kernel-fxtec-pro1x/crypto/echainiv.c
Herbert Xu 9fcc704dfd crypto: echainiv - Only hold RNG during initialisation
This patch changes the RNG allocation so that we only hold a
reference to the RNG during initialisation.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-06-22 15:49:29 +08:00

312 lines
7.3 KiB
C

/*
* echainiv: Encrypted Chain IV Generator
*
* This generator generates an IV based on a sequence number by xoring it
* with a salt and then encrypting it with the same key as used to encrypt
* the plain text. This algorithm requires that the block size be equal
* to the IV size. It is mainly useful for CBC.
*
* This generator can only be used by algorithms where authentication
* is performed after encryption (i.e., authenc).
*
* Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/internal/geniv.h>
#include <crypto/null.h>
#include <crypto/rng.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#define MAX_IV_SIZE 16
struct echainiv_ctx {
/* aead_geniv_ctx must be first the element */
struct aead_geniv_ctx geniv;
struct crypto_blkcipher *null;
u8 salt[] __attribute__ ((aligned(__alignof__(u32))));
};
static DEFINE_PER_CPU(u32 [MAX_IV_SIZE / sizeof(u32)], echainiv_iv);
/* We don't care if we get preempted and read/write IVs from the next CPU. */
static void echainiv_read_iv(u8 *dst, unsigned size)
{
u32 *a = (u32 *)dst;
u32 __percpu *b = echainiv_iv;
for (; size >= 4; size -= 4) {
*a++ = this_cpu_read(*b);
b++;
}
}
static void echainiv_write_iv(const u8 *src, unsigned size)
{
const u32 *a = (const u32 *)src;
u32 __percpu *b = echainiv_iv;
for (; size >= 4; size -= 4) {
this_cpu_write(*b, *a);
a++;
b++;
}
}
static void echainiv_encrypt_complete2(struct aead_request *req, int err)
{
struct aead_request *subreq = aead_request_ctx(req);
struct crypto_aead *geniv;
unsigned int ivsize;
if (err == -EINPROGRESS)
return;
if (err)
goto out;
geniv = crypto_aead_reqtfm(req);
ivsize = crypto_aead_ivsize(geniv);
echainiv_write_iv(subreq->iv, ivsize);
if (req->iv != subreq->iv)
memcpy(req->iv, subreq->iv, ivsize);
out:
if (req->iv != subreq->iv)
kzfree(subreq->iv);
}
static void echainiv_encrypt_complete(struct crypto_async_request *base,
int err)
{
struct aead_request *req = base->data;
echainiv_encrypt_complete2(req, err);
aead_request_complete(req, err);
}
static int echainiv_encrypt(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
struct aead_request *subreq = aead_request_ctx(req);
crypto_completion_t compl;
void *data;
u8 *info;
unsigned int ivsize = crypto_aead_ivsize(geniv);
int err;
if (req->cryptlen < ivsize)
return -EINVAL;
aead_request_set_tfm(subreq, ctx->geniv.child);
compl = echainiv_encrypt_complete;
data = req;
info = req->iv;
if (req->src != req->dst) {
struct blkcipher_desc desc = {
.tfm = ctx->null,
};
err = crypto_blkcipher_encrypt(
&desc, req->dst, req->src,
req->assoclen + req->cryptlen);
if (err)
return err;
}
if (unlikely(!IS_ALIGNED((unsigned long)info,
crypto_aead_alignmask(geniv) + 1))) {
info = kmalloc(ivsize, req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
GFP_ATOMIC);
if (!info)
return -ENOMEM;
memcpy(info, req->iv, ivsize);
}
aead_request_set_callback(subreq, req->base.flags, compl, data);
aead_request_set_crypt(subreq, req->dst, req->dst,
req->cryptlen - ivsize, info);
aead_request_set_ad(subreq, req->assoclen + ivsize);
crypto_xor(info, ctx->salt, ivsize);
scatterwalk_map_and_copy(info, req->dst, req->assoclen, ivsize, 1);
echainiv_read_iv(info, ivsize);
err = crypto_aead_encrypt(subreq);
echainiv_encrypt_complete2(req, err);
return err;
}
static int echainiv_decrypt(struct aead_request *req)
{
struct crypto_aead *geniv = crypto_aead_reqtfm(req);
struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
struct aead_request *subreq = aead_request_ctx(req);
crypto_completion_t compl;
void *data;
unsigned int ivsize = crypto_aead_ivsize(geniv);
if (req->cryptlen < ivsize + crypto_aead_authsize(geniv))
return -EINVAL;
aead_request_set_tfm(subreq, ctx->geniv.child);
compl = req->base.complete;
data = req->base.data;
aead_request_set_callback(subreq, req->base.flags, compl, data);
aead_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen - ivsize, req->iv);
aead_request_set_ad(subreq, req->assoclen + ivsize);
scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);
if (req->src != req->dst)
scatterwalk_map_and_copy(req->iv, req->dst,
req->assoclen, ivsize, 1);
return crypto_aead_decrypt(subreq);
}
static int echainiv_init(struct crypto_tfm *tfm)
{
struct crypto_aead *geniv = __crypto_aead_cast(tfm);
struct echainiv_ctx *ctx = crypto_aead_ctx(geniv);
int err;
spin_lock_init(&ctx->geniv.lock);
crypto_aead_set_reqsize(geniv, sizeof(struct aead_request));
err = crypto_get_default_rng();
if (err)
goto out;
err = crypto_rng_get_bytes(crypto_default_rng, ctx->salt,
crypto_aead_ivsize(geniv));
crypto_put_default_rng();
if (err)
goto out;
ctx->null = crypto_get_default_null_skcipher();
err = PTR_ERR(ctx->null);
if (IS_ERR(ctx->null))
goto out;
err = aead_geniv_init(tfm);
if (err)
goto drop_null;
ctx->geniv.child = geniv->child;
geniv->child = geniv;
out:
return err;
drop_null:
crypto_put_default_null_skcipher();
goto out;
}
static void echainiv_exit(struct crypto_tfm *tfm)
{
struct echainiv_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_aead(ctx->geniv.child);
crypto_put_default_null_skcipher();
}
static int echainiv_aead_create(struct crypto_template *tmpl,
struct rtattr **tb)
{
struct aead_instance *inst;
struct crypto_aead_spawn *spawn;
struct aead_alg *alg;
int err;
inst = aead_geniv_alloc(tmpl, tb, 0, 0);
if (IS_ERR(inst))
return PTR_ERR(inst);
spawn = aead_instance_ctx(inst);
alg = crypto_spawn_aead_alg(spawn);
if (alg->base.cra_aead.encrypt)
goto done;
err = -EINVAL;
if (inst->alg.ivsize & (sizeof(u32) - 1) ||
inst->alg.ivsize > MAX_IV_SIZE)
goto free_inst;
inst->alg.encrypt = echainiv_encrypt;
inst->alg.decrypt = echainiv_decrypt;
inst->alg.base.cra_init = echainiv_init;
inst->alg.base.cra_exit = echainiv_exit;
inst->alg.base.cra_alignmask |= __alignof__(u32) - 1;
inst->alg.base.cra_ctxsize = sizeof(struct echainiv_ctx);
inst->alg.base.cra_ctxsize += inst->alg.ivsize;
done:
err = aead_register_instance(tmpl, inst);
if (err)
goto free_inst;
out:
return err;
free_inst:
aead_geniv_free(inst);
goto out;
}
static void echainiv_free(struct crypto_instance *inst)
{
aead_geniv_free(aead_instance(inst));
}
static struct crypto_template echainiv_tmpl = {
.name = "echainiv",
.create = echainiv_aead_create,
.free = echainiv_free,
.module = THIS_MODULE,
};
static int __init echainiv_module_init(void)
{
return crypto_register_template(&echainiv_tmpl);
}
static void __exit echainiv_module_exit(void)
{
crypto_unregister_template(&echainiv_tmpl);
}
module_init(echainiv_module_init);
module_exit(echainiv_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Encrypted Chain IV Generator");
MODULE_ALIAS_CRYPTO("echainiv");