kernel-fxtec-pro1x/sound/soc/sh/fsi.c
Kuninori Morimoto 4d805f7b66 ASoC: sh: fsi: Add snd_soc_dai_set_fmt support
This patch add snd_soc_dai_ops :: set_fmt to FSI driver and
select master/slave clock mode by snd_soc_dai_set_fmt on
fsi-xxx.c instead of platform infomation code.
This patch remove fsi_is_master function which is no longer needed.

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Acked-by: Liam Girdwood <lrg@slimlogic.co.uk>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
2011-01-21 19:01:47 +00:00

1310 lines
28 KiB
C

/*
* Fifo-attached Serial Interface (FSI) support for SH7724
*
* Copyright (C) 2009 Renesas Solutions Corp.
* Kuninori Morimoto <morimoto.kuninori@renesas.com>
*
* Based on ssi.c
* Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <sound/soc.h>
#include <sound/sh_fsi.h>
/* PortA/PortB register */
#define REG_DO_FMT 0x0000
#define REG_DOFF_CTL 0x0004
#define REG_DOFF_ST 0x0008
#define REG_DI_FMT 0x000C
#define REG_DIFF_CTL 0x0010
#define REG_DIFF_ST 0x0014
#define REG_CKG1 0x0018
#define REG_CKG2 0x001C
#define REG_DIDT 0x0020
#define REG_DODT 0x0024
#define REG_MUTE_ST 0x0028
#define REG_OUT_SEL 0x0030
/* master register */
#define MST_CLK_RST 0x0210
#define MST_SOFT_RST 0x0214
#define MST_FIFO_SZ 0x0218
/* core register (depend on FSI version) */
#define A_MST_CTLR 0x0180
#define B_MST_CTLR 0x01A0
#define CPU_INT_ST 0x01F4
#define CPU_IEMSK 0x01F8
#define CPU_IMSK 0x01FC
#define INT_ST 0x0200
#define IEMSK 0x0204
#define IMSK 0x0208
/* DO_FMT */
/* DI_FMT */
#define CR_BWS_24 (0x0 << 20) /* FSI2 */
#define CR_BWS_16 (0x1 << 20) /* FSI2 */
#define CR_BWS_20 (0x2 << 20) /* FSI2 */
#define CR_DTMD_PCM (0x0 << 8) /* FSI2 */
#define CR_DTMD_SPDIF_PCM (0x1 << 8) /* FSI2 */
#define CR_DTMD_SPDIF_STREAM (0x2 << 8) /* FSI2 */
#define CR_MONO (0x0 << 4)
#define CR_MONO_D (0x1 << 4)
#define CR_PCM (0x2 << 4)
#define CR_I2S (0x3 << 4)
#define CR_TDM (0x4 << 4)
#define CR_TDM_D (0x5 << 4)
/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF 0x00100000
#define FIFO_CLR 0x00000001
/* DOFF_ST */
#define ERR_OVER 0x00000010
#define ERR_UNDER 0x00000001
#define ST_ERR (ERR_OVER | ERR_UNDER)
/* CKG1 */
#define ACKMD_MASK 0x00007000
#define BPFMD_MASK 0x00000700
#define DIMD (1 << 4)
#define DOMD (1 << 0)
/* A/B MST_CTLR */
#define BP (1 << 4) /* Fix the signal of Biphase output */
#define SE (1 << 0) /* Fix the master clock */
/* CLK_RST */
#define B_CLK 0x00000010
#define A_CLK 0x00000001
/* IO SHIFT / MACRO */
#define BI_SHIFT 12
#define BO_SHIFT 8
#define AI_SHIFT 4
#define AO_SHIFT 0
#define AB_IO(param, shift) (param << shift)
/* SOFT_RST */
#define PBSR (1 << 12) /* Port B Software Reset */
#define PASR (1 << 8) /* Port A Software Reset */
#define IR (1 << 4) /* Interrupt Reset */
#define FSISR (1 << 0) /* Software Reset */
/* OUT_SEL (FSI2) */
#define DMMD (1 << 4) /* SPDIF output timing 0: Biphase only */
/* 1: Biphase and serial */
/* FIFO_SZ */
#define FIFO_SZ_MASK 0x7
#define FSI_RATES SNDRV_PCM_RATE_8000_96000
#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
/*
* FSI driver use below type name for variable
*
* xxx_len : data length
* xxx_width : data width
* xxx_offset : data offset
* xxx_num : number of data
*/
/*
* struct
*/
struct fsi_stream {
struct snd_pcm_substream *substream;
int fifo_max_num;
int chan_num;
int buff_offset;
int buff_len;
int period_len;
int period_num;
int uerr_num;
int oerr_num;
};
struct fsi_priv {
void __iomem *base;
struct fsi_master *master;
struct fsi_stream playback;
struct fsi_stream capture;
long rate;
};
struct fsi_core {
int ver;
u32 int_st;
u32 iemsk;
u32 imsk;
u32 a_mclk;
u32 b_mclk;
