kernel-fxtec-pro1x/fs/btrfs/extent-tree.c
Christoph Hellwig 746cd1e7e4 block: use blkdev_issue_discard in blk_ioctl_discard
blk_ioctl_discard duplicates large amounts of code from blkdev_issue_discard,
the only difference between the two is that blkdev_issue_discard needs to
send a barrier discard request and blk_ioctl_discard a non-barrier one,
and blk_ioctl_discard needs to wait on the request.  To facilitates this
add a flags argument to blkdev_issue_discard to control both aspects of the
behaviour.  This will be very useful later on for using the waiting
funcitonality for other callers.

Based on an earlier patch from Matthew Wilcox <matthew@wil.cx>.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-09-14 08:24:53 +02:00

7457 lines
194 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/sort.h>
#include <linux/rcupdate.h>
#include <linux/kthread.h>
#include "compat.h"
#include "hash.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
#include "volumes.h"
#include "locking.h"
#include "free-space-cache.h"
static int update_reserved_extents(struct btrfs_root *root,
u64 bytenr, u64 num, int reserve);
static int update_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int alloc,
int mark_free);
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner_objectid,
u64 owner_offset, int refs_to_drop,
struct btrfs_delayed_extent_op *extra_op);
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
struct extent_buffer *leaf,
struct btrfs_extent_item *ei);
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent, u64 root_objectid,
u64 flags, u64 owner, u64 offset,
struct btrfs_key *ins, int ref_mod);
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent, u64 root_objectid,
u64 flags, struct btrfs_disk_key *key,
int level, struct btrfs_key *ins);
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root, u64 alloc_bytes,
u64 flags, int force);
static noinline int
block_group_cache_done(struct btrfs_block_group_cache *cache)
{
smp_mb();
return cache->cached == BTRFS_CACHE_FINISHED;
}
static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
{
return (cache->flags & bits) == bits;
}
/*
* this adds the block group to the fs_info rb tree for the block group
* cache
*/
static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
struct btrfs_block_group_cache *block_group)
{
struct rb_node **p;
struct rb_node *parent = NULL;
struct btrfs_block_group_cache *cache;
spin_lock(&info->block_group_cache_lock);
p = &info->block_group_cache_tree.rb_node;
while (*p) {
parent = *p;
cache = rb_entry(parent, struct btrfs_block_group_cache,
cache_node);
if (block_group->key.objectid < cache->key.objectid) {
p = &(*p)->rb_left;
} else if (block_group->key.objectid > cache->key.objectid) {
p = &(*p)->rb_right;
} else {
spin_unlock(&info->block_group_cache_lock);
return -EEXIST;
}
}
rb_link_node(&block_group->cache_node, parent, p);
rb_insert_color(&block_group->cache_node,
&info->block_group_cache_tree);
spin_unlock(&info->block_group_cache_lock);
return 0;
}
/*
* This will return the block group at or after bytenr if contains is 0, else
* it will return the block group that contains the bytenr
*/
static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
int contains)
{
struct btrfs_block_group_cache *cache, *ret = NULL;
struct rb_node *n;
u64 end, start;
spin_lock(&info->block_group_cache_lock);
n = info->block_group_cache_tree.rb_node;
while (n) {
cache = rb_entry(n, struct btrfs_block_group_cache,
cache_node);
end = cache->key.objectid + cache->key.offset - 1;
start = cache->key.objectid;
if (bytenr < start) {
if (!contains && (!ret || start < ret->key.objectid))
ret = cache;
n = n->rb_left;
} else if (bytenr > start) {
if (contains && bytenr <= end) {
ret = cache;
break;
}
n = n->rb_right;
} else {
ret = cache;
break;
}
}
if (ret)
atomic_inc(&ret->count);
spin_unlock(&info->block_group_cache_lock);
return ret;
}
/*
* We always set EXTENT_LOCKED for the super mirror extents so we don't
* overwrite them, so those bits need to be unset. Also, if we are unmounting
* with pinned extents still sitting there because we had a block group caching,
* we need to clear those now, since we are done.
*/
void btrfs_free_pinned_extents(struct btrfs_fs_info *info)
{
u64 start, end, last = 0;
int ret;
while (1) {
ret = find_first_extent_bit(&info->pinned_extents, last,
&start, &end,
EXTENT_LOCKED|EXTENT_DIRTY);
if (ret)
break;
clear_extent_bits(&info->pinned_extents, start, end,
EXTENT_LOCKED|EXTENT_DIRTY, GFP_NOFS);
last = end+1;
}
}
static int remove_sb_from_cache(struct btrfs_root *root,
struct btrfs_block_group_cache *cache)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 bytenr;
u64 *logical;
int stripe_len;
int i, nr, ret;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
cache->key.objectid, bytenr,
0, &logical, &nr, &stripe_len);
BUG_ON(ret);
while (nr--) {
try_lock_extent(&fs_info->pinned_extents,
logical[nr],
logical[nr] + stripe_len - 1, GFP_NOFS);
}
kfree(logical);
}
return 0;
}
/*
* this is only called by cache_block_group, since we could have freed extents
* we need to check the pinned_extents for any extents that can't be used yet
* since their free space will be released as soon as the transaction commits.
*/
static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
struct btrfs_fs_info *info, u64 start, u64 end)
{
u64 extent_start, extent_end, size, total_added = 0;
int ret;
while (start < end) {
ret = find_first_extent_bit(&info->pinned_extents, start,
&extent_start, &extent_end,
EXTENT_DIRTY|EXTENT_LOCKED);
if (ret)
break;
if (extent_start == start) {
start = extent_end + 1;
} else if (extent_start > start && extent_start < end) {
size = extent_start - start;
total_added += size;
ret = btrfs_add_free_space(block_group, start,
size);
BUG_ON(ret);
start = extent_end + 1;
} else {
break;
}
}
if (start < end) {
size = end - start;
total_added += size;
ret = btrfs_add_free_space(block_group, start, size);
BUG_ON(ret);
}
return total_added;
}
static int caching_kthread(void *data)
{
struct btrfs_block_group_cache *block_group = data;
struct btrfs_fs_info *fs_info = block_group->fs_info;
u64 last = 0;
struct btrfs_path *path;
int ret = 0;
struct btrfs_key key;
struct extent_buffer *leaf;
int slot;
u64 total_found = 0;
BUG_ON(!fs_info);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
atomic_inc(&block_group->space_info->caching_threads);
last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
/*
* We don't want to deadlock with somebody trying to allocate a new
* extent for the extent root while also trying to search the extent
* root to add free space. So we skip locking and search the commit
* root, since its read-only
*/
path->skip_locking = 1;
path->search_commit_root = 1;
path->reada = 2;
key.objectid = last;
key.offset = 0;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
again:
/* need to make sure the commit_root doesn't disappear */
down_read(&fs_info->extent_commit_sem);
ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
if (ret < 0)
goto err;
while (1) {
smp_mb();
if (block_group->fs_info->closing > 1) {
last = (u64)-1;
break;
}
leaf = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(fs_info->extent_root, path);
if (ret < 0)
goto err;
else if (ret)
break;
if (need_resched() ||
btrfs_transaction_in_commit(fs_info)) {
leaf = path->nodes[0];
/* this shouldn't happen, but if the
* leaf is empty just move on.
*/
if (btrfs_header_nritems(leaf) == 0)
break;
/*
* we need to copy the key out so that
* we are sure the next search advances
* us forward in the btree.
*/
btrfs_item_key_to_cpu(leaf, &key, 0);
btrfs_release_path(fs_info->extent_root, path);
up_read(&fs_info->extent_commit_sem);
schedule_timeout(1);
goto again;
}
continue;
}
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid < block_group->key.objectid)
goto next;
if (key.objectid >= block_group->key.objectid +
block_group->key.offset)
break;
if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
total_found += add_new_free_space(block_group,
fs_info, last,
key.objectid);
last = key.objectid + key.offset;
}
if (total_found > (1024 * 1024 * 2)) {
total_found = 0;
wake_up(&block_group->caching_q);
}
next:
path->slots[0]++;
}
ret = 0;
total_found += add_new_free_space(block_group, fs_info, last,
block_group->key.objectid +
block_group->key.offset);
spin_lock(&block_group->lock);
block_group->cached = BTRFS_CACHE_FINISHED;
spin_unlock(&block_group->lock);
err:
btrfs_free_path(path);
up_read(&fs_info->extent_commit_sem);
atomic_dec(&block_group->space_info->caching_threads);
wake_up(&block_group->caching_q);
return 0;
}
static int cache_block_group(struct btrfs_block_group_cache *cache)
{
struct task_struct *tsk;
int ret = 0;
spin_lock(&cache->lock);
if (cache->cached != BTRFS_CACHE_NO) {
spin_unlock(&cache->lock);
return ret;
}
cache->cached = BTRFS_CACHE_STARTED;
spin_unlock(&cache->lock);
tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
cache->key.objectid);
if (IS_ERR(tsk)) {
ret = PTR_ERR(tsk);
printk(KERN_ERR "error running thread %d\n", ret);
BUG();
}
return ret;
}
/*
* return the block group that starts at or after bytenr
*/
static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
{
struct btrfs_block_group_cache *cache;
cache = block_group_cache_tree_search(info, bytenr, 0);
return cache;
}
/*
* return the block group that contains the given bytenr
*/
struct btrfs_block_group_cache *btrfs_lookup_block_group(
struct btrfs_fs_info *info,
u64 bytenr)
{
struct btrfs_block_group_cache *cache;
cache = block_group_cache_tree_search(info, bytenr, 1);
return cache;
}
void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
{
if (atomic_dec_and_test(&cache->count))
kfree(cache);
}
static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
u64 flags)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list) {
if (found->flags == flags) {
rcu_read_unlock();
return found;
}
}
rcu_read_unlock();
return NULL;
}
/*
* after adding space to the filesystem, we need to clear the full flags
* on all the space infos.
*/
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list)
found->full = 0;
rcu_read_unlock();
}
static u64 div_factor(u64 num, int factor)
{
if (factor == 10)
return num;
num *= factor;
do_div(num, 10);
return num;
}
u64 btrfs_find_block_group(struct btrfs_root *root,
u64 search_start, u64 search_hint, int owner)
{
struct btrfs_block_group_cache *cache;
u64 used;
u64 last = max(search_hint, search_start);
u64 group_start = 0;
int full_search = 0;
int factor = 9;
int wrapped = 0;
again:
while (1) {
cache = btrfs_lookup_first_block_group(root->fs_info, last);
if (!cache)
break;
spin_lock(&cache->lock);
last = cache->key.objectid + cache->key.offset;
used = btrfs_block_group_used(&cache->item);
if ((full_search || !cache->ro) &&
block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
if (used + cache->pinned + cache->reserved <
div_factor(cache->key.offset, factor)) {
group_start = cache->key.objectid;
spin_unlock(&cache->lock);
btrfs_put_block_group(cache);
goto found;
}
}
spin_unlock(&cache->lock);
btrfs_put_block_group(cache);
cond_resched();
}
if (!wrapped) {
last = search_start;
wrapped = 1;
goto again;
}
if (!full_search && factor < 10) {
last = search_start;
full_search = 1;
factor = 10;
goto again;
}
found:
return group_start;
}
/* simple helper to search for an existing extent at a given offset */
int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
{
int ret;
struct btrfs_key key;
struct btrfs_path *path;
path = btrfs_alloc_path();
BUG_ON(!path);
key.objectid = start;
key.offset = len;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
0, 0);
btrfs_free_path(path);
return ret;
}
/*
* Back reference rules. Back refs have three main goals:
*
* 1) differentiate between all holders of references to an extent so that
* when a reference is dropped we can make sure it was a valid reference
* before freeing the extent.
*
* 2) Provide enough information to quickly find the holders of an extent
* if we notice a given block is corrupted or bad.
*
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
* maintenance. This is actually the same as #2, but with a slightly
* different use case.
*
* There are two kinds of back refs. The implicit back refs is optimized
* for pointers in non-shared tree blocks. For a given pointer in a block,
* back refs of this kind provide information about the block's owner tree
* and the pointer's key. These information allow us to find the block by
* b-tree searching. The full back refs is for pointers in tree blocks not
* referenced by their owner trees. The location of tree block is recorded
* in the back refs. Actually the full back refs is generic, and can be
* used in all cases the implicit back refs is used. The major shortcoming
* of the full back refs is its overhead. Every time a tree block gets
* COWed, we have to update back refs entry for all pointers in it.
*
* For a newly allocated tree block, we use implicit back refs for
* pointers in it. This means most tree related operations only involve
* implicit back refs. For a tree block created in old transaction, the
* only way to drop a reference to it is COW it. So we can detect the
* event that tree block loses its owner tree's reference and do the
* back refs conversion.
*
* When a tree block is COW'd through a tree, there are four cases:
*
* The reference count of the block is one and the tree is the block's
* owner tree. Nothing to do in this case.
*
* The reference count of the block is one and the tree is not the
* block's owner tree. In this case, full back refs is used for pointers
* in the block. Remove these full back refs, add implicit back refs for
* every pointers in the new block.
*
* The reference count of the block is greater than one and the tree is
* the block's owner tree. In this case, implicit back refs is used for
* pointers in the block. Add full back refs for every pointers in the
* block, increase lower level extents' reference counts. The original
* implicit back refs are entailed to the new block.
*
* The reference count of the block is greater than one and the tree is
* not the block's owner tree. Add implicit back refs for every pointer in
* the new block, increase lower level extents' reference count.
*
* Back Reference Key composing:
*
* The key objectid corresponds to the first byte in the extent,
* The key type is used to differentiate between types of back refs.
* There are different meanings of the key offset for different types
* of back refs.
*
* File extents can be referenced by:
*
* - multiple snapshots, subvolumes, or different generations in one subvol
* - different files inside a single subvolume
* - different offsets inside a file (bookend extents in file.c)
*
* The extent ref structure for the implicit back refs has fields for:
*
* - Objectid of the subvolume root
* - objectid of the file holding the reference
* - original offset in the file
* - how many bookend extents
*
* The key offset for the implicit back refs is hash of the first
* three fields.
*
* The extent ref structure for the full back refs has field for:
*
* - number of pointers in the tree leaf
*
* The key offset for the implicit back refs is the first byte of
* the tree leaf
*
* When a file extent is allocated, The implicit back refs is used.
* the fields are filled in:
*
* (root_key.objectid, inode objectid, offset in file, 1)
*
* When a file extent is removed file truncation, we find the
* corresponding implicit back refs and check the following fields:
*
* (btrfs_header_owner(leaf), inode objectid, offset in file)
*
* Btree extents can be referenced by:
*
* - Different subvolumes
*
* Both the implicit back refs and the full back refs for tree blocks
* only consist of key. The key offset for the implicit back refs is
* objectid of block's owner tree. The key offset for the full back refs
* is the first byte of parent block.
*
* When implicit back refs is used, information about the lowest key and
* level of the tree block are required. These information are stored in
* tree block info structure.
*/
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 owner, u32 extra_size)
{
struct btrfs_extent_item *item;
struct btrfs_extent_item_v0 *ei0;
struct btrfs_extent_ref_v0 *ref0;
struct btrfs_tree_block_info *bi;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_key found_key;
u32 new_size = sizeof(*item);
u64 refs;
int ret;
leaf = path->nodes[0];
BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ei0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item_v0);
refs = btrfs_extent_refs_v0(leaf, ei0);
if (owner == (u64)-1) {
while (1) {
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
return ret;
BUG_ON(ret > 0);
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key,
path->slots[0]);
BUG_ON(key.objectid != found_key.objectid);
if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
path->slots[0]++;
continue;
}
ref0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref_v0);
owner = btrfs_ref_objectid_v0(leaf, ref0);
break;
}
}
btrfs_release_path(root, path);
if (owner < BTRFS_FIRST_FREE_OBJECTID)
new_size += sizeof(*bi);
new_size -= sizeof(*ei0);
ret = btrfs_search_slot(trans, root, &key, path,
new_size + extra_size, 1);
if (ret < 0)
return ret;
BUG_ON(ret);
ret = btrfs_extend_item(trans, root, path, new_size);
BUG_ON(ret);
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
btrfs_set_extent_refs(leaf, item, refs);
/* FIXME: get real generation */
btrfs_set_extent_generation(leaf, item, 0);
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
btrfs_set_extent_flags(leaf, item,
BTRFS_EXTENT_FLAG_TREE_BLOCK |
BTRFS_BLOCK_FLAG_FULL_BACKREF);
bi = (struct btrfs_tree_block_info *)(item + 1);
/* FIXME: get first key of the block */
memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
btrfs_set_tree_block_level(leaf, bi, (int)owner);
} else {
btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
}
btrfs_mark_buffer_dirty(leaf);
return 0;
}
#endif
static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
{
u32 high_crc = ~(u32)0;
u32 low_crc = ~(u32)0;
__le64 lenum;
lenum = cpu_to_le64(root_objectid);
high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
lenum = cpu_to_le64(owner);
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
lenum = cpu_to_le64(offset);
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
return ((u64)high_crc << 31) ^ (u64)low_crc;
}
static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
struct btrfs_extent_data_ref *ref)
{
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
btrfs_extent_data_ref_objectid(leaf, ref),
btrfs_extent_data_ref_offset(leaf, ref));
}
static int match_extent_data_ref(struct extent_buffer *leaf,
struct btrfs_extent_data_ref *ref,
u64 root_objectid, u64 owner, u64 offset)
{
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
btrfs_extent_data_ref_offset(leaf, ref) != offset)
return 0;
return 1;
}
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid,
u64 owner, u64 offset)
{
struct btrfs_key key;
struct btrfs_extent_data_ref *ref;
struct extent_buffer *leaf;
u32 nritems;
int ret;
int recow;
int err = -ENOENT;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_DATA_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_EXTENT_DATA_REF_KEY;
key.offset = hash_extent_data_ref(root_objectid,
owner, offset);
}
again:
recow = 0;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0) {
err = ret;
goto fail;
}
if (parent) {
if (!ret)
return 0;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
key.type = BTRFS_EXTENT_REF_V0_KEY;
btrfs_release_path(root, path);
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0) {
err = ret;
goto fail;
}
if (!ret)
return 0;
#endif
goto fail;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
while (1) {
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
err = ret;
if (ret)
goto fail;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
recow = 1;
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != bytenr ||
key.type != BTRFS_EXTENT_DATA_REF_KEY)
goto fail;
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (match_extent_data_ref(leaf, ref, root_objectid,
owner, offset)) {
if (recow) {
btrfs_release_path(root, path);
goto again;
}
err = 0;
break;
}
path->slots[0]++;
}
fail:
return err;
}
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid, u64 owner,
u64 offset, int refs_to_add)
{
struct btrfs_key key;
struct extent_buffer *leaf;
u32 size;
u32 num_refs;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_DATA_REF_KEY;
key.offset = parent;
size = sizeof(struct btrfs_shared_data_ref);
} else {
key.type = BTRFS_EXTENT_DATA_REF_KEY;
key.offset = hash_extent_data_ref(root_objectid,
owner, offset);
size = sizeof(struct btrfs_extent_data_ref);
}
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
if (ret && ret != -EEXIST)
goto fail;
leaf = path->nodes[0];
if (parent) {
struct btrfs_shared_data_ref *ref;
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
if (ret == 0) {
btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
} else {
num_refs = btrfs_shared_data_ref_count(leaf, ref);
num_refs += refs_to_add;
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
}
} else {
struct btrfs_extent_data_ref *ref;
while (ret == -EEXIST) {
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (match_extent_data_ref(leaf, ref, root_objectid,
owner, offset))
break;
btrfs_release_path(root, path);
key.offset++;
ret = btrfs_insert_empty_item(trans, root, path, &key,
size);
if (ret && ret != -EEXIST)
goto fail;
leaf = path->nodes[0];
}
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
if (ret == 0) {
btrfs_set_extent_data_ref_root(leaf, ref,
root_objectid);
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
} else {
num_refs = btrfs_extent_data_ref_count(leaf, ref);
num_refs += refs_to_add;
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
}
}
btrfs_mark_buffer_dirty(leaf);
ret = 0;
fail:
btrfs_release_path(root, path);
return ret;
}
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
int refs_to_drop)
{
struct btrfs_key key;
struct btrfs_extent_data_ref *ref1 = NULL;
struct btrfs_shared_data_ref *ref2 = NULL;
struct extent_buffer *leaf;
u32 num_refs = 0;
int ret = 0;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
ref2 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
struct btrfs_extent_ref_v0 *ref0;
ref0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref_v0);
num_refs = btrfs_ref_count_v0(leaf, ref0);
#endif
} else {
BUG();
}
BUG_ON(num_refs < refs_to_drop);
num_refs -= refs_to_drop;
if (num_refs == 0) {
ret = btrfs_del_item(trans, root, path);
} else {
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
else {
struct btrfs_extent_ref_v0 *ref0;
ref0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref_v0);
btrfs_set_ref_count_v0(leaf, ref0, num_refs);
}
#endif
btrfs_mark_buffer_dirty(leaf);
}
return ret;
}
static noinline u32 extent_data_ref_count(struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_extent_data_ref *ref1;
struct btrfs_shared_data_ref *ref2;
u32 num_refs = 0;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (iref) {
if (btrfs_extent_inline_ref_type(leaf, iref) ==
BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else {
ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
}
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
ref1 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_data_ref);
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
ref2 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_shared_data_ref);
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
struct btrfs_extent_ref_v0 *ref0;
ref0 = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref_v0);
num_refs = btrfs_ref_count_v0(leaf, ref0);
#endif
} else {
WARN_ON(1);
}
return num_refs;
}
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid)
{
struct btrfs_key key;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_TREE_BLOCK_REF_KEY;
key.offset = root_objectid;
}
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -ENOENT;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (ret == -ENOENT && parent) {
btrfs_release_path(root, path);
key.type = BTRFS_EXTENT_REF_V0_KEY;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -ENOENT;
}
#endif
return ret;
}
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent,
u64 root_objectid)
{
struct btrfs_key key;
int ret;
key.objectid = bytenr;
if (parent) {
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
key.offset = parent;
} else {
key.type = BTRFS_TREE_BLOCK_REF_KEY;
key.offset = root_objectid;
}
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
btrfs_release_path(root, path);
return ret;
}
static inline int extent_ref_type(u64 parent, u64 owner)
{
int type;
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
if (parent > 0)
type = BTRFS_SHARED_BLOCK_REF_KEY;
else
type = BTRFS_TREE_BLOCK_REF_KEY;
} else {
if (parent > 0)
type = BTRFS_SHARED_DATA_REF_KEY;
else
type = BTRFS_EXTENT_DATA_REF_KEY;
}
return type;
}
static int find_next_key(struct btrfs_path *path, int level,
struct btrfs_key *key)
{
for (; level < BTRFS_MAX_LEVEL; level++) {
if (!path->nodes[level])
break;
if (path->slots[level] + 1 >=
btrfs_header_nritems(path->nodes[level]))
continue;
if (level == 0)
btrfs_item_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
else
btrfs_node_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
return 0;
}
return 1;
}
/*
* look for inline back ref. if back ref is found, *ref_ret is set
* to the address of inline back ref, and 0 is returned.
*
* if back ref isn't found, *ref_ret is set to the address where it
* should be inserted, and -ENOENT is returned.
*
* if insert is true and there are too many inline back refs, the path
* points to the extent item, and -EAGAIN is returned.
*
* NOTE: inline back refs are ordered in the same way that back ref
* items in the tree are ordered.
*/
static noinline_for_stack
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref **ref_ret,
u64 bytenr, u64 num_bytes,
u64 parent, u64 root_objectid,
u64 owner, u64 offset, int insert)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
u64 flags;
u64 item_size;
unsigned long ptr;
unsigned long end;
int extra_size;
int type;
int want;
int ret;
int err = 0;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
want = extent_ref_type(parent, owner);
if (insert) {
extra_size = btrfs_extent_inline_ref_size(want);
path->keep_locks = 1;
} else
extra_size = -1;
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
if (ret < 0) {
err = ret;
goto out;
}
BUG_ON(ret);
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (item_size < sizeof(*ei)) {
if (!insert) {
err = -ENOENT;
goto out;
}
ret = convert_extent_item_v0(trans, root, path, owner,
extra_size);
if (ret < 0) {
err = ret;
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
}
#endif
BUG_ON(item_size < sizeof(*ei));
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
flags = btrfs_extent_flags(leaf, ei);
ptr = (unsigned long)(ei + 1);
end = (unsigned long)ei + item_size;
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
ptr += sizeof(struct btrfs_tree_block_info);
BUG_ON(ptr > end);
} else {
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
}
err = -ENOENT;
while (1) {
if (ptr >= end) {
WARN_ON(ptr > end);
break;
}
iref = (struct btrfs_extent_inline_ref *)ptr;
type = btrfs_extent_inline_ref_type(leaf, iref);
if (want < type)
break;
if (want > type) {
ptr += btrfs_extent_inline_ref_size(type);
continue;
}
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
struct btrfs_extent_data_ref *dref;
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
if (match_extent_data_ref(leaf, dref, root_objectid,
owner, offset)) {
err = 0;
break;
}
if (hash_extent_data_ref_item(leaf, dref) <
hash_extent_data_ref(root_objectid, owner, offset))
break;
} else {
u64 ref_offset;
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
if (parent > 0) {
if (parent == ref_offset) {
err = 0;
break;
}
if (ref_offset < parent)
break;
} else {
if (root_objectid == ref_offset) {
err = 0;
break;
}
if (ref_offset < root_objectid)
break;
}
}
ptr += btrfs_extent_inline_ref_size(type);
}
if (err == -ENOENT && insert) {
if (item_size + extra_size >=
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
err = -EAGAIN;
goto out;
}
/*
* To add new inline back ref, we have to make sure
* there is no corresponding back ref item.
* For simplicity, we just do not add new inline back
* ref if there is any kind of item for this block
*/
if (find_next_key(path, 0, &key) == 0 &&
key.objectid == bytenr &&
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
err = -EAGAIN;
goto out;
}
}
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
out:
if (insert) {
path->keep_locks = 0;
btrfs_unlock_up_safe(path, 1);
}
return err;
}
/*
* helper to add new inline back ref
*/
static noinline_for_stack
int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref,
u64 parent, u64 root_objectid,
u64 owner, u64 offset, int refs_to_add,
struct btrfs_delayed_extent_op *extent_op)
{
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
unsigned long ptr;
unsigned long end;
unsigned long item_offset;
u64 refs;
int size;
int type;
int ret;
leaf = path->nodes[0];
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
item_offset = (unsigned long)iref - (unsigned long)ei;
type = extent_ref_type(parent, owner);
size = btrfs_extent_inline_ref_size(type);
ret = btrfs_extend_item(trans, root, path, size);
BUG_ON(ret);
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(leaf, ei);
refs += refs_to_add;
btrfs_set_extent_refs(leaf, ei, refs);
if (extent_op)
__run_delayed_extent_op(extent_op, leaf, ei);
ptr = (unsigned long)ei + item_offset;
end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
if (ptr < end - size)
memmove_extent_buffer(leaf, ptr + size, ptr,
end - size - ptr);
iref = (struct btrfs_extent_inline_ref *)ptr;
btrfs_set_extent_inline_ref_type(leaf, iref, type);
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
struct btrfs_extent_data_ref *dref;
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
btrfs_set_extent_data_ref_offset(leaf, dref, offset);
btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
struct btrfs_shared_data_ref *sref;
sref = (struct btrfs_shared_data_ref *)(iref + 1);
btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
} else {
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
}
btrfs_mark_buffer_dirty(leaf);
return 0;
}
static int lookup_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref **ref_ret,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset)
{
int ret;
ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
bytenr, num_bytes, parent,
root_objectid, owner, offset, 0);
if (ret != -ENOENT)
return ret;
btrfs_release_path(root, path);
*ref_ret = NULL;
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
root_objectid);
} else {
ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
root_objectid, owner, offset);
}
return ret;
}
/*
* helper to update/remove inline back ref
*/
static noinline_for_stack
int update_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref,
int refs_to_mod,
struct btrfs_delayed_extent_op *extent_op)
{
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_extent_data_ref *dref = NULL;
struct btrfs_shared_data_ref *sref = NULL;
unsigned long ptr;
unsigned long end;
u32 item_size;
int size;
int type;
int ret;
u64 refs;
leaf = path->nodes[0];
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(leaf, ei);
WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
refs += refs_to_mod;
btrfs_set_extent_refs(leaf, ei, refs);
if (extent_op)
__run_delayed_extent_op(extent_op, leaf, ei);
type = btrfs_extent_inline_ref_type(leaf, iref);
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
refs = btrfs_extent_data_ref_count(leaf, dref);
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
sref = (struct btrfs_shared_data_ref *)(iref + 1);
refs = btrfs_shared_data_ref_count(leaf, sref);
} else {
refs = 1;
BUG_ON(refs_to_mod != -1);
}
BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
refs += refs_to_mod;
if (refs > 0) {
if (type == BTRFS_EXTENT_DATA_REF_KEY)
btrfs_set_extent_data_ref_count(leaf, dref, refs);
else
btrfs_set_shared_data_ref_count(leaf, sref, refs);
} else {
size = btrfs_extent_inline_ref_size(type);
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ptr = (unsigned long)iref;
end = (unsigned long)ei + item_size;
if (ptr + size < end)
memmove_extent_buffer(leaf, ptr, ptr + size,
end - ptr - size);
item_size -= size;
ret = btrfs_truncate_item(trans, root, path, item_size, 1);
BUG_ON(ret);
}
btrfs_mark_buffer_dirty(leaf);
return 0;
}
static noinline_for_stack
int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner,
u64 offset, int refs_to_add,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_extent_inline_ref *iref;
int ret;
ret = lookup_inline_extent_backref(trans, root, path, &iref,
bytenr, num_bytes, parent,
root_objectid, owner, offset, 1);
if (ret == 0) {
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
ret = update_inline_extent_backref(trans, root, path, iref,
refs_to_add, extent_op);
} else if (ret == -ENOENT) {
ret = setup_inline_extent_backref(trans, root, path, iref,
parent, root_objectid,
owner, offset, refs_to_add,
extent_op);
}
return ret;
}
static int insert_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 parent, u64 root_objectid,
u64 owner, u64 offset, int refs_to_add)
{
int ret;
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
BUG_ON(refs_to_add != 1);
ret = insert_tree_block_ref(trans, root, path, bytenr,
parent, root_objectid);
} else {
ret = insert_extent_data_ref(trans, root, path, bytenr,
parent, root_objectid,
owner, offset, refs_to_add);
}
return ret;
}
static int remove_extent_backref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_extent_inline_ref *iref,
int refs_to_drop, int is_data)
{
int ret;
BUG_ON(!is_data && refs_to_drop != 1);
if (iref) {
ret = update_inline_extent_backref(trans, root, path, iref,
-refs_to_drop, NULL);
} else if (is_data) {
ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
} else {
ret = btrfs_del_item(trans, root, path);
}
return ret;
}
#ifdef BIO_RW_DISCARD
static void btrfs_issue_discard(struct block_device *bdev,
u64 start, u64 len)
{
blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
DISCARD_FL_BARRIER);
}
#endif
static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
u64 num_bytes)
{
#ifdef BIO_RW_DISCARD
int ret;
u64 map_length = num_bytes;
struct btrfs_multi_bio *multi = NULL;
/* Tell the block device(s) that the sectors can be discarded */
ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
bytenr, &map_length, &multi, 0);
if (!ret) {
struct btrfs_bio_stripe *stripe = multi->stripes;
int i;
if (map_length > num_bytes)
map_length = num_bytes;
for (i = 0; i < multi->num_stripes; i++, stripe++) {
btrfs_issue_discard(stripe->dev->bdev,
stripe->physical,
map_length);
}
kfree(multi);
}
return ret;
#else
return 0;
#endif
}
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset)
{
int ret;
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
root_objectid == BTRFS_TREE_LOG_OBJECTID);
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
parent, root_objectid, (int)owner,
BTRFS_ADD_DELAYED_REF, NULL);
} else {
ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
parent, root_objectid, owner, offset,
BTRFS_ADD_DELAYED_REF, NULL);
}
return ret;
}
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes,
u64 parent, u64 root_objectid,
u64 owner, u64 offset, int refs_to_add,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_extent_item *item;
u64 refs;
int ret;
int err = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
path->leave_spinning = 1;
/* this will setup the path even if it fails to insert the back ref */
ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
path, bytenr, num_bytes, parent,
root_objectid, owner, offset,
refs_to_add, extent_op);
if (ret == 0)
goto out;
if (ret != -EAGAIN) {
err = ret;
goto out;
}
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(leaf, item);
btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
if (extent_op)
__run_delayed_extent_op(extent_op, leaf, item);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(root->fs_info->extent_root, path);
path->reada = 1;
path->leave_spinning = 1;
/* now insert the actual backref */
ret = insert_extent_backref(trans, root->fs_info->extent_root,
path, bytenr, parent, root_objectid,
owner, offset, refs_to_add);
BUG_ON(ret);
out:
btrfs_free_path(path);
return err;
}
static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op,
int insert_reserved)
{
int ret = 0;
struct btrfs_delayed_data_ref *ref;
struct btrfs_key ins;
u64 parent = 0;
u64 ref_root = 0;
u64 flags = 0;
ins.objectid = node->bytenr;
ins.offset = node->num_bytes;
ins.type = BTRFS_EXTENT_ITEM_KEY;
ref = btrfs_delayed_node_to_data_ref(node);
if (node->type == BTRFS_SHARED_DATA_REF_KEY)
parent = ref->parent;
else
ref_root = ref->root;
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
if (extent_op) {
BUG_ON(extent_op->update_key);
flags |= extent_op->flags_to_set;
}
ret = alloc_reserved_file_extent(trans, root,
parent, ref_root, flags,
ref->objectid, ref->offset,
&ins, node->ref_mod);
update_reserved_extents(root, ins.objectid, ins.offset, 0);
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
node->num_bytes, parent,
ref_root, ref->objectid,
ref->offset, node->ref_mod,
extent_op);
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
ret = __btrfs_free_extent(trans, root, node->bytenr,
node->num_bytes, parent,
ref_root, ref->objectid,
ref->offset, node->ref_mod,
extent_op);
} else {
BUG();
}
return ret;
}
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
struct extent_buffer *leaf,
struct btrfs_extent_item *ei)
{
u64 flags = btrfs_extent_flags(leaf, ei);
if (extent_op->update_flags) {
flags |= extent_op->flags_to_set;
btrfs_set_extent_flags(leaf, ei, flags);
}
if (extent_op->update_key) {
struct btrfs_tree_block_info *bi;
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
bi = (struct btrfs_tree_block_info *)(ei + 1);
btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
}
}
static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_key key;
struct btrfs_path *path;
struct btrfs_extent_item *ei;
struct extent_buffer *leaf;
u32 item_size;
int ret;
int err = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = node->bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = node->num_bytes;
path->reada = 1;
path->leave_spinning = 1;
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
path, 0, 1);
if (ret < 0) {
err = ret;
goto out;
}
if (ret > 0) {
err = -EIO;
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (item_size < sizeof(*ei)) {
ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
path, (u64)-1, 0);
if (ret < 0) {
err = ret;
goto out;
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
}
#endif
BUG_ON(item_size < sizeof(*ei));
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
__run_delayed_extent_op(extent_op, leaf, ei);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return err;
}
static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op,
int insert_reserved)
{
int ret = 0;
struct btrfs_delayed_tree_ref *ref;
struct btrfs_key ins;
u64 parent = 0;
u64 ref_root = 0;
ins.objectid = node->bytenr;
ins.offset = node->num_bytes;
ins.type = BTRFS_EXTENT_ITEM_KEY;
ref = btrfs_delayed_node_to_tree_ref(node);
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
parent = ref->parent;
else
ref_root = ref->root;
BUG_ON(node->ref_mod != 1);
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
BUG_ON(!extent_op || !extent_op->update_flags ||
!extent_op->update_key);
ret = alloc_reserved_tree_block(trans, root,
parent, ref_root,
extent_op->flags_to_set,
&extent_op->key,
ref->level, &ins);
update_reserved_extents(root, ins.objectid, ins.offset, 0);
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
node->num_bytes, parent, ref_root,
ref->level, 0, 1, extent_op);
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
ret = __btrfs_free_extent(trans, root, node->bytenr,
node->num_bytes, parent, ref_root,
ref->level, 0, 1, extent_op);
} else {
BUG();
}
return ret;
}
/* helper function to actually process a single delayed ref entry */
static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_delayed_ref_node *node,
struct btrfs_delayed_extent_op *extent_op,
int insert_reserved)
{
int ret;
if (btrfs_delayed_ref_is_head(node)) {
struct btrfs_delayed_ref_head *head;
/*
* we've hit the end of the chain and we were supposed
* to insert this extent into the tree. But, it got
* deleted before we ever needed to insert it, so all
* we have to do is clean up the accounting
*/
BUG_ON(extent_op);
head = btrfs_delayed_node_to_head(node);
if (insert_reserved) {
if (head->is_data) {
ret = btrfs_del_csums(trans, root,
node->bytenr,
node->num_bytes);
BUG_ON(ret);
}
btrfs_update_pinned_extents(root, node->bytenr,
node->num_bytes, 1);
update_reserved_extents(root, node->bytenr,
node->num_bytes, 0);
}
mutex_unlock(&head->mutex);
return 0;
}
if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
node->type == BTRFS_SHARED_BLOCK_REF_KEY)
ret = run_delayed_tree_ref(trans, root, node, extent_op,
insert_reserved);
else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
node->type == BTRFS_SHARED_DATA_REF_KEY)
ret = run_delayed_data_ref(trans, root, node, extent_op,
insert_reserved);
else
BUG();
return ret;
}
static noinline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head *head)
{
struct rb_node *node;
struct btrfs_delayed_ref_node *ref;
int action = BTRFS_ADD_DELAYED_REF;
again:
/*
* select delayed ref of type BTRFS_ADD_DELAYED_REF first.
* this prevents ref count from going down to zero when
* there still are pending delayed ref.
*/
node = rb_prev(&head->node.rb_node);
while (1) {
if (!node)
break;
ref = rb_entry(node, struct btrfs_delayed_ref_node,
rb_node);
if (ref->bytenr != head->node.bytenr)
break;
if (ref->action == action)
return ref;
node = rb_prev(node);
}
if (action == BTRFS_ADD_DELAYED_REF) {
action = BTRFS_DROP_DELAYED_REF;
goto again;
}
return NULL;
}
static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct list_head *cluster)
{
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
struct btrfs_delayed_ref_head *locked_ref = NULL;
struct btrfs_delayed_extent_op *extent_op;
int ret;
int count = 0;
int must_insert_reserved = 0;
delayed_refs = &trans->transaction->delayed_refs;
while (1) {
if (!locked_ref) {
/* pick a new head ref from the cluster list */
if (list_empty(cluster))
break;
locked_ref = list_entry(cluster->next,
struct btrfs_delayed_ref_head, cluster);
/* grab the lock that says we are going to process
* all the refs for this head */
ret = btrfs_delayed_ref_lock(trans, locked_ref);
/*
* we may have dropped the spin lock to get the head
* mutex lock, and that might have given someone else
* time to free the head. If that's true, it has been
* removed from our list and we can move on.
*/
if (ret == -EAGAIN) {
locked_ref = NULL;
count++;
continue;
}
}
/*
* record the must insert reserved flag before we
* drop the spin lock.
*/
must_insert_reserved = locked_ref->must_insert_reserved;
locked_ref->must_insert_reserved = 0;
extent_op = locked_ref->extent_op;
locked_ref->extent_op = NULL;
/*
* locked_ref is the head node, so we have to go one
* node back for any delayed ref updates
*/
ref = select_delayed_ref(locked_ref);
if (!ref) {
/* All delayed refs have been processed, Go ahead
* and send the head node to run_one_delayed_ref,
* so that any accounting fixes can happen
*/
ref = &locked_ref->node;
if (extent_op && must_insert_reserved) {
kfree(extent_op);
extent_op = NULL;
}
if (extent_op) {
spin_unlock(&delayed_refs->lock);
ret = run_delayed_extent_op(trans, root,
ref, extent_op);
BUG_ON(ret);
kfree(extent_op);
cond_resched();
spin_lock(&delayed_refs->lock);
continue;
}
list_del_init(&locked_ref->cluster);
locked_ref = NULL;
}
ref->in_tree = 0;
rb_erase(&ref->rb_node, &delayed_refs->root);
delayed_refs->num_entries--;
spin_unlock(&delayed_refs->lock);
ret = run_one_delayed_ref(trans, root, ref, extent_op,
must_insert_reserved);
BUG_ON(ret);
btrfs_put_delayed_ref(ref);
kfree(extent_op);
count++;
cond_resched();
spin_lock(&delayed_refs->lock);
}
return count;
}
/*
* this starts processing the delayed reference count updates and
* extent insertions we have queued up so far. count can be
* 0, which means to process everything in the tree at the start
* of the run (but not newly added entries), or it can be some target
* number you'd like to process.
*/
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root, unsigned long count)
{
struct rb_node *node;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
struct list_head cluster;
int ret;
int run_all = count == (unsigned long)-1;
int run_most = 0;
if (root == root->fs_info->extent_root)
root = root->fs_info->tree_root;
delayed_refs = &trans->transaction->delayed_refs;
INIT_LIST_HEAD(&cluster);
again:
spin_lock(&delayed_refs->lock);
if (count == 0) {
count = delayed_refs->num_entries * 2;
run_most = 1;
}
while (1) {
if (!(run_all || run_most) &&
delayed_refs->num_heads_ready < 64)
break;
/*
* go find something we can process in the rbtree. We start at
* the beginning of the tree, and then build a cluster
* of refs to process starting at the first one we are able to
* lock
*/
ret = btrfs_find_ref_cluster(trans, &cluster,
delayed_refs->run_delayed_start);
if (ret)
break;
ret = run_clustered_refs(trans, root, &cluster);
BUG_ON(ret < 0);
count -= min_t(unsigned long, ret, count);
if (count == 0)
break;
}
if (run_all) {
node = rb_first(&delayed_refs->root);
if (!node)
goto out;
count = (unsigned long)-1;
while (node) {
ref = rb_entry(node, struct btrfs_delayed_ref_node,
rb_node);
if (btrfs_delayed_ref_is_head(ref)) {
struct btrfs_delayed_ref_head *head;
head = btrfs_delayed_node_to_head(ref);
atomic_inc(&ref->refs);
spin_unlock(&delayed_refs->lock);
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(ref);
cond_resched();
goto again;
}
node = rb_next(node);
}
spin_unlock(&delayed_refs->lock);
schedule_timeout(1);
goto again;
}
out:
spin_unlock(&delayed_refs->lock);
return 0;
}
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 flags,
int is_data)
{
struct btrfs_delayed_extent_op *extent_op;
int ret;
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
if (!extent_op)
return -ENOMEM;
extent_op->flags_to_set = flags;
extent_op->update_flags = 1;
extent_op->update_key = 0;
extent_op->is_data = is_data ? 1 : 0;
ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
if (ret)
kfree(extent_op);
return ret;
}
static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 objectid, u64 offset, u64 bytenr)
{
struct btrfs_delayed_ref_head *head;
struct btrfs_delayed_ref_node *ref;
struct btrfs_delayed_data_ref *data_ref;
struct btrfs_delayed_ref_root *delayed_refs;
struct rb_node *node;
int ret = 0;
ret = -ENOENT;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
head = btrfs_find_delayed_ref_head(trans, bytenr);
if (!head)
goto out;
if (!mutex_trylock(&head->mutex)) {
atomic_inc(&head->node.refs);
spin_unlock(&delayed_refs->lock);
btrfs_release_path(root->fs_info->extent_root, path);
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(&head->node);
return -EAGAIN;
}
node = rb_prev(&head->node.rb_node);
if (!node)
goto out_unlock;
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
if (ref->bytenr != bytenr)
goto out_unlock;
ret = 1;
if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
goto out_unlock;
data_ref = btrfs_delayed_node_to_data_ref(ref);
node = rb_prev(node);
if (node) {
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
if (ref->bytenr == bytenr)
goto out_unlock;
}
if (data_ref->root != root->root_key.objectid ||
data_ref->objectid != objectid || data_ref->offset != offset)
goto out_unlock;
ret = 0;
out_unlock:
mutex_unlock(&head->mutex);
out:
spin_unlock(&delayed_refs->lock);
return ret;
}
static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 objectid, u64 offset, u64 bytenr)
{
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct extent_buffer *leaf;
struct btrfs_extent_data_ref *ref;
struct btrfs_extent_inline_ref *iref;
struct btrfs_extent_item *ei;
struct btrfs_key key;
u32 item_size;
int ret;
key.objectid = bytenr;
key.offset = (u64)-1;
key.type = BTRFS_EXTENT_ITEM_KEY;
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
BUG_ON(ret == 0);
ret = -ENOENT;
if (path->slots[0] == 0)
goto out;
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
goto out;
ret = 1;
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (item_size < sizeof(*ei)) {
WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
goto out;
}
#endif
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
if (item_size != sizeof(*ei) +
btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
goto out;
if (btrfs_extent_generation(leaf, ei) <=
btrfs_root_last_snapshot(&root->root_item))
goto out;
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
if (btrfs_extent_inline_ref_type(leaf, iref) !=
BTRFS_EXTENT_DATA_REF_KEY)
goto out;
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
if (btrfs_extent_refs(leaf, ei) !=
btrfs_extent_data_ref_count(leaf, ref) ||
btrfs_extent_data_ref_root(leaf, ref) !=
root->root_key.objectid ||
btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
btrfs_extent_data_ref_offset(leaf, ref) != offset)
goto out;
ret = 0;
out:
return ret;
}
int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 offset, u64 bytenr)
{
struct btrfs_path *path;
int ret;
int ret2;
path = btrfs_alloc_path();
if (!path)
return -ENOENT;
do {
ret = check_committed_ref(trans, root, path, objectid,
offset, bytenr);
if (ret && ret != -ENOENT)
goto out;
ret2 = check_delayed_ref(trans, root, path, objectid,
offset, bytenr);
} while (ret2 == -EAGAIN);
if (ret2 && ret2 != -ENOENT) {
ret = ret2;
goto out;
}
if (ret != -ENOENT || ret2 != -ENOENT)
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
#if 0
int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, u32 nr_extents)
{
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
u64 root_gen;
u32 nritems;
int i;
int level;
int ret = 0;
int shared = 0;
if (!root->ref_cows)
return 0;
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
shared = 0;
root_gen = root->root_key.offset;
} else {
shared = 1;
root_gen = trans->transid - 1;
}
level = btrfs_header_level(buf);
nritems = btrfs_header_nritems(buf);
if (level == 0) {
struct btrfs_leaf_ref *ref;
struct btrfs_extent_info *info;
ref = btrfs_alloc_leaf_ref(root, nr_extents);
if (!ref) {
ret = -ENOMEM;
goto out;
}
ref->root_gen = root_gen;
ref->bytenr = buf->start;
ref->owner = btrfs_header_owner(buf);
ref->generation = btrfs_header_generation(buf);
ref->nritems = nr_extents;
info = ref->extents;
for (i = 0; nr_extents > 0 && i < nritems; i++) {
u64 disk_bytenr;
btrfs_item_key_to_cpu(buf, &key, i);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(buf, i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(buf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
if (disk_bytenr == 0)
continue;
info->bytenr = disk_bytenr;
info->num_bytes =
btrfs_file_extent_disk_num_bytes(buf, fi);
info->objectid = key.objectid;
info->offset = key.offset;
info++;
}
ret = btrfs_add_leaf_ref(root, ref, shared);
if (ret == -EEXIST && shared) {
struct btrfs_leaf_ref *old;
old = btrfs_lookup_leaf_ref(root, ref->bytenr);
BUG_ON(!old);
btrfs_remove_leaf_ref(root, old);
btrfs_free_leaf_ref(root, old);
ret = btrfs_add_leaf_ref(root, ref, shared);
}
WARN_ON(ret);
btrfs_free_leaf_ref(root, ref);
}
out:
return ret;
}
/* when a block goes through cow, we update the reference counts of
* everything that block points to. The internal pointers of the block
* can be in just about any order, and it is likely to have clusters of
* things that are close together and clusters of things that are not.
*
* To help reduce the seeks that come with updating all of these reference
* counts, sort them by byte number before actual updates are done.
*
* struct refsort is used to match byte number to slot in the btree block.
* we sort based on the byte number and then use the slot to actually
* find the item.
*
* struct refsort is smaller than strcut btrfs_item and smaller than
* struct btrfs_key_ptr. Since we're currently limited to the page size
* for a btree block, there's no way for a kmalloc of refsorts for a
* single node to be bigger than a page.
*/
struct refsort {
u64 bytenr;
u32 slot;
};
/*
* for passing into sort()
*/
static int refsort_cmp(const void *a_void, const void *b_void)
{
const struct refsort *a = a_void;
const struct refsort *b = b_void;
if (a->bytenr < b->bytenr)
return -1;
if (a->bytenr > b->bytenr)
return 1;
return 0;
}
#endif
static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf,
int full_backref, int inc)
{
u64 bytenr;
u64 num_bytes;
u64 parent;
u64 ref_root;
u32 nritems;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
int i;
int level;
int ret = 0;
int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
u64, u64, u64, u64, u64, u64);
ref_root = btrfs_header_owner(buf);
nritems = btrfs_header_nritems(buf);
level = btrfs_header_level(buf);
if (!root->ref_cows && level == 0)
return 0;
if (inc)
process_func = btrfs_inc_extent_ref;
else
process_func = btrfs_free_extent;
if (full_backref)
parent = buf->start;
else
parent = 0;
for (i = 0; i < nritems; i++) {
if (level == 0) {
btrfs_item_key_to_cpu(buf, &key, i);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(buf, i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(buf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
if (bytenr == 0)
continue;
num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
key.offset -= btrfs_file_extent_offset(buf, fi);
ret = process_func(trans, root, bytenr, num_bytes,
parent, ref_root, key.objectid,
key.offset);
if (ret)
goto fail;
} else {
bytenr = btrfs_node_blockptr(buf, i);
num_bytes = btrfs_level_size(root, level - 1);
ret = process_func(trans, root, bytenr, num_bytes,
parent, ref_root, level - 1, 0);
if (ret)
goto fail;
}
}
return 0;
fail:
BUG();
return ret;
}
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, int full_backref)
{
return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
}
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf, int full_backref)
{
return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
}
static int write_one_cache_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_block_group_cache *cache)
{
int ret;
struct btrfs_root *extent_root = root->fs_info->extent_root;
unsigned long bi;
struct extent_buffer *leaf;
ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
if (ret < 0)
goto fail;
BUG_ON(ret);
leaf = path->nodes[0];
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(extent_root, path);
fail:
if (ret)
return ret;
return 0;
}
static struct btrfs_block_group_cache *
next_block_group(struct btrfs_root *root,
struct btrfs_block_group_cache *cache)
{
struct rb_node *node;
spin_lock(&root->fs_info->block_group_cache_lock);
node = rb_next(&cache->cache_node);
btrfs_put_block_group(cache);
if (node) {
cache = rb_entry(node, struct btrfs_block_group_cache,
cache_node);
atomic_inc(&cache->count);
} else
cache = NULL;
spin_unlock(&root->fs_info->block_group_cache_lock);
return cache;
}
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_group_cache *cache;
int err = 0;
struct btrfs_path *path;
u64 last = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while (1) {
if (last == 0) {
err = btrfs_run_delayed_refs(trans, root,
(unsigned long)-1);
BUG_ON(err);
}
cache = btrfs_lookup_first_block_group(root->fs_info, last);
while (cache) {
if (cache->dirty)
break;
cache = next_block_group(root, cache);
}
if (!cache) {
if (last == 0)
break;
last = 0;
continue;
}
cache->dirty = 0;
last = cache->key.objectid + cache->key.offset;
err = write_one_cache_group(trans, root, path, cache);
BUG_ON(err);
btrfs_put_block_group(cache);
}
btrfs_free_path(path);
return 0;
}
int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
{
struct btrfs_block_group_cache *block_group;
int readonly = 0;
block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
if (!block_group || block_group->ro)
readonly = 1;
if (block_group)
btrfs_put_block_group(block_group);
return readonly;
}
static int update_space_info(struct btrfs_fs_info *info, u64 flags,
u64 total_bytes, u64 bytes_used,
struct btrfs_space_info **space_info)
{
struct btrfs_space_info *found;
found = __find_space_info(info, flags);
if (found) {
spin_lock(&found->lock);
found->total_bytes += total_bytes;
found->bytes_used += bytes_used;
found->full = 0;
spin_unlock(&found->lock);
*space_info = found;
return 0;
}
found = kzalloc(sizeof(*found), GFP_NOFS);
if (!found)
return -ENOMEM;
INIT_LIST_HEAD(&found->block_groups);
init_rwsem(&found->groups_sem);
spin_lock_init(&found->lock);
found->flags = flags;
found->total_bytes = total_bytes;
found->bytes_used = bytes_used;
found->bytes_pinned = 0;
found->bytes_reserved = 0;
found->bytes_readonly = 0;
found->bytes_delalloc = 0;
found->full = 0;
found->force_alloc = 0;
*space_info = found;
list_add_rcu(&found->list, &info->space_info);
atomic_set(&found->caching_threads, 0);
return 0;
}
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
{
u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_DUP);
if (extra_flags) {
if (flags & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits |= extra_flags;
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits |= extra_flags;
}
}
static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
{
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
if (!cache->ro) {
cache->space_info->bytes_readonly += cache->key.offset -
btrfs_block_group_used(&cache->item);
cache->ro = 1;
}
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
}
u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
{
u64 num_devices = root->fs_info->fs_devices->rw_devices;
if (num_devices == 1)
flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
if (num_devices < 4)
flags &= ~BTRFS_BLOCK_GROUP_RAID10;
if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
(flags & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))) {
flags &= ~BTRFS_BLOCK_GROUP_DUP;
}
if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
(flags & BTRFS_BLOCK_GROUP_RAID10)) {
flags &= ~BTRFS_BLOCK_GROUP_RAID1;
}
if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
((flags & BTRFS_BLOCK_GROUP_RAID1) |
(flags & BTRFS_BLOCK_GROUP_RAID10) |
(flags & BTRFS_BLOCK_GROUP_DUP)))
flags &= ~BTRFS_BLOCK_GROUP_RAID0;
return flags;
}
static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
{
struct btrfs_fs_info *info = root->fs_info;
u64 alloc_profile;
if (data) {
alloc_profile = info->avail_data_alloc_bits &
info->data_alloc_profile;
data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
} else if (root == root->fs_info->chunk_root) {
alloc_profile = info->avail_system_alloc_bits &
info->system_alloc_profile;
data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
} else {
alloc_profile = info->avail_metadata_alloc_bits &
info->metadata_alloc_profile;
data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
}
return btrfs_reduce_alloc_profile(root, data);
}
void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
{
u64 alloc_target;
alloc_target = btrfs_get_alloc_profile(root, 1);
BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
alloc_target);
}
/*
* for now this just makes sure we have at least 5% of our metadata space free
* for use.
*/
int btrfs_check_metadata_free_space(struct btrfs_root *root)
{
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_space_info *meta_sinfo;
u64 alloc_target, thresh;
int committed = 0, ret;
/* get the space info for where the metadata will live */
alloc_target = btrfs_get_alloc_profile(root, 0);
meta_sinfo = __find_space_info(info, alloc_target);
again:
spin_lock(&meta_sinfo->lock);
if (!meta_sinfo->full)
thresh = meta_sinfo->total_bytes * 80;
else
thresh = meta_sinfo->total_bytes * 95;
do_div(thresh, 100);
if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly > thresh) {
struct btrfs_trans_handle *trans;
if (!meta_sinfo->full) {
meta_sinfo->force_alloc = 1;
spin_unlock(&meta_sinfo->lock);
trans = btrfs_start_transaction(root, 1);
if (!trans)
return -ENOMEM;
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2 * 1024 * 1024, alloc_target, 0);
btrfs_end_transaction(trans, root);
goto again;
}
spin_unlock(&meta_sinfo->lock);
if (!committed) {
committed = 1;
trans = btrfs_join_transaction(root, 1);
if (!trans)
return -ENOMEM;
ret = btrfs_commit_transaction(trans, root);
if (ret)
return ret;
goto again;
}
return -ENOSPC;
}
spin_unlock(&meta_sinfo->lock);
return 0;
}
/*
* This will check the space that the inode allocates from to make sure we have
* enough space for bytes.
*/
int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
u64 bytes)
{
struct btrfs_space_info *data_sinfo;
int ret = 0, committed = 0;
/* make sure bytes are sectorsize aligned */
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
data_sinfo = BTRFS_I(inode)->space_info;
again:
/* make sure we have enough space to handle the data first */
spin_lock(&data_sinfo->lock);
if (data_sinfo->total_bytes - data_sinfo->bytes_used -
data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
data_sinfo->bytes_may_use < bytes) {
struct btrfs_trans_handle *trans;
/*
* if we don't have enough free bytes in this space then we need
* to alloc a new chunk.
*/
if (!data_sinfo->full) {
u64 alloc_target;
data_sinfo->force_alloc = 1;
spin_unlock(&data_sinfo->lock);
alloc_target = btrfs_get_alloc_profile(root, 1);
trans = btrfs_start_transaction(root, 1);
if (!trans)
return -ENOMEM;
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
bytes + 2 * 1024 * 1024,
alloc_target, 0);
btrfs_end_transaction(trans, root);
if (ret)
return ret;
goto again;
}
spin_unlock(&data_sinfo->lock);
/* commit the current transaction and try again */
if (!committed) {
committed = 1;
trans = btrfs_join_transaction(root, 1);
if (!trans)
return -ENOMEM;
ret = btrfs_commit_transaction(trans, root);
if (ret)
return ret;
goto again;
}
printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
", %llu bytes_used, %llu bytes_reserved, "
"%llu bytes_pinned, %llu bytes_readonly, %llu may use "
"%llu total\n", (unsigned long long)bytes,
(unsigned long long)data_sinfo->bytes_delalloc,
(unsigned long long)data_sinfo->bytes_used,
(unsigned long long)data_sinfo->bytes_reserved,
(unsigned long long)data_sinfo->bytes_pinned,
(unsigned long long)data_sinfo->bytes_readonly,
(unsigned long long)data_sinfo->bytes_may_use,
(unsigned long long)data_sinfo->total_bytes);
return -ENOSPC;
}
data_sinfo->bytes_may_use += bytes;
BTRFS_I(inode)->reserved_bytes += bytes;
spin_unlock(&data_sinfo->lock);
return btrfs_check_metadata_free_space(root);
}
/*
* if there was an error for whatever reason after calling
* btrfs_check_data_free_space, call this so we can cleanup the counters.
*/
void btrfs_free_reserved_data_space(struct btrfs_root *root,
struct inode *inode, u64 bytes)
{
struct btrfs_space_info *data_sinfo;
/* make sure bytes are sectorsize aligned */
bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
data_sinfo = BTRFS_I(inode)->space_info;
spin_lock(&data_sinfo->lock);
data_sinfo->bytes_may_use -= bytes;
BTRFS_I(inode)->reserved_bytes -= bytes;
spin_unlock(&data_sinfo->lock);
}
/* called when we are adding a delalloc extent to the inode's io_tree */
void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
u64 bytes)
{
struct btrfs_space_info *data_sinfo;
/* get the space info for where this inode will be storing its data */
data_sinfo = BTRFS_I(inode)->space_info;
/* make sure we have enough space to handle the data first */
spin_lock(&data_sinfo->lock);
data_sinfo->bytes_delalloc += bytes;
/*
* we are adding a delalloc extent without calling
* btrfs_check_data_free_space first. This happens on a weird
* writepage condition, but shouldn't hurt our accounting
*/
if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
BTRFS_I(inode)->reserved_bytes = 0;
} else {
data_sinfo->bytes_may_use -= bytes;
BTRFS_I(inode)->reserved_bytes -= bytes;
}
spin_unlock(&data_sinfo->lock);
}
/* called when we are clearing an delalloc extent from the inode's io_tree */
void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
u64 bytes)
{
struct btrfs_space_info *info;
info = BTRFS_I(inode)->space_info;
spin_lock(&info->lock);
info->bytes_delalloc -= bytes;
spin_unlock(&info->lock);
}
static void force_metadata_allocation(struct btrfs_fs_info *info)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list) {
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
found->force_alloc = 1;
}
rcu_read_unlock();
}
static int do_chunk_alloc(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root, u64 alloc_bytes,
u64 flags, int force)
{
struct btrfs_space_info *space_info;
struct btrfs_fs_info *fs_info = extent_root->fs_info;
u64 thresh;
int ret = 0;
mutex_lock(&fs_info->chunk_mutex);
flags = btrfs_reduce_alloc_profile(extent_root, flags);
space_info = __find_space_info(extent_root->fs_info, flags);
if (!space_info) {
ret = update_space_info(extent_root->fs_info, flags,
0, 0, &space_info);
BUG_ON(ret);
}
BUG_ON(!space_info);
spin_lock(&space_info->lock);
if (space_info->force_alloc) {
force = 1;
space_info->force_alloc = 0;
}
if (space_info->full) {
spin_unlock(&space_info->lock);
goto out;
}
thresh = space_info->total_bytes - space_info->bytes_readonly;
thresh = div_factor(thresh, 6);
if (!force &&
(space_info->bytes_used + space_info->bytes_pinned +
space_info->bytes_reserved + alloc_bytes) < thresh) {
spin_unlock(&space_info->lock);
goto out;
}
spin_unlock(&space_info->lock);
/*
* if we're doing a data chunk, go ahead and make sure that
* we keep a reasonable number of metadata chunks allocated in the
* FS as well.
*/
if (flags & BTRFS_BLOCK_GROUP_DATA) {
fs_info->data_chunk_allocations++;
if (!(fs_info->data_chunk_allocations %
fs_info->metadata_ratio))
force_metadata_allocation(fs_info);
}
ret = btrfs_alloc_chunk(trans, extent_root, flags);
if (ret)
space_info->full = 1;
out:
mutex_unlock(&extent_root->fs_info->chunk_mutex);
return ret;
}
static int update_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, int alloc,
int mark_free)
{
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
u64 total = num_bytes;
u64 old_val;
u64 byte_in_group;
/* block accounting for super block */
spin_lock(&info->delalloc_lock);
old_val = btrfs_super_bytes_used(&info->super_copy);
if (alloc)
old_val += num_bytes;
else
old_val -= num_bytes;
btrfs_set_super_bytes_used(&info->super_copy, old_val);
/* block accounting for root item */
old_val = btrfs_root_used(&root->root_item);
if (alloc)
old_val += num_bytes;
else
old_val -= num_bytes;
btrfs_set_root_used(&root->root_item, old_val);
spin_unlock(&info->delalloc_lock);
while (total) {
cache = btrfs_lookup_block_group(info, bytenr);
if (!cache)
return -1;
byte_in_group = bytenr - cache->key.objectid;
WARN_ON(byte_in_group > cache->key.offset);
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
cache->dirty = 1;
old_val = btrfs_block_group_used(&cache->item);
num_bytes = min(total, cache->key.offset - byte_in_group);
if (alloc) {
old_val += num_bytes;
cache->space_info->bytes_used += num_bytes;
if (cache->ro)
cache->space_info->bytes_readonly -= num_bytes;
btrfs_set_block_group_used(&cache->item, old_val);
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
} else {
old_val -= num_bytes;
cache->space_info->bytes_used -= num_bytes;
if (cache->ro)
cache->space_info->bytes_readonly += num_bytes;
btrfs_set_block_group_used(&cache->item, old_val);
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
if (mark_free) {
int ret;
ret = btrfs_discard_extent(root, bytenr,
num_bytes);
WARN_ON(ret);
ret = btrfs_add_free_space(cache, bytenr,
num_bytes);
WARN_ON(ret);
}
}
btrfs_put_block_group(cache);
total -= num_bytes;
bytenr += num_bytes;
}
return 0;
}
static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
{
struct btrfs_block_group_cache *cache;
u64 bytenr;
cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
if (!cache)
return 0;
bytenr = cache->key.objectid;
btrfs_put_block_group(cache);
return bytenr;
}
int btrfs_update_pinned_extents(struct btrfs_root *root,
u64 bytenr, u64 num, int pin)
{
u64 len;
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *fs_info = root->fs_info;
if (pin)
set_extent_dirty(&fs_info->pinned_extents,
bytenr, bytenr + num - 1, GFP_NOFS);
while (num > 0) {
cache = btrfs_lookup_block_group(fs_info, bytenr);
BUG_ON(!cache);
len = min(num, cache->key.offset -
(bytenr - cache->key.objectid));
if (pin) {
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
cache->pinned += len;
cache->space_info->bytes_pinned += len;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
fs_info->total_pinned += len;
} else {
int unpin = 0;
/*
* in order to not race with the block group caching, we
* only want to unpin the extent if we are cached. If
* we aren't cached, we want to start async caching this
* block group so we can free the extent the next time
* around.
*/
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
unpin = (cache->cached == BTRFS_CACHE_FINISHED);
if (likely(unpin)) {
cache->pinned -= len;
cache->space_info->bytes_pinned -= len;
fs_info->total_pinned -= len;
}
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
if (likely(unpin))
clear_extent_dirty(&fs_info->pinned_extents,
bytenr, bytenr + len -1,
GFP_NOFS);
else
cache_block_group(cache);
if (unpin)
btrfs_add_free_space(cache, bytenr, len);
}
btrfs_put_block_group(cache);
bytenr += len;
num -= len;
}
return 0;
}
static int update_reserved_extents(struct btrfs_root *root,
u64 bytenr, u64 num, int reserve)
{
u64 len;
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *fs_info = root->fs_info;
while (num > 0) {
cache = btrfs_lookup_block_group(fs_info, bytenr);
BUG_ON(!cache);
len = min(num, cache->key.offset -
(bytenr - cache->key.objectid));
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
if (reserve) {
cache->reserved += len;
cache->space_info->bytes_reserved += len;
} else {
cache->reserved -= len;
cache->space_info->bytes_reserved -= len;
}
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
btrfs_put_block_group(cache);
bytenr += len;
num -= len;
}
return 0;
}
int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy)
{
u64 last = 0;
u64 start;
u64 end;
struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents;
int ret;
while (1) {
ret = find_first_extent_bit(pinned_extents, last,
&start, &end, EXTENT_DIRTY);
if (ret)
break;
set_extent_dirty(copy, start, end, GFP_NOFS);
last = end + 1;
}
return 0;
}
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_io_tree *unpin)
{
u64 start;
u64 end;
int ret;
while (1) {
ret = find_first_extent_bit(unpin, 0, &start, &end,
EXTENT_DIRTY);
if (ret)
break;
ret = btrfs_discard_extent(root, start, end + 1 - start);
/* unlocks the pinned mutex */
btrfs_update_pinned_extents(root, start, end + 1 - start, 0);
clear_extent_dirty(unpin, start, end, GFP_NOFS);
cond_resched();
}
return ret;
}
static int pin_down_bytes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 bytenr, u64 num_bytes, int is_data,
struct extent_buffer **must_clean)
{
int err = 0;
struct extent_buffer *buf;
if (is_data)
goto pinit;
buf = btrfs_find_tree_block(root, bytenr, num_bytes);
if (!buf)
goto pinit;
/* we can reuse a block if it hasn't been written
* and it is from this transaction. We can't
* reuse anything from the tree log root because
* it has tiny sub-transactions.
*/
if (btrfs_buffer_uptodate(buf, 0) &&
btrfs_try_tree_lock(buf)) {
u64 header_owner = btrfs_header_owner(buf);
u64 header_transid = btrfs_header_generation(buf);
if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
header_transid == trans->transid &&
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
*must_clean = buf;
return 1;
}
btrfs_tree_unlock(buf);
}
free_extent_buffer(buf);
pinit:
btrfs_set_path_blocking(path);
/* unlocks the pinned mutex */
btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
BUG_ON(err < 0);
return 0;
}
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner_objectid,
u64 owner_offset, int refs_to_drop,
struct btrfs_delayed_extent_op *extent_op)
{
struct btrfs_key key;
struct btrfs_path *path;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
int ret;
int is_data;
int extent_slot = 0;
int found_extent = 0;
int num_to_del = 1;
u32 item_size;
u64 refs;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = 1;
path->leave_spinning = 1;
is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
BUG_ON(!is_data && refs_to_drop != 1);
ret = lookup_extent_backref(trans, extent_root, path, &iref,
bytenr, num_bytes, parent,
root_objectid, owner_objectid,
owner_offset);
if (ret == 0) {
extent_slot = path->slots[0];
while (extent_slot >= 0) {
btrfs_item_key_to_cpu(path->nodes[0], &key,
extent_slot);
if (key.objectid != bytenr)
break;
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
key.offset == num_bytes) {
found_extent = 1;
break;
}
if (path->slots[0] - extent_slot > 5)
break;
extent_slot--;
}
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
if (found_extent && item_size < sizeof(*ei))
found_extent = 0;
#endif
if (!found_extent) {
BUG_ON(iref);
ret = remove_extent_backref(trans, extent_root, path,
NULL, refs_to_drop,
is_data);
BUG_ON(ret);
btrfs_release_path(extent_root, path);
path->leave_spinning = 1;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
ret = btrfs_search_slot(trans, extent_root,
&key, path, -1, 1);
if (ret) {
printk(KERN_ERR "umm, got %d back from search"
", was looking for %llu\n", ret,
(unsigned long long)bytenr);
btrfs_print_leaf(extent_root, path->nodes[0]);
}
BUG_ON(ret);
extent_slot = path->slots[0];
}
} else {
btrfs_print_leaf(extent_root, path->nodes[0]);
WARN_ON(1);
printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
"parent %llu root %llu owner %llu offset %llu\n",
(unsigned long long)bytenr,
(unsigned long long)parent,
(unsigned long long)root_objectid,
(unsigned long long)owner_objectid,
(unsigned long long)owner_offset);
}
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, extent_slot);
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
if (item_size < sizeof(*ei)) {
BUG_ON(found_extent || extent_slot != path->slots[0]);
ret = convert_extent_item_v0(trans, extent_root, path,
owner_objectid, 0);
BUG_ON(ret < 0);
btrfs_release_path(extent_root, path);
path->leave_spinning = 1;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = num_bytes;
ret = btrfs_search_slot(trans, extent_root, &key, path,
-1, 1);
if (ret) {
printk(KERN_ERR "umