kernel-fxtec-pro1x/drivers/video/tridentfb.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

1294 lines
31 KiB
C

/*
* Frame buffer driver for Trident Blade and Image series
*
* Copyright 2001,2002 - Jani Monoses <jani@iv.ro>
*
*
* CREDITS:(in order of appearance)
* skeletonfb.c by Geert Uytterhoeven and other fb code in drivers/video
* Special thanks ;) to Mattia Crivellini <tia@mclink.it>
* much inspired by the XFree86 4.x Trident driver sources by Alan Hourihane
* the FreeVGA project
* Francesco Salvestrini <salvestrini@users.sf.net> XP support,code,suggestions
* TODO:
* timing value tweaking so it looks good on every monitor in every mode
* TGUI acceleration
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <video/trident.h>
#define VERSION "0.7.8-NEWAPI"
struct tridentfb_par {
int vclk; //in MHz
void __iomem * io_virt; //iospace virtual memory address
};
static unsigned char eng_oper; //engine operation...
static struct fb_ops tridentfb_ops;
static struct tridentfb_par default_par;
/* FIXME:kmalloc these 3 instead */
static struct fb_info fb_info;
static u32 pseudo_pal[16];
static struct fb_var_screeninfo default_var;
static struct fb_fix_screeninfo tridentfb_fix = {
.id = "Trident",
.type = FB_TYPE_PACKED_PIXELS,
.ypanstep = 1,
.visual = FB_VISUAL_PSEUDOCOLOR,
.accel = FB_ACCEL_NONE,
};
static int chip_id;
static int defaultaccel;
static int displaytype;
/* defaults which are normally overriden by user values */
/* video mode */
static char * mode = "640x480";
static int bpp = 8;
static int noaccel;
static int center;
static int stretch;
static int fp;
static int crt;
static int memsize;
static int memdiff;
static int nativex;
module_param(mode, charp, 0);
module_param(bpp, int, 0);
module_param(center, int, 0);
module_param(stretch, int, 0);
module_param(noaccel, int, 0);
module_param(memsize, int, 0);
module_param(memdiff, int, 0);
module_param(nativex, int, 0);
module_param(fp, int, 0);
module_param(crt, int, 0);
static int chip3D;
static int chipcyber;
static int is3Dchip(int id)
{
return ((id == BLADE3D) || (id == CYBERBLADEE4) ||
(id == CYBERBLADEi7) || (id == CYBERBLADEi7D) ||
(id == CYBER9397) || (id == CYBER9397DVD) ||
(id == CYBER9520) || (id == CYBER9525DVD) ||
(id == IMAGE975) || (id == IMAGE985) ||
(id == CYBERBLADEi1) || (id == CYBERBLADEi1D) ||
(id == CYBERBLADEAi1) || (id == CYBERBLADEAi1D) ||
(id == CYBERBLADEXPm8) || (id == CYBERBLADEXPm16) ||
(id == CYBERBLADEXPAi1));
}
static int iscyber(int id)
{
switch (id) {
case CYBER9388:
case CYBER9382:
case CYBER9385:
case CYBER9397:
case CYBER9397DVD:
case CYBER9520:
case CYBER9525DVD:
case CYBERBLADEE4:
case CYBERBLADEi7D:
case CYBERBLADEi1:
case CYBERBLADEi1D:
case CYBERBLADEAi1:
case CYBERBLADEAi1D:
case CYBERBLADEXPAi1:
return 1;
case CYBER9320:
case TGUI9660:
case IMAGE975:
case IMAGE985:
case BLADE3D:
case CYBERBLADEi7: /* VIA MPV4 integrated version */
default:
/* case CYBERBLDAEXPm8: Strange */
/* case CYBERBLDAEXPm16: Strange */
return 0;
}
}
#define CRT 0x3D0 //CRTC registers offset for color display
#ifndef TRIDENT_MMIO
#define TRIDENT_MMIO 1
#endif
#if TRIDENT_MMIO
#define t_outb(val,reg) writeb(val,((struct tridentfb_par *)(fb_info.par))->io_virt + reg)
#define t_inb(reg) readb(((struct tridentfb_par*)(fb_info.par))->io_virt + reg)
#else
#define t_outb(val,reg) outb(val,reg)
#define t_inb(reg) inb(reg)
#endif
static struct accel_switch {
void (*init_accel)(int,int);
void (*wait_engine)(void);
void (*fill_rect)(__u32,__u32,__u32,__u32,__u32,__u32);
void (*copy_rect)(__u32,__u32,__u32,__u32,__u32,__u32);
} *acc;
#define writemmr(r,v) writel(v, ((struct tridentfb_par *)fb_info.par)->io_virt + r)
#define readmmr(r) readl(((struct tridentfb_par *)fb_info.par)->io_virt + r)
/*
* Blade specific acceleration.
*/
#define point(x,y) ((y)<<16|(x))
#define STA 0x2120
#define CMD 0x2144
#define ROP 0x2148
#define CLR 0x2160
#define SR1 0x2100
#define SR2 0x2104
#define DR1 0x2108
#define DR2 0x210C
#define ROP_S 0xCC
static void blade_init_accel(int pitch,int bpp)
{
int v1 = (pitch>>3)<<20;
int tmp = 0,v2;
switch (bpp) {
case 8:tmp = 0;break;
case 15:tmp = 5;break;
case 16:tmp = 1;break;
case 24:
case 32:tmp = 2;break;
}
v2 = v1 | (tmp<<29);
writemmr(0x21C0,v2);
writemmr(0x21C4,v2);
writemmr(0x21B8,v2);
writemmr(0x21BC,v2);
writemmr(0x21D0,v1);
writemmr(0x21D4,v1);
writemmr(0x21C8,v1);
writemmr(0x21CC,v1);
writemmr(0x216C,0);
}
static void blade_wait_engine(void)
{
while(readmmr(STA) & 0xFA800000);
}
static void blade_fill_rect(__u32 x,__u32 y,__u32 w,__u32 h,__u32 c,__u32 rop)
{
writemmr(CLR,c);
writemmr(ROP,rop ? 0x66:ROP_S);
writemmr(CMD,0x20000000|1<<19|1<<4|2<<2);
writemmr(DR1,point(x,y));
writemmr(DR2,point(x+w-1,y+h-1));
}
static void blade_copy_rect(__u32 x1,__u32 y1,__u32 x2,__u32 y2,__u32 w,__u32 h)
{
__u32 s1,s2,d1,d2;
int direction = 2;
s1 = point(x1,y1);
s2 = point(x1+w-1,y1+h-1);
d1 = point(x2,y2);
d2 = point(x2+w-1,y2+h-1);
if ((y1 > y2) || ((y1 == y2) && (x1 > x2)))
direction = 0;
writemmr(ROP,ROP_S);
writemmr(CMD,0xE0000000|1<<19|1<<4|1<<2|direction);
writemmr(SR1,direction?s2:s1);
writemmr(SR2,direction?s1:s2);
writemmr(DR1,direction?d2:d1);
writemmr(DR2,direction?d1:d2);
}
static struct accel_switch accel_blade = {
blade_init_accel,
blade_wait_engine,
blade_fill_rect,
blade_copy_rect,
};
/*
* BladeXP specific acceleration functions
*/
#define ROP_P 0xF0
#define masked_point(x,y) ((y & 0xffff)<<16|(x & 0xffff))
static void xp_init_accel(int pitch,int bpp)
{
int tmp = 0,v1;
unsigned char x = 0;
switch (bpp) {
case 8: x = 0; break;
case 16: x = 1; break;
case 24: x = 3; break;
case 32: x = 2; break;
}
switch (pitch << (bpp >> 3)) {
case 8192:
case 512: x |= 0x00; break;
case 1024: x |= 0x04; break;
case 2048: x |= 0x08; break;
case 4096: x |= 0x0C; break;
}
t_outb(x,0x2125);
eng_oper = x | 0x40;
switch (bpp) {
case 8: tmp = 18; break;
case 15:
case 16: tmp = 19; break;
case 24:
case 32: tmp = 20; break;
}
v1 = pitch << tmp;
writemmr(0x2154,v1);
writemmr(0x2150,v1);
t_outb(3,0x2126);
}
static void xp_wait_engine(void)
{
int busy;
int count, timeout;
count = 0;
timeout = 0;
for (;;) {
busy = t_inb(STA) & 0x80;
if (busy != 0x80)
return;
count++;
if (count == 10000000) {
/* Timeout */
count = 9990000;
timeout++;
if (timeout == 8) {
/* Reset engine */
t_outb(0x00, 0x2120);
return;
}
}
}
}
static void xp_fill_rect(__u32 x,__u32 y,__u32 w,__u32 h,__u32 c,__u32 rop)
{
writemmr(0x2127,ROP_P);
writemmr(0x2158,c);
writemmr(0x2128,0x4000);
writemmr(0x2140,masked_point(h,w));
writemmr(0x2138,masked_point(y,x));
t_outb(0x01,0x2124);
t_outb(eng_oper,0x2125);
}
static void xp_copy_rect(__u32 x1,__u32 y1,__u32 x2,__u32 y2,__u32 w,__u32 h)
{
int direction;
__u32 x1_tmp, x2_tmp, y1_tmp, y2_tmp;
direction = 0x0004;
if ((x1 < x2) && (y1 == y2)) {
direction |= 0x0200;
x1_tmp = x1 + w - 1;
x2_tmp = x2 + w - 1;
} else {
x1_tmp = x1;
x2_tmp = x2;
}
if (y1 < y2) {
direction |= 0x0100;
y1_tmp = y1 + h - 1;
y2_tmp = y2 + h - 1;
} else {
y1_tmp = y1;
y2_tmp = y2;
}
writemmr(0x2128,direction);
t_outb(ROP_S,0x2127);
writemmr(0x213C,masked_point(y1_tmp,x1_tmp));
writemmr(0x2138,masked_point(y2_tmp,x2_tmp));
writemmr(0x2140,masked_point(h,w));
t_outb(0x01,0x2124);
}
static struct accel_switch accel_xp = {
xp_init_accel,
xp_wait_engine,
xp_fill_rect,
xp_copy_rect,
};
/*
* Image specific acceleration functions
*/
static void image_init_accel(int pitch,int bpp)
{
int tmp = 0;
switch (bpp) {
case 8:tmp = 0;break;
case 15:tmp = 5;break;
case 16:tmp = 1;break;
case 24:
case 32:tmp = 2;break;
}
writemmr(0x2120, 0xF0000000);
writemmr(0x2120, 0x40000000|tmp);
writemmr(0x2120, 0x80000000);
writemmr(0x2144, 0x00000000);
writemmr(0x2148, 0x00000000);
writemmr(0x2150, 0x00000000);
writemmr(0x2154, 0x00000000);
writemmr(0x2120, 0x60000000|(pitch<<16) |pitch);
writemmr(0x216C, 0x00000000);
writemmr(0x2170, 0x00000000);
writemmr(0x217C, 0x00000000);
writemmr(0x2120, 0x10000000);
writemmr(0x2130, (2047 << 16) | 2047);
}
static void image_wait_engine(void)
{
while(readmmr(0x2164) & 0xF0000000);
}
static void image_fill_rect(__u32 x, __u32 y, __u32 w, __u32 h, __u32 c, __u32 rop)
{
writemmr(0x2120,0x80000000);
writemmr(0x2120,0x90000000|ROP_S);
writemmr(0x2144,c);
writemmr(DR1,point(x,y));
writemmr(DR2,point(x+w-1,y+h-1));
writemmr(0x2124,0x80000000|3<<22|1<<10|1<<9);
}
static void image_copy_rect(__u32 x1,__u32 y1,__u32 x2,__u32 y2,__u32 w,__u32 h)
{
__u32 s1,s2,d1,d2;
int direction = 2;
s1 = point(x1,y1);
s2 = point(x1+w-1,y1+h-1);
d1 = point(x2,y2);
d2 = point(x2+w-1,y2+h-1);
if ((y1 > y2) || ((y1 == y2) && (x1 >x2)))
direction = 0;
writemmr(0x2120,0x80000000);
writemmr(0x2120,0x90000000|ROP_S);
writemmr(SR1,direction?s2:s1);
writemmr(SR2,direction?s1:s2);
writemmr(DR1,direction?d2:d1);
writemmr(DR2,direction?d1:d2);
writemmr(0x2124,0x80000000|1<<22|1<<10|1<<7|direction);
}
static struct accel_switch accel_image = {
image_init_accel,
image_wait_engine,
image_fill_rect,
image_copy_rect,
};
/*
* Accel functions called by the upper layers
*/
#ifdef CONFIG_FB_TRIDENT_ACCEL
static void tridentfb_fillrect(struct fb_info * info, const struct fb_fillrect *fr)
{
int bpp = info->var.bits_per_pixel;
int col;
switch (bpp) {
default:
case 8: col = fr->color;
break;
case 16: col = ((u32 *)(info->pseudo_palette))[fr->color];
break;
case 32: col = ((u32 *)(info->pseudo_palette))[fr->color];
break;
}
acc->fill_rect(fr->dx, fr->dy, fr->width, fr->height, col, fr->rop);
acc->wait_engine();
}
static void tridentfb_copyarea(struct fb_info *info, const struct fb_copyarea *ca)
{
acc->copy_rect(ca->sx,ca->sy,ca->dx,ca->dy,ca->width,ca->height);
acc->wait_engine();
}
#else /* !CONFIG_FB_TRIDENT_ACCEL */
#define tridentfb_fillrect cfb_fillrect
#define tridentfb_copyarea cfb_copyarea
#endif /* CONFIG_FB_TRIDENT_ACCEL */
/*
* Hardware access functions
*/
static inline unsigned char read3X4(int reg)
{
struct tridentfb_par * par = (struct tridentfb_par *)fb_info.par;
writeb(reg, par->io_virt + CRT + 4);
return readb( par->io_virt + CRT + 5);
}
static inline void write3X4(int reg, unsigned char val)
{
struct tridentfb_par * par = (struct tridentfb_par *)fb_info.par;
writeb(reg, par->io_virt + CRT + 4);
writeb(val, par->io_virt + CRT + 5);
}
static inline unsigned char read3C4(int reg)
{
t_outb(reg, 0x3C4);
return t_inb(0x3C5);
}
static inline void write3C4(int reg, unsigned char val)
{
t_outb(reg, 0x3C4);
t_outb(val, 0x3C5);
}
static inline unsigned char read3CE(int reg)
{
t_outb(reg, 0x3CE);
return t_inb(0x3CF);
}
static inline void writeAttr(int reg, unsigned char val)
{
readb(((struct tridentfb_par *)fb_info.par)->io_virt + CRT + 0x0A); //flip-flop to index
t_outb(reg, 0x3C0);
t_outb(val, 0x3C0);
}
static inline void write3CE(int reg, unsigned char val)
{
t_outb(reg, 0x3CE);
t_outb(val, 0x3CF);
}
static inline void enable_mmio(void)
{
/* Goto New Mode */
outb(0x0B, 0x3C4);
inb(0x3C5);
/* Unprotect registers */
outb(NewMode1, 0x3C4);
outb(0x80, 0x3C5);
/* Enable MMIO */
outb(PCIReg, 0x3D4);
outb(inb(0x3D5) | 0x01, 0x3D5);
}
#define crtc_unlock() write3X4(CRTVSyncEnd, read3X4(CRTVSyncEnd) & 0x7F)
/* Return flat panel's maximum x resolution */
static int __init get_nativex(void)
{
int x,y,tmp;
if (nativex)
return nativex;
tmp = (read3CE(VertStretch) >> 4) & 3;
switch (tmp) {
case 0: x = 1280; y = 1024; break;
case 2: x = 1024; y = 768; break;
case 3: x = 800; y = 600; break;
case 4: x = 1400; y = 1050; break;
case 1:
default:x = 640; y = 480; break;
}
output("%dx%d flat panel found\n", x, y);
return x;
}
/* Set pitch */
static void set_lwidth(int width)
{
write3X4(Offset, width & 0xFF);
write3X4(AddColReg, (read3X4(AddColReg) & 0xCF) | ((width & 0x300) >>4));
}
/* For resolutions smaller than FP resolution stretch */
static void screen_stretch(void)
{
if (chip_id != CYBERBLADEXPAi1)
write3CE(BiosReg,0);
else
write3CE(BiosReg,8);
write3CE(VertStretch,(read3CE(VertStretch) & 0x7C) | 1);
write3CE(HorStretch,(read3CE(HorStretch) & 0x7C) | 1);
}
/* For resolutions smaller than FP resolution center */
static void screen_center(void)
{
write3CE(VertStretch,(read3CE(VertStretch) & 0x7C) | 0x80);
write3CE(HorStretch,(read3CE(HorStretch) & 0x7C) | 0x80);
}
/* Address of first shown pixel in display memory */
static void set_screen_start(int base)
{
write3X4(StartAddrLow, base & 0xFF);
write3X4(StartAddrHigh, (base & 0xFF00) >> 8);
write3X4(CRTCModuleTest, (read3X4(CRTCModuleTest) & 0xDF) | ((base & 0x10000) >> 11));
write3X4(CRTHiOrd, (read3X4(CRTHiOrd) & 0xF8) | ((base & 0xE0000) >> 17));
}
/* Use 20.12 fixed-point for NTSC value and frequency calculation */
#define calc_freq(n,m,k) ( ((unsigned long)0xE517 * (n+8) / ((m+2)*(1<<k))) >> 12 )
/* Set dotclock frequency */
static void set_vclk(int freq)
{
int m,n,k;
int f,fi,d,di;
unsigned char lo=0,hi=0;
d = 20;
for(k = 2;k>=0;k--)
for(m = 0;m<63;m++)
for(n = 0;n<128;n++) {
fi = calc_freq(n,m,k);
if ((di = abs(fi - freq)) < d) {
d = di;
f = fi;
lo = n;
hi = (k<<6) | m;
}
}
if (chip3D) {
write3C4(ClockHigh,hi);
write3C4(ClockLow,lo);
} else {
outb(lo,0x43C8);
outb(hi,0x43C9);
}
debug("VCLK = %X %X\n",hi,lo);
}
/* Set number of lines for flat panels*/
static void set_number_of_lines(int lines)
{
int tmp = read3CE(CyberEnhance) & 0x8F;
if (lines > 1024)
tmp |= 0x50;
else if (lines > 768)
tmp |= 0x30;
else if (lines > 600)
tmp |= 0x20;
else if (lines > 480)
tmp |= 0x10;
write3CE(CyberEnhance, tmp);
}
/*
* If we see that FP is active we assume we have one.
* Otherwise we have a CRT display.User can override.
*/
static unsigned int __init get_displaytype(void)
{
if (fp)
return DISPLAY_FP;
if (crt || !chipcyber)
return DISPLAY_CRT;
return (read3CE(FPConfig) & 0x10)?DISPLAY_FP:DISPLAY_CRT;
}
/* Try detecting the video memory size */
static unsigned int __init get_memsize(void)
{
unsigned char tmp, tmp2;
unsigned int k;
/* If memory size provided by user */
if (memsize)
k = memsize * Kb;
else
switch (chip_id) {
case CYBER9525DVD: k = 2560 * Kb; break;
default:
tmp = read3X4(SPR) & 0x0F;
switch (tmp) {
case 0x01: k = 512; break;
case 0x02: k = 6 * Mb; break; /* XP */
case 0x03: k = 1 * Mb; break;
case 0x04: k = 8 * Mb; break;
case 0x06: k = 10 * Mb; break; /* XP */
case 0x07: k = 2 * Mb; break;
case 0x08: k = 12 * Mb; break; /* XP */
case 0x0A: k = 14 * Mb; break; /* XP */
case 0x0C: k = 16 * Mb; break; /* XP */
case 0x0E: /* XP */
tmp2 = read3C4(0xC1);
switch (tmp2) {
case 0x00: k = 20 * Mb; break;
case 0x01: k = 24 * Mb; break;
case 0x10: k = 28 * Mb; break;
case 0x11: k = 32 * Mb; break;
default: k = 1 * Mb; break;
}
break;
case 0x0F: k = 4 * Mb; break;
default: k = 1 * Mb;
}
}
k -= memdiff * Kb;
output("framebuffer size = %d Kb\n", k/Kb);
return k;
}
/* See if we can handle the video mode described in var */
static int tridentfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
int bpp = var->bits_per_pixel;
debug("enter\n");
/* check color depth */
if (bpp == 24 )
bpp = var->bits_per_pixel = 32;
/* check whether resolution fits on panel and in memory*/
if (flatpanel && nativex && var->xres > nativex)
return -EINVAL;
if (var->xres * var->yres_virtual * bpp/8 > info->fix.smem_len)
return -EINVAL;
switch (bpp) {
case 8:
var->red.offset = 0;
var->green.offset = 0;
var->blue.offset = 0;
var->red.length = 6;
var->green.length = 6;
var->blue.length = 6;
break;
case 16:
var->red.offset = 11;
var->green.offset = 5;
var->blue.offset = 0;
var->red.length = 5;
var->green.length = 6;
var->blue.length = 5;
break;
case 32:
var->red.offset = 16;
var->green.offset = 8;
var->blue.offset = 0;
var->red.length = 8;
var->green.length = 8;
var->blue.length = 8;
break;
default:
return -EINVAL;
}
debug("exit\n");
return 0;
}
/* Pan the display */
static int tridentfb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
unsigned int offset;
debug("enter\n");
offset = (var->xoffset + (var->yoffset * var->xres))
* var->bits_per_pixel/32;
info->var.xoffset = var->xoffset;
info->var.yoffset = var->yoffset;
set_screen_start(offset);
debug("exit\n");
return 0;
}
#define shadowmode_on() write3CE(CyberControl,read3CE(CyberControl) | 0x81)
#define shadowmode_off() write3CE(CyberControl,read3CE(CyberControl) & 0x7E)
/* Set the hardware to the requested video mode */
static int tridentfb_set_par(struct fb_info *info)
{
struct tridentfb_par * par = (struct tridentfb_par *)(info->par);
u32 htotal,hdispend,hsyncstart,hsyncend,hblankstart,hblankend,
vtotal,vdispend,vsyncstart,vsyncend,vblankstart,vblankend;
struct fb_var_screeninfo *var = &info->var;
int bpp = var->bits_per_pixel;
unsigned char tmp;
debug("enter\n");
htotal = (var->xres + var->left_margin + var->right_margin + var->hsync_len)/8 - 10;
hdispend = var->xres/8 - 1;
hsyncstart = (var->xres + var->right_margin)/8;
hsyncend = var->hsync_len/8;
hblankstart = hdispend + 1;
hblankend = htotal + 5;
vtotal = var->yres + var->upper_margin + var->lower_margin + var->vsync_len - 2;
vdispend = var->yres - 1;
vsyncstart = var->yres + var->lower_margin;
vsyncend = var->vsync_len;
vblankstart = var->yres;
vblankend = vtotal + 2;
enable_mmio();
crtc_unlock();
write3CE(CyberControl,8);
if (flatpanel && var->xres < nativex) {
/*
* on flat panels with native size larger
* than requested resolution decide whether
* we stretch or center
*/
t_outb(0xEB,0x3C2);
shadowmode_on();
if (center)
screen_center();
else if (stretch)
screen_stretch();
} else {
t_outb(0x2B,0x3C2);
write3CE(CyberControl,8);
}
/* vertical timing values */
write3X4(CRTVTotal, vtotal & 0xFF);
write3X4(CRTVDispEnd, vdispend & 0xFF);
write3X4(CRTVSyncStart, vsyncstart & 0xFF);
write3X4(CRTVSyncEnd, (vsyncend & 0x0F));
write3X4(CRTVBlankStart, vblankstart & 0xFF);
write3X4(CRTVBlankEnd, 0/*p->vblankend & 0xFF*/);
/* horizontal timing values */
write3X4(CRTHTotal, htotal & 0xFF);
write3X4(CRTHDispEnd, hdispend & 0xFF);
write3X4(CRTHSyncStart, hsyncstart & 0xFF);
write3X4(CRTHSyncEnd, (hsyncend & 0x1F) | ((hblankend & 0x20)<<2));
write3X4(CRTHBlankStart, hblankstart & 0xFF);
write3X4(CRTHBlankEnd, 0/*(p->hblankend & 0x1F)*/);
/* higher bits of vertical timing values */
tmp = 0x10;
if (vtotal & 0x100) tmp |= 0x01;
if (vdispend & 0x100) tmp |= 0x02;
if (vsyncstart & 0x100) tmp |= 0x04;
if (vblankstart & 0x100) tmp |= 0x08;
if (vtotal & 0x200) tmp |= 0x20;
if (vdispend & 0x200) tmp |= 0x40;
if (vsyncstart & 0x200) tmp |= 0x80;
write3X4(CRTOverflow, tmp);
tmp = read3X4(CRTHiOrd) | 0x08; //line compare bit 10
if (vtotal & 0x400) tmp |= 0x80;
if (vblankstart & 0x400) tmp |= 0x40;
if (vsyncstart & 0x400) tmp |= 0x20;
if (vdispend & 0x400) tmp |= 0x10;
write3X4(CRTHiOrd, tmp);
tmp = 0;
if (htotal & 0x800) tmp |= 0x800 >> 11;
if (hblankstart & 0x800) tmp |= 0x800 >> 7;
write3X4(HorizOverflow, tmp);
tmp = 0x40;
if (vblankstart & 0x200) tmp |= 0x20;
//FIXME if (info->var.vmode & FB_VMODE_DOUBLE) tmp |= 0x80; //double scan for 200 line modes
write3X4(CRTMaxScanLine, tmp);
write3X4(CRTLineCompare,0xFF);
write3X4(CRTPRowScan,0);
write3X4(CRTModeControl,0xC3);
write3X4(LinearAddReg,0x20); //enable linear addressing
tmp = (info->var.vmode & FB_VMODE_INTERLACED) ? 0x84:0x80;
write3X4(CRTCModuleTest,tmp); //enable access extended memory
write3X4(GraphEngReg, 0x80); //enable GE for text acceleration
// if (info->var.accel_flags & FB_ACCELF_TEXT)
//FIXME acc->init_accel(info->var.xres,bpp);
switch (bpp) {
case 8: tmp = 0x00; break;
case 16: tmp = 0x05; break;
case 24: tmp = 0x29; break;
case 32: tmp = 0x09;
}
write3X4(PixelBusReg, tmp);
tmp = 0x10;
if (chipcyber)
tmp |= 0x20;
write3X4(DRAMControl, tmp); //both IO,linear enable
write3X4(InterfaceSel, read3X4(InterfaceSel) | 0x40);
write3X4(Performance,0x20);
write3X4(PCIReg,0x07); //MMIO & PCI read and write burst enable
/* convert from picoseconds to MHz */
par->vclk = 1000000/info->var.pixclock;
if (bpp == 32)
par->vclk *=2;
set_vclk(par->vclk);
write3C4(0,3);
write3C4(1,1); //set char clock 8 dots wide
write3C4(2,0x0F); //enable 4 maps because needed in chain4 mode
write3C4(3,0);
write3C4(4,0x0E); //memory mode enable bitmaps ??
write3CE(MiscExtFunc,(bpp==32)?0x1A:0x12); //divide clock by 2 if 32bpp
//chain4 mode display and CPU path
write3CE(0x5,0x40); //no CGA compat,allow 256 col
write3CE(0x6,0x05); //graphics mode
write3CE(0x7,0x0F); //planes?
if (chip_id == CYBERBLADEXPAi1) {
/* This fixes snow-effect in 32 bpp */
write3X4(CRTHSyncStart,0x84);
}
writeAttr(0x10,0x41); //graphics mode and support 256 color modes
writeAttr(0x12,0x0F); //planes
writeAttr(0x13,0); //horizontal pel panning
//colors
for(tmp = 0;tmp < 0x10;tmp++)
writeAttr(tmp,tmp);
readb(par->io_virt + CRT + 0x0A); //flip-flop to index
t_outb(0x20, 0x3C0); //enable attr
switch (bpp) {
case 8: tmp = 0;break; //256 colors
case 15: tmp = 0x10;break;
case 16: tmp = 0x30;break; //hicolor
case 24: //truecolor
case 32: tmp = 0xD0;break;
}
t_inb(0x3C8);
t_inb(0x3C6);
t_inb(0x3C6);
t_inb(0x3C6);
t_inb(0x3C6);
t_outb(tmp,0x3C6);
t_inb(0x3C8);
if (flatpanel)
set_number_of_lines(info->var.yres);
set_lwidth(info->var.xres * bpp/(4*16));
info->fix.visual = (bpp == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
info->fix.line_length = info->var.xres * (bpp >> 3);
info->cmap.len = (bpp == 8) ? 256: 16;
debug("exit\n");
return 0;
}
/* Set one color register */
static int tridentfb_setcolreg(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp,
struct fb_info *info)
{
int bpp = info->var.bits_per_pixel;
if (regno >= info->cmap.len)
return 1;
if (bpp==8) {
t_outb(0xFF,0x3C6);
t_outb(regno,0x3C8);
t_outb(red>>10,0x3C9);
t_outb(green>>10,0x3C9);
t_outb(blue>>10,0x3C9);
} else
if (bpp == 16) /* RGB 565 */
((u32*)info->pseudo_palette)[regno] = (red & 0xF800) |
((green & 0xFC00) >> 5) | ((blue & 0xF800) >> 11);
else
if (bpp == 32) /* ARGB 8888 */
((u32*)info->pseudo_palette)[regno] =
((transp & 0xFF00) <<16) |
((red & 0xFF00) << 8) |
((green & 0xFF00)) |
((blue & 0xFF00)>>8);
// debug("exit\n");
return 0;
}
/* Try blanking the screen.For flat panels it does nothing */
static int tridentfb_blank(int blank_mode, struct fb_info *info)
{
unsigned char PMCont,DPMSCont;
debug("enter\n");
if (flatpanel)
return 0;
t_outb(0x04,0x83C8); /* Read DPMS Control */
PMCont = t_inb(0x83C6) & 0xFC;
DPMSCont = read3CE(PowerStatus) & 0xFC;
switch (blank_mode)
{
case FB_BLANK_UNBLANK:
/* Screen: On, HSync: On, VSync: On */
case FB_BLANK_NORMAL:
/* Screen: Off, HSync: On, VSync: On */
PMCont |= 0x03;
DPMSCont |= 0x00;
break;
case FB_BLANK_HSYNC_SUSPEND:
/* Screen: Off, HSync: Off, VSync: On */
PMCont |= 0x02;
DPMSCont |= 0x01;
break;
case FB_BLANK_VSYNC_SUSPEND:
/* Screen: Off, HSync: On, VSync: Off */
PMCont |= 0x02;
DPMSCont |= 0x02;
break;
case FB_BLANK_POWERDOWN:
/* Screen: Off, HSync: Off, VSync: Off */
PMCont |= 0x00;
DPMSCont |= 0x03;
break;
}
write3CE(PowerStatus,DPMSCont);
t_outb(4,0x83C8);
t_outb(PMCont,0x83C6);
debug("exit\n");
/* let fbcon do a softblank for us */
return (blank_mode == FB_BLANK_NORMAL) ? 1 : 0;
}
static int __devinit trident_pci_probe(struct pci_dev * dev, const struct pci_device_id * id)
{
int err;
unsigned char revision;
err = pci_enable_device(dev);
if (err)
return err;
chip_id = id->device;
/* If PCI id is 0x9660 then further detect chip type */
if (chip_id == TGUI9660) {
outb(RevisionID,0x3C4);
revision = inb(0x3C5);
switch (revision) {
case 0x22:
case 0x23: chip_id = CYBER9397;break;
case 0x2A: chip_id = CYBER9397DVD;break;
case 0x30:
case 0x33:
case 0x34:
case 0x35:
case 0x38:
case 0x3A:
case 0xB3: chip_id = CYBER9385;break;
case 0x40 ... 0x43: chip_id = CYBER9382;break;
case 0x4A: chip_id = CYBER9388;break;
default:break;
}
}
chip3D = is3Dchip(chip_id);
chipcyber = iscyber(chip_id);
if (is_xp(chip_id)) {
acc = &accel_xp;
} else
if (is_blade(chip_id)) {
acc = &accel_blade;
} else {
acc = &accel_image;
}
/* acceleration is on by default for 3D chips */
defaultaccel = chip3D && !noaccel;
fb_info.par = &default_par;
/* setup MMIO region */
tridentfb_fix.mmio_start = pci_resource_start(dev,1);
tridentfb_fix.mmio_len = chip3D ? 0x20000:0x10000;
if (!request_mem_region(tridentfb_fix.mmio_start, tridentfb_fix.mmio_len, "tridentfb")) {
debug("request_region failed!\n");
return -1;
}
default_par.io_virt = ioremap_nocache(tridentfb_fix.mmio_start, tridentfb_fix.mmio_len);
if (!default_par.io_virt) {
release_region(tridentfb_fix.mmio_start, tridentfb_fix.mmio_len);
debug("ioremap failed\n");
return -1;
}
enable_mmio();
/* setup framebuffer memory */
tridentfb_fix.smem_start = pci_resource_start(dev,0);
tridentfb_fix.smem_len = get_memsize();
if (!request_mem_region(tridentfb_fix.smem_start, tridentfb_fix.smem_len, "tridentfb")) {
debug("request_mem_region failed!\n");
return -1;
}
fb_info.screen_base = ioremap_nocache(tridentfb_fix.smem_start,
tridentfb_fix.smem_len);
if (!fb_info.screen_base) {
release_mem_region(tridentfb_fix.smem_start, tridentfb_fix.smem_len);
debug("ioremap failed\n");
return -1;
}
output("%s board found\n", pci_name(dev));
#if 0
output("Trident board found : mem = %X,io = %X, mem_v = %X, io_v = %X\n",
tridentfb_fix.smem_start, tridentfb_fix.mmio_start, fb_info.screen_base, default_par.io_virt);
#endif
displaytype = get_displaytype();
if(flatpanel)
nativex = get_nativex();
fb_info.fix = tridentfb_fix;
fb_info.fbops = &tridentfb_ops;
fb_info.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
#ifdef CONFIG_FB_TRIDENT_ACCEL
fb_info.flags |= FBINFO_HWACCEL_COPYAREA | FBINFO_HWACCEL_FILLRECT;
#endif
fb_info.pseudo_palette = pseudo_pal;
if (!fb_find_mode(&default_var,&fb_info,mode,NULL,0,NULL,bpp))
return -EINVAL;
fb_alloc_cmap(&fb_info.cmap,256,0);
if (defaultaccel && acc)
default_var.accel_flags |= FB_ACCELF_TEXT;
else
default_var.accel_flags &= ~FB_ACCELF_TEXT;
default_var.activate |= FB_ACTIVATE_NOW;
fb_info.var = default_var;
fb_info.device = &dev->dev;
if (register_framebuffer(&fb_info) < 0) {
printk(KERN_ERR "tridentfb: could not register Trident framebuffer\n");
return -EINVAL;
}
output("fb%d: %s frame buffer device %dx%d-%dbpp\n",
fb_info.node, fb_info.fix.id,default_var.xres,
default_var.yres,default_var.bits_per_pixel);
return 0;
}
static void __devexit trident_pci_remove(struct pci_dev * dev)
{
struct tridentfb_par *par = (struct tridentfb_par*)fb_info.par;
unregister_framebuffer(&fb_info);
iounmap(par->io_virt);
iounmap(fb_info.screen_base);
release_mem_region(tridentfb_fix.smem_start, tridentfb_fix.smem_len);
release_region(tridentfb_fix.mmio_start, tridentfb_fix.mmio_len);
}
/* List of boards that we are trying to support */
static struct pci_device_id trident_devices[] = {
{PCI_VENDOR_ID_TRIDENT, BLADE3D, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEi7, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEi7D, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEi1, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEi1D, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEAi1, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEAi1D, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEE4, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, TGUI9660, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, IMAGE975, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, IMAGE985, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBER9320, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBER9388, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBER9520, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBER9525DVD, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBER9397, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBER9397DVD, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEXPAi1, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEXPm8, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{PCI_VENDOR_ID_TRIDENT, CYBERBLADEXPm16, PCI_ANY_ID,PCI_ANY_ID,0,0,0},
{0,}
};
MODULE_DEVICE_TABLE(pci,trident_devices);
static struct pci_driver tridentfb_pci_driver = {
.name = "tridentfb",
.id_table = trident_devices,
.probe = trident_pci_probe,
.remove = __devexit_p(trident_pci_remove)
};
/*
* Parse user specified options (`video=trident:')
* example:
* video=trident:800x600,bpp=16,noaccel
*/
#ifndef MODULE
static int tridentfb_setup(char *options)
{
char * opt;
if (!options || !*options)
return 0;
while((opt = strsep(&options,",")) != NULL ) {
if (!*opt) continue;
if (!strncmp(opt,"noaccel",7))
noaccel = 1;
else if (!strncmp(opt,"fp",2))
displaytype = DISPLAY_FP;
else if (!strncmp(opt,"crt",3))
displaytype = DISPLAY_CRT;
else if (!strncmp(opt,"bpp=",4))
bpp = simple_strtoul(opt+4,NULL,0);
else if (!strncmp(opt,"center",6))
center = 1;
else if (!strncmp(opt,"stretch",7))
stretch = 1;
else if (!strncmp(opt,"memsize=",8))
memsize = simple_strtoul(opt+8,NULL,0);
else if (!strncmp(opt,"memdiff=",8))
memdiff = simple_strtoul(opt+8,NULL,0);
else if (!strncmp(opt,"nativex=",8))
nativex = simple_strtoul(opt+8,NULL,0);
else
mode = opt;
}
return 0;
}
#endif
static int __init tridentfb_init(void)
{
#ifndef MODULE
char *option = NULL;
if (fb_get_options("tridentfb", &option))
return -ENODEV;
tridentfb_setup(option);
#endif
output("Trident framebuffer %s initializing\n", VERSION);
return pci_register_driver(&tridentfb_pci_driver);
}
static void __exit tridentfb_exit(void)
{
pci_unregister_driver(&tridentfb_pci_driver);
}
static struct fb_ops tridentfb_ops = {
.owner = THIS_MODULE,
.fb_setcolreg = tridentfb_setcolreg,
.fb_pan_display = tridentfb_pan_display,
.fb_blank = tridentfb_blank,
.fb_check_var = tridentfb_check_var,
.fb_set_par = tridentfb_set_par,
.fb_fillrect = tridentfb_fillrect,
.fb_copyarea= tridentfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_cursor = soft_cursor,
};
module_init(tridentfb_init);
module_exit(tridentfb_exit);
MODULE_AUTHOR("Jani Monoses <jani@iv.ro>");
MODULE_DESCRIPTION("Framebuffer driver for Trident cards");
MODULE_LICENSE("GPL");