priv *padata)
{
struct pcrypt_request *preq = pcrypt_padata_request(padata);
struct aead_request *req = pcrypt_request_ctx(preq);
aead_request_complete(req->base.data, padata->info);
}
static void pcrypt_aead_giv_serial(struct padata_priv *padata)
{
struct pcrypt_request *preq = pcrypt_padata_request(padata);
struct aead_givcrypt_request *req = pcrypt_request_ctx(preq);
aead_request_complete(req->areq.base.data, padata->info);
}
static void pcrypt_aead_done(struct crypto_async_request *areq, int err)
{
struct aead_request *req = areq->data;
struct pcrypt_request *preq = aead_request_ctx(req);
struct padata_priv *padata = pcrypt_request_padata(preq);
padata->info = err;
req->base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
padata_do_serial(padata);
}
static void pcrypt_aead_enc(struct padata_priv *padata)
{
struct pcrypt_request *preq = pcrypt_padata_request(padata);
struct aead_request *req = pcrypt_request_ctx(preq);
padata->info = crypto_aead_encrypt(req);
if (padata->info)
return;
padata_do_serial(padata);
}
static int pcrypt_aead_encrypt(struct aead_request *req)
{
int err;
struct pcrypt_request *preq = aead_request_ctx(req);
struct aead_request *creq = pcrypt_request_ctx(preq);
struct padata_priv *padata = pcrypt_request_padata(preq);
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(aead);
u32 flags = aead_request_flags(req);
memset(padata, 0, sizeof(struct padata_priv));
padata->parallel = pcrypt_aead_enc;
padata->serial = pcrypt_aead_serial;
aead_request_set_tfm(creq, ctx->child);
aead_request_set_callback(creq, flags & ~CRYPTO_TFM_REQ_MAY_SLEEP,
pcrypt_aead_done, req);
aead_request_set_crypt(creq, req->src, req->dst,
req->cryptlen, req->iv);
aead_request_set_assoc(creq, req->assoc, req->assoclen);
err = pcrypt_do_parallel(padata, &ctx->cb_cpu, pcrypt_enc_padata);
if (err)
return err;
else
err = crypto_aead_encrypt(creq);
return err;
}
static void pcrypt_aead_dec(struct padata_priv *padata)
{
struct pcrypt_request *preq = pcrypt_padata_request(padata);
struct aead_request *req = pcrypt_request_ctx(preq);
padata->info = crypto_aead_decrypt(req);
if (padata->info)
return;
padata_do_serial(padata);
}
static int pcrypt_aead_decrypt(struct aead_request *req)
{
int err;
struct pcrypt_request *preq = aead_request_ctx(req);
struct aead_request *creq = pcrypt_request_ctx(preq);
struct padata_priv *padata = pcrypt_request_padata(preq);
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(aead);
u32 flags = aead_request_flags(req);
memset(padata, 0, sizeof(struct padata_priv));
padata->parallel = pcrypt_aead_dec;
padata->serial = pcrypt_aead_serial;
aead_request_set_tfm(creq, ctx->child);
aead_request_set_callback(creq, flags & ~CRYPTO_TFM_REQ_MAY_SLEEP,
pcrypt_aead_done, req);
aead_request_set_crypt(creq, req->src, req->dst,
req->cryptlen, req->iv);
aead_request_set_assoc(creq, req->assoc, req->assoclen);
err = pcrypt_do_parallel(padata, &ctx->cb_cpu, pcrypt_dec_padata);
if (err)
return err;
else
err = crypto_aead_decrypt(creq);
return err;
}
static void pcrypt_aead_givenc(struct padata_priv *padata)
{
struct pcrypt_request *preq = pcrypt_padata_request(padata);
struct aead_givcrypt_request *req = pcrypt_request_ctx(preq);
padata->info = crypto_aead_givencrypt(req);
if (padata->info)
return;
padata_do_serial(padata);
}
static int pcrypt_aead_givencrypt(struct aead_givcrypt_request *req)
{
int err;
struct aead_request *areq = &req->areq;
struct pcrypt_request *preq = aead_request_ctx(areq);
struct aead_givcrypt_request *creq = pcrypt_request_ctx(preq);
struct padata_priv *padata = pcrypt_request_padata(preq);
struct crypto_aead *aead = aead_givcrypt_reqtfm(req);
struct pcrypt_aead_ctx *ctx = crypto_aead_ctx(aead);
u32 flags = aead_request_flags(areq);
memset(padata, 0, sizeof(struct padata_priv));
padata->parallel = pcrypt_aead_givenc;
padata->serial = pcrypt_aead_giv_serial;
aead_givcrypt_set_tfm(creq, ctx->child);
aead_givcrypt_set_callback(creq, flags & ~CRYPTO_TFM_REQ_MAY_SLEEP,
pcrypt_aead_done, areq);
aead_givcrypt_set_crypt(creq, areq->src, areq->dst,
areq->cryptlen, areq->iv);
aead_givcrypt_set_assoc(creq, areq->assoc, areq->assoclen);
aead_givcrypt_set_giv(creq, req->giv, req->seq);
err = pcrypt_do_parallel(padata, &ctx->cb_cpu, pcrypt_enc_padata);
if (err)
return err;
else
err = crypto_aead_givencrypt(creq);
return err;
}
static int pcrypt_aead_init_tfm(struct crypto_tfm *tfm)
{
int cpu, cpu_index;
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct pcrypt_instance_ctx *ictx = crypto_instance_ctx(inst);
struct pcrypt_aead_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_aead *cipher;
ictx->tfm_count++;
cpu_index = ictx->tfm_count % cpumask_weight(cpu_active_mask);
ctx->cb_cpu = cpumask_first(cpu_active_mask);
for (cpu = 0; cpu < cpu_index; cpu++)
ctx->cb_cpu = cpumask_next(ctx->cb_cpu, cpu_active_mask);
cipher = crypto_spawn_aead(crypto_instance_ctx(inst));
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = cipher;
tfm->crt_aead.reqsize = sizeof(struct pcrypt_request)
+ sizeof(struct aead_givcrypt_request)
+ crypto_aead_reqsize(cipher);
return 0;
}
static void pcrypt_aead_exit_tfm(struct crypto_tfm *tfm)
{
struct pcrypt_aead_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_aead(ctx->child);
}
static struct crypto_instance *pcrypt_alloc_instance(struct crypto_alg *alg)
{
struct crypto_instance *inst;
struct pcrypt_instance_ctx *ctx;
int err;
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
if (!inst) {
inst = ERR_PTR(-ENOMEM);
goto out;
}
err = -ENAMETOOLONG;
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"pcrypt(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto out_free_inst;
memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
ctx = crypto_instance_ctx(inst);
err = crypto_init_spawn(&ctx->spawn, alg, inst,
CRYPTO_ALG_TYPE_MASK);
if (err)
goto out_free_inst;
inst->alg.cra_priority = alg->cra_priority + 100;
inst->alg.cra_blocksize = alg->cra_blocksize;
inst->alg.cra_alignmask = alg->cra_alignmask;
out:
return inst;
out_free_inst:
kfree(inst);
inst = ERR_PTR(err);
goto out;
}
static struct crypto_instance *pcrypt_alloc_aead(struct rtattr **tb)
{
struct crypto_instance *inst;
struct crypto_alg *alg;
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
alg = crypto_get_attr_alg(tb, algt->type,
(algt->mask & CRYPTO_ALG_TYPE_MASK));
if (IS_ERR(alg))
return ERR_CAST(alg);
inst = pcrypt_alloc_instance(alg);
if (IS_ERR(inst))
goto out_put_alg;
inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
inst->alg.cra_type = &crypto_aead_type;
inst->alg.cra_aead.ivsize = alg->cra_aead.ivsize;
inst->alg.cra_aead.geniv = alg->cra_aead.geniv;
inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize;
inst->alg.cra_ctxsize = sizeof(struct pcrypt_aead_ctx);
inst->alg.cra_init = pcrypt_aead_init_tfm;
inst->alg.cra_exit = pcrypt_aead_exit_tfm;
inst->alg.cra_aead.setkey = pcrypt_aead_setkey;
inst->alg.cra_aead.setauthsize = pcrypt_aead_setauthsize;
inst->alg.cra_aead.encrypt = pcrypt_aead_encrypt;
inst->alg.cra_aead.decrypt = pcrypt_aead_decrypt;
inst->alg.cra_aead.givencrypt = pcrypt_aead_givencrypt;
out_put_alg:
crypto_mod_put(alg);
return inst;
}
static struct crypto_instance *pcrypt_alloc(struct rtattr **tb)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return ERR_CAST(algt);
switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_AEAD:
return pcrypt_alloc_aead(tb);
}
return ERR_PTR(-EINVAL);
}
static void pcrypt_free(struct crypto_instance *inst)
{
struct pcrypt_instance_ctx *ctx = crypto_instance_ctx(inst);
crypto_drop_spawn(&ctx->spawn);
kfree(inst);
}
static struct crypto_template pcrypt_tmpl = {
.name = "pcrypt",
.alloc = pcrypt_alloc,
.free = pcrypt_free,
.module = THIS_MODULE,
};
static int __init pcrypt_init(void)
{
encwq = create_workqueue("pencrypt");
if (!encwq)
goto err;
decwq = create_workqueue("pdecrypt");
if (!decwq)
goto err_destroy_encwq;
pcrypt_enc_padata = padata_alloc(cpu_possible_mask, encwq);
if (!pcrypt_enc_padata)
goto err_destroy_decwq;
pcrypt_dec_padata = padata_alloc(cpu_possible_mask, decwq);
if (!pcrypt_dec_padata)
goto err_free_padata;
padata_start(pcrypt_enc_padata);
padata_start(pcrypt_dec_padata);
return crypto_register_template(&pcrypt_tmpl);
err_free_padata:
padata_free(pcrypt_enc_padata);
err_destroy_decwq:
destroy_workqueue(decwq);
err_destroy_encwq:
destroy_workqueue(encwq);
err:
return -ENOMEM;
}
static void __exit pcrypt_exit(void)
{
padata_stop(pcrypt_enc_padata);
padata_stop(pcrypt_dec_padata);
destroy_workqueue(encwq);
destroy_workqueue(decwq);
padata_free(pcrypt_enc_padata);
padata_free(pcrypt_dec_padata);
crypto_unregister_template(&pcrypt_tmpl);
}
module_init(pcrypt_init);
module_exit(pcrypt_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steffen Klassert <steffen.klassert@secunet.com>");
MODULE_DESCRIPTION("Parallel crypto wrapper");