};
struct fsi_master {
void __iomem *base;
int irq;
struct fsi_priv fsia;
struct fsi_priv fsib;
struct fsi_core *core;
struct sh_fsi_platform_info *info;
spinlock_t lock;
};
/*
* basic read write function
*/
static void __fsi_reg_write(u32 reg, u32 data)
{
/* valid data area is 24bit */
data &= 0x00ffffff;
__raw_writel(data, reg);
}
static u32 __fsi_reg_read(u32 reg)
{
return __raw_readl(reg);
}
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
{
u32 val = __fsi_reg_read(reg);
val &= ~mask;
val |= data & mask;
__fsi_reg_write(reg, val);
}
#define fsi_reg_write(p, r, d)\
__fsi_reg_write((u32)(p->base + REG_##r), d)
#define fsi_reg_read(p, r)\
__fsi_reg_read((u32)(p->base + REG_##r))
#define fsi_reg_mask_set(p, r, m, d)\
__fsi_reg_mask_set((u32)(p->base + REG_##r), m, d)
#define fsi_master_read(p, r) _fsi_master_read(p, MST_##r)
#define fsi_core_read(p, r) _fsi_master_read(p, p->core->r)
static u32 _fsi_master_read(struct fsi_master *master, u32 reg)
{
u32 ret;
unsigned long flags;
spin_lock_irqsave(&master->lock, flags);
ret = __fsi_reg_read((u32)(master->base + reg));
spin_unlock_irqrestore(&master->lock, flags);
return ret;
}
#define fsi_master_mask_set(p, r, m, d) _fsi_master_mask_set(p, MST_##r, m, d)
#define fsi_core_mask_set(p, r, m, d) _fsi_master_mask_set(p, p->core->r, m, d)
static void _fsi_master_mask_set(struct fsi_master *master,
u32 reg, u32 mask, u32 data)
{
unsigned long flags;
spin_lock_irqsave(&master->lock, flags);
__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
spin_unlock_irqrestore(&master->lock, flags);
}
/*
* basic function
*/
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
{
return fsi->master;
}
static int fsi_is_port_a(struct fsi_priv *fsi)
{
return fsi->master->base == fsi->base;
}
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
return rtd->cpu_dai;
}
static struct fsi_priv *fsi_get_priv_frm_dai(struct snd_soc_dai *dai)
{
struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
if (dai->id == 0)
return &master->fsia;
else
return &master->fsib;
}
static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
return fsi_get_priv_frm_dai(fsi_get_dai(substream));
}
static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
int is_porta = fsi_is_port_a(fsi);
struct fsi_master *master = fsi_get_master(fsi);
return is_porta ? master->info->porta_flags :
master->info->portb_flags;
}
static inline int fsi_stream_is_play(int stream)
{
return stream == SNDRV_PCM_STREAM_PLAYBACK;
}
static inline int fsi_is_play(struct snd_pcm_substream *substream)
{
return fsi_stream_is_play(substream->stream);
}
static inline struct fsi_stream *fsi_get_stream(struct fsi_priv *fsi,
int is_play)
{
return is_play ? &fsi->playback : &fsi->capture;
}
static u32 fsi_get_port_shift(struct fsi_priv *fsi, int is_play)
{
int is_porta = fsi_is_port_a(fsi);
u32 shift;
if (is_porta)
shift = is_play ? AO_SHIFT : AI_SHIFT;
else
shift = is_play ? BO_SHIFT : BI_SHIFT;
return shift;
}
static void fsi_stream_push(struct fsi_priv *fsi,
int is_play,
struct snd_pcm_substream *substream,
u32 buffer_len,
u32 period_len)
{
struct fsi_stream *io = fsi_get_stream(fsi, is_play);
io->substream = substream;
io->buff_len = buffer_len;
io->buff_offset = 0;
io->period_len = period_len;
io->period_num = 0;
io->oerr_num = -1; /* ignore 1st err */
io->uerr_num = -1; /* ignore 1st err */
}
static void fsi_stream_pop(struct fsi_priv *fsi, int is_play)
{
struct fsi_stream *io = fsi_get_stream(fsi, is_play);
struct snd_soc_dai *dai = fsi_get_dai(io->substream);
if (io->oerr_num > 0)
dev_err(dai->dev, "over_run = %d\n", io->oerr_num);
if (io->uerr_num > 0)
dev_err(dai->dev, "under_run = %d\n", io->uerr_num);
io->substream = NULL;
io->buff_len = 0;
io->buff_offset = 0;
io->period_len = 0;
io->period_num = 0;
io->oerr_num = 0;
io->uerr_num = 0;
}
static int fsi_get_fifo_data_num(struct fsi_priv *fsi, int is_play)
{
u32 status;
struct fsi_stream *io = fsi_get_stream(fsi, is_play);
int data_num;
status = is_play ?
fsi_reg_read(fsi, DOFF_ST) :
fsi_reg_read(fsi, DIFF_ST);
data_num = 0x1ff & (status >> 8);
data_num *= io->chan_num;
return data_num;
}
static int fsi_len2num(int len, int width)
{
return len / width;
}
#define fsi_num2offset(a, b) fsi_num2len(a, b)
static int fsi_num2len(int num, int width)
{
return num * width;
}
static int fsi_get_frame_width(struct fsi_priv *fsi, int is_play)
{
struct fsi_stream *io = fsi_get_stream(fsi, is_play);
struct snd_pcm_substream *substream = io->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
return frames_to_bytes(runtime, 1) / io->chan_num;
}
static void fsi_count_fifo_err(struct fsi_priv *fsi)
{
u32 ostatus = fsi_reg_read(fsi, DOFF_ST);
u32 istatus = fsi_reg_read(fsi, DIFF_ST);
if (ostatus & ERR_OVER)
fsi->playback.oerr_num++;
if (ostatus & ERR_UNDER)
fsi->playback.uerr_num++;
if (istatus & ERR_OVER)
fsi->capture.oerr_num++;
if (istatus & ERR_UNDER)
fsi->capture.uerr_num++;
fsi_reg_write(fsi, DOFF_ST, 0);
fsi_reg_write(fsi, DIFF_ST, 0);
}
/*
* dma function
*/
static u8 *fsi_dma_get_area(struct fsi_priv *fsi, int stream)
{
int is_play = fsi_stream_is_play(stream);
struct fsi_stream *io = fsi_get_stream(fsi, is_play);
return io->substream->runtime->dma_area + io->buff_offset;
}
static void fsi_dma_soft_push16(struct fsi_priv *fsi, int num)
{
u16 *start;
int i;
start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
for (i = 0; i < num; i++)
fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8));
}
static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int num)
{
u16 *start;
int i;
start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
for (i = 0; i < num; i++)
*(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8);
}
static void fsi_dma_soft_push32(struct fsi_priv *fsi, int num)
{
u32 *start;
int i;
start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
for (i = 0; i < num; i++)
fsi_reg_write(fsi, DODT, *(start + i));
}
static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int num)
{
u32 *start;
int i;
start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
for (i = 0; i < num; i++)
*(start + i) = fsi_reg_read(fsi, DIDT);
}
/*
* irq function
*/
static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
struct fsi_master *master = fsi_get_master(fsi);
fsi_core_mask_set(master, imsk, data, data);
fsi_core_mask_set(master, iemsk, data, data);
}
static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
struct fsi_master *master = fsi_get_master(fsi);
fsi_core_mask_set(master, imsk, data, 0);
fsi_core_mask_set(master, iemsk, data, 0);
}
static u32 fsi_irq_get_status(struct fsi_master *master)
{
return fsi_core_read(master, int_st);
}
static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
u32 data = 0;
struct fsi_master *master = fsi_get_master(fsi);
data |= AB_IO(1, fsi_get_port_shift(fsi, 0));
data |= AB_IO(1, fsi_get_port_shift(fsi, 1));
/* clear interrupt factor */
fsi_core_mask_set(master, int_st, data, 0);
}
/*
* SPDIF master clock function
*
* These functions are used later FSI2
*/
static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
{
struct fsi_master *master = fsi_get_master(fsi);
u32 mask, val;
if (master->core->ver < 2) {
pr_err("fsi: register access err (%s)\n", __func__);
return;
}
mask = BP | SE;
val = enable ? mask : 0;
fsi_is_port_a(fsi) ?
fsi_core_mask_set(master, a_mclk, mask, val) :
fsi_core_mask_set(master, b_mclk, mask, val);
}
/*
* ctrl function
*/
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
struct fsi_master *master = fsi_get_master(fsi);
if (enable)
fsi_master_mask_set(master, CLK_RST, val, val);
else
fsi_master_mask_set(master, CLK_RST, val, 0);
}
static void fsi_fifo_init(struct fsi_priv *fsi,
int is_play,
struct snd_soc_dai *dai)
{
struct fsi_master *master = fsi_get_master(fsi);
struct fsi_stream *io = fsi_get_stream(fsi, is_play);
u32 shift, i;
/* get on-chip RAM capacity */
shift = fsi_master_read(master, FIFO_SZ);
shift >>= fsi_get_port_shift(fsi, is_play);
shift &= FIFO_SZ_MASK;
io->fifo_max_num = 256 << shift;
dev_dbg(dai->dev, "fifo = %d words\n", io->fifo_max_num);
/*
* The maximum number of sample data varies depending
* on the number of channels selected for the format.
*
* FIFOs are used in 4-channel units in 3-channel mode
* and in 8-channel units in 5- to 7-channel mode
* meaning that more FIFOs than the required size of DPRAM
* are used.
*
* ex) if 256 words of DP-RAM is connected
* 1 channel: 256 (256 x 1 = 256)
* 2 channels: 128 (128 x 2 = 256)
* 3 channels: 64 ( 64 x 3 = 192)
* 4 channels: 64 ( 64 x 4 = 256)
* 5 channels: 32 ( 32 x 5 = 160)
* 6 channels: 32 ( 32 x 6 = 192)
* 7 channels: 32 ( 32 x 7 = 224)
* 8 channels: 32 ( 32 x 8 = 256)
*/
for (i = 1; i < io->chan_num; i <<= 1)
io->fifo_max_num >>= 1;
dev_dbg(dai->dev, "%d channel %d store\n",
io->chan_num, io->fifo_max_num);
/*
* set interrupt generation factor
* clear FIFO
*/
if (is_play) {
fsi_reg_write(fsi, DOFF_CTL, IRQ_HALF);
fsi_reg_mask_set(fsi, DOFF_CTL, FIFO_CLR, FIFO_CLR);
} else {
fsi_reg_write(fsi, DIFF_CTL, IRQ_HALF);
fsi_reg_mask_set(fsi, DIFF_CTL, FIFO_CLR, FIFO_CLR);
}
}
static void fsi_soft_all_reset(struct fsi_master *master)
{
/* port AB reset */
fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
mdelay(10);
/* soft reset */
fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
mdelay(10);
}
static int fsi_fifo_data_ctrl(struct fsi_priv *fsi, int stream)
{
struct snd_pcm_runtime *runtime;
struct snd_pcm_substream *substream = NULL;
int is_play = fsi_stream_is_play(stream);
struct fsi_stream *io = fsi_get_stream(fsi, is_play);
int data_residue_num;
int data_num;
int data_num_max;
int ch_width;
int over_period;
void (*fn)(struct fsi_priv *fsi, int size);
if (!fsi ||
!io->substream ||
!io->substream->runtime)
return -EINVAL;
over_period = 0;
substream = io->substream;
runtime = substream->runtime;
/* FSI FIFO has limit.
* So, this driver can not send periods data at a time
*/
if (io->buff_offset >=
fsi_num2offset(io->period_num + 1, io->period_len)) {
over_period = 1;
io->period_num = (io->period_num + 1) % runtime->periods;
if (0 == io->period_num)
io->buff_offset = 0;
}
/* get 1 channel data width */
ch_width = fsi_get_frame_width(fsi, is_play);
/* get residue data number of alsa */
data_residue_num = fsi_len2num(io->buff_len - io->buff_offset,
ch_width);
if (is_play) {
/*
* for play-back
*
* data_num_max : number of FSI fifo free space
* data_num : number of ALSA residue data
*/
data_num_max = io->fifo_max_num * io->chan_num;
data_num_max -= fsi_get_fifo_data_num(fsi, is_play);
data_num = data_residue_num;
switch (ch_width) {
case 2:
fn = fsi_dma_soft_push16;
break;
case 4:
fn = fsi_dma_soft_push32;
break;
default:
return -EINVAL;
}
} else {
/*
* for capture
*
* data_num_max : number of ALSA free space
* data_num : number of data in FSI fifo
*/
data_num_max = data_residue_num;
data_num = fsi_get_fifo_data_num(fsi, is_play);
switch (ch_width) {
case 2:
fn = fsi_dma_soft_pop16;
break;
case 4:
fn = fsi_dma_soft_pop32;
break;
default:
return -EINVAL;
}
}
data_num = min(data_num, data_num_max);
fn(fsi, data_num);
/* update buff_offset */
io->buff_offset += fsi_num2offset(data_num, ch_width);
if (over_period)
snd_pcm_period_elapsed(substream);
return 0;
}
static int fsi_data_pop(struct fsi_priv *fsi)
{
return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_CAPTURE);
}
static int fsi_data_push(struct fsi_priv *fsi)
{
return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_PLAYBACK);
}
static irqreturn_t fsi_interrupt(int irq, void *data)
{
struct fsi_master *master = data;
u32 int_st = fsi_irq_get_status(master);
/* clear irq status */
fsi_master_mask_set(master, SOFT_RST, IR, 0);
fsi_master_mask_set(master, SOFT_RST, IR, IR);
if (int_st & AB_IO(1, AO_SHIFT))
fsi_data_push(&master->fsia);
if (int_st & AB_IO(1, BO_SHIFT))
fsi_data_push(&master->fsib);
if (int_st & AB_IO(1, AI_SHIFT))
fsi_data_pop(&master->fsia);
if (int_st & AB_IO(1, BI_SHIFT))
fsi_data_pop(&master->fsib);
fsi_count_fifo_err(&master->fsia);
fsi_count_fifo_err(&master->fsib);
fsi_irq_clear_status(&master->fsia);
fsi_irq_clear_status(&master->fsib);
return IRQ_HANDLED;
}
/*
* dai ops
*/
static int fsi_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsi_priv *fsi = fsi_get_priv(substream);
struct fsi_master *master = fsi_get_master(fsi);
struct fsi_stream *io;
u32 flags = fsi_get_info_flags(fsi);
u32 fmt;
u32 data;
int is_play = fsi_is_play(substream);
io = fsi_get_stream(fsi, is_play);
pm_runtime_get_sync(dai->dev);
/* clock inversion (CKG2) */
data = 0;
if (SH_FSI_LRM_INV & flags)
data |= 1 << 12;
if (SH_FSI_BRM_INV & flags)
data |= 1 << 8;
if (SH_FSI_LRS_INV & flags)
data |= 1 << 4;
if (SH_FSI_BRS_INV & flags)
data |= 1 << 0;
fsi_reg_write(fsi, CKG2, data);
/* do fmt, di fmt */
data = 0;
fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
switch (fmt) {
case SH_FSI_FMT_MONO:
data = CR_MONO;
io->chan_num = 1;
break;
case SH_FSI_FMT_MONO_DELAY:
data = CR_MONO_D;
io->chan_num = 1;
break;
case SH_FSI_FMT_PCM:
data = CR_PCM;
io->chan_num = 2;
break;
case SH_FSI_FMT_I2S:
data = CR_I2S;
io->chan_num = 2;
break;
case SH_FSI_FMT_TDM:
io->chan_num = is_play ?
SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
data = CR_TDM | (io->chan_num - 1);
break;
case SH_FSI_FMT_TDM_DELAY:
io->chan_num = is_play ?
SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
data = CR_TDM_D | (io->chan_num - 1);
break;
case SH_FSI_FMT_SPDIF:
if (master->core->ver < 2) {
dev_err(dai->dev, "This FSI can not use SPDIF\n");
return -EINVAL;
}
data = CR_BWS_16 | CR_DTMD_SPDIF_PCM | CR_PCM;
io->chan_num = 2;
fsi_spdif_clk_ctrl(fsi, 1);
fsi_reg_mask_set(fsi, OUT_SEL, DMMD, DMMD);
break;
default:
dev_err(dai->dev, "unknown format.\n");
return -EINVAL;
}
is_play ?
fsi_reg_write(fsi, DO_FMT, data) :
fsi_reg_write(fsi, DI_FMT, data);
/* irq clear */
fsi_irq_disable(fsi, is_play);
fsi_irq_clear_status(fsi);
/* fifo init */
fsi_fifo_init(fsi, is_play, dai);
return 0;
}
static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsi_priv *fsi = fsi_get_priv(substream);
int is_play = fsi_is_play(substream);
struct fsi_master *master = fsi_get_master(fsi);
int (*set_rate)(struct device *dev, int is_porta, int rate, int enable);
fsi_irq_disable(fsi, is_play);
fsi_clk_ctrl(fsi, 0);
set_rate = master->info->set_rate;
if (set_rate && fsi->rate)
set_rate(dai->dev, fsi_is_port_a(fsi), fsi->rate, 0);
fsi->rate = 0;
pm_runtime_put_sync(dai->dev);
}
static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct fsi_priv *fsi = fsi_get_priv(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int is_play = fsi_is_play(substream);
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
fsi_stream_push(fsi, is_play, substream,
frames_to_bytes(runtime, runtime->buffer_size),
frames_to_bytes(runtime, runtime->period_size));
ret = is_play ? fsi_data_push(fsi) : fsi_data_pop(fsi);
fsi_irq_enable(fsi, is_play);
break;
case SNDRV_PCM_TRIGGER_STOP:
fsi_irq_disable(fsi, is_play);
fsi_stream_pop(fsi, is_play);
break;
}
return ret;
}
static int fsi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct fsi_priv *fsi = fsi_get_priv_frm_dai(dai);
u32 data = 0;
int ret;
pm_runtime_get_sync(dai->dev);
/* set master/slave audio interface */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
data = DIMD | DOMD;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
ret = -EINVAL;
goto set_fmt_exit;
}
fsi_reg_mask_set(fsi, CKG1, (DIMD | DOMD), data);
ret = 0;
set_fmt_exit:
pm_runtime_put_sync(dai->dev);
return ret;
}
static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct fsi_priv *fsi = fsi_get_priv(substream);
struct fsi_master *master = fsi_get_master(fsi);
int (*set_rate)(struct device *dev, int is_porta, int rate, int enable);
int fsi_ver = master->core->ver;
long rate = params_rate(params);
int ret;
set_rate = master->info->set_rate;
if (!set_rate)
return 0;
ret = set_rate(dai->dev, fsi_is_port_a(fsi), rate, 1);
if (ret < 0) /* error */
return ret;
fsi->rate = rate;
if (ret > 0) {
u32 data = 0;
switch (ret & SH_FSI_ACKMD_MASK) {
default:
/* FALL THROUGH */
case SH_FSI_ACKMD_512:
data |= (0x0 << 12);
break;
case SH_FSI_ACKMD_256:
data |= (0x1 << 12);
break;
case SH_FSI_ACKMD_128:
data |= (0x2 << 12);
break;
case SH_FSI_ACKMD_64:
data |= (0x3 << 12);
break;
case SH_FSI_ACKMD_32:
if (fsi_ver < 2)
dev_err(dai->dev, "unsupported ACKMD\n");
else
data |= (0x4 << 12);
break;
}
switch (ret & SH_FSI_BPFMD_MASK) {
default:
/* FALL THROUGH */
case SH_FSI_BPFMD_32:
data |= (0x0 << 8);
break;
case SH_FSI_BPFMD_64:
data |= (0x1 << 8);
break;
case SH_FSI_BPFMD_128:
data |= (0x2 << 8);
break;
case SH_FSI_BPFMD_256:
data |= (0x3 << 8);
break;
case SH_FSI_BPFMD_512:
data |= (0x4 << 8);
break;
case SH_FSI_BPFMD_16:
if (fsi_ver < 2)
dev_err(dai->dev, "unsupported ACKMD\n");
else
data |= (0x7 << 8);
break;
}
fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
udelay(10);
fsi_clk_ctrl(fsi, 1);
ret = 0;
}
return ret;
}
static struct snd_soc_dai_ops fsi_dai_ops = {
.startup = fsi_dai_startup,
.shutdown = fsi_dai_shutdown,
.trigger = fsi_dai_trigger,
.set_fmt = fsi_dai_set_fmt,
.hw_params = fsi_dai_hw_params,
};
/*
* pcm ops
*/
static struct snd_pcm_hardware fsi_pcm_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE,
.formats = FSI_FMTS,
.rates = FSI_RATES,
.rate_min = 8000,
.rate_max = 192000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 64 * 1024,
.period_bytes_min = 32,
.period_bytes_max = 8192,
.periods_min = 1,
.periods_max = 32,
.fifo_size = 256,
};
static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int ret = 0;
snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
ret = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
return ret;
}
static int fsi_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
static int fsi_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct fsi_priv *fsi = fsi_get_priv(substream);
struct fsi_stream *io = fsi_get_stream(fsi, fsi_is_play(substream));
long location;
location = (io->buff_offset - 1);
if (location < 0)
location = 0;
return bytes_to_frames(runtime, location);
}
static struct snd_pcm_ops fsi_pcm_ops = {
.open = fsi_pcm_open,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = fsi_hw_params,
.hw_free = fsi_hw_free,
.pointer = fsi_pointer,
};
/*
* snd_soc_platform
*/
#define PREALLOC_BUFFER (32 * 1024)
#define PREALLOC_BUFFER_MAX (32 * 1024)
static void fsi_pcm_free(struct snd_pcm *pcm)
{
snd_pcm_lib_preallocate_free_for_all(pcm);
}
static int fsi_pcm_new(struct snd_card *card,
struct snd_soc_dai *dai,
struct snd_pcm *pcm)
{
/*
* dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
* in MMAP mode (i.e. aplay -M)
*/
return snd_pcm_lib_preallocate_pages_for_all(
pcm,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}
/*
* alsa struct
*/
static struct snd_soc_dai_driver fsi_soc_dai[] = {
{
.name = "fsia-dai",
.playback = {
.rates = FSI_RATES,
.formats = FSI_FMTS,
.channels_min = 1,
.channels_max = 8,
},
.capture = {
.rates = FSI_RATES,
.formats = FSI_FMTS,
.channels_min = 1,
.channels_max = 8,
},
.ops = &fsi_dai_ops,
},
{
.name = "fsib-dai",
.playback = {
.rates = FSI_RATES,
.formats = FSI_FMTS,
.channels_min = 1,
.channels_max = 8,
},
.capture = {
.rates = FSI_RATES,
.formats = FSI_FMTS,
.channels_min = 1,
.channels_max = 8,
},
.ops = &fsi_dai_ops,
},
};
static struct snd_soc_platform_driver fsi_soc_platform = {
.ops = &fsi_pcm_ops,
.pcm_new = fsi_pcm_new,
.pcm_free = fsi_pcm_free,
};
/*
* platform function
*/
static int fsi_probe(struct platform_device *pdev)
{
struct fsi_master *master;
const struct platform_device_id *id_entry;
struct resource *res;
unsigned int irq;
int ret;
id_entry = pdev->id_entry;
if (!id_entry) {
dev_err(&pdev->dev, "unknown fsi device\n");
return -ENODEV;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (!res || (int)irq <= 0) {
dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
ret = -ENODEV;
goto exit;
}
master = kzalloc(sizeof(*master), GFP_KERNEL);
if (!master) {
dev_err(&pdev->dev, "Could not allocate master\n");
ret = -ENOMEM;
goto exit;
}
master->base = ioremap_nocache(res->start, resource_size(res));
if (!master->base) {
ret = -ENXIO;
dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
goto exit_kfree;
}
/* master setting */
master->irq = irq;
master->info = pdev->dev.platform_data;
master->core = (struct fsi_core *)id_entry->driver_data;
spin_lock_init(&master->lock);
/* FSI A setting */
master->fsia.base = master->base;
master->fsia.master = master;
/* FSI B setting */
master->fsib.base = master->base + 0x40;
master->fsib.master = master;
pm_runtime_enable(&pdev->dev);
pm_runtime_resume(&pdev->dev);
dev_set_drvdata(&pdev->dev, master);
fsi_soft_all_reset(master);
ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
id_entry->name, master);
if (ret) {
dev_err(&pdev->dev, "irq request err\n");
goto exit_iounmap;
}
ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
if (ret < 0) {
dev_err(&pdev->dev, "cannot snd soc register\n");
goto exit_free_irq;
}
return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
exit_free_irq:
free_irq(irq, master);
exit_iounmap:
iounmap(master->base);
pm_runtime_disable(&pdev->dev);
exit_kfree:
kfree(master);
master = NULL;
exit:
return ret;
}
static int fsi_remove(struct platform_device *pdev)
{
struct fsi_master *master;
master = dev_get_drvdata(&pdev->dev);
snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
snd_soc_unregister_platform(&pdev->dev);
pm_runtime_disable(&pdev->dev);
free_irq(master->irq, master);
iounmap(master->base);
kfree(master);
return 0;
}
static int fsi_runtime_nop(struct device *dev)
{
/* Runtime PM callback shared between ->runtime_suspend()
* and ->runtime_resume(). Simply returns success.
*
* This driver re-initializes all registers after
* pm_runtime_get_sync() anyway so there is no need
* to save and restore registers here.
*/
return 0;
}
static struct dev_pm_ops fsi_pm_ops = {
.runtime_suspend = fsi_runtime_nop,
.runtime_resume = fsi_runtime_nop,
};
static struct fsi_core fsi1_core = {
.ver = 1,
/* Interrupt */
.int_st = INT_ST,
.iemsk = IEMSK,
.imsk = IMSK,
};
static struct fsi_core fsi2_core = {
.ver = 2,
/* Interrupt */
.int_st = CPU_INT_ST,
.iemsk = CPU_IEMSK,
.imsk = CPU_IMSK,
.a_mclk = A_MST_CTLR,
.b_mclk = B_MST_CTLR,
};
static struct platform_device_id fsi_id_table[] = {
{ "sh_fsi", (kernel_ulong_t)&fsi1_core },
{ "sh_fsi2", (kernel_ulong_t)&fsi2_core },
{},
};
MODULE_DEVICE_TABLE(platform, fsi_id_table);
static struct platform_driver fsi_driver = {
.driver = {
.name = "fsi-pcm-audio",
.pm = &fsi_pm_ops,
},
.probe = fsi_probe,
.remove = fsi_remove,
.id_table = fsi_id_table,
};
static int __init fsi_mobile_init(void)
{
return platform_driver_register(&fsi_driver);
}
static void __exit fsi_mobile_exit(void)
{
platform_driver_unregister(&fsi_driver);
}
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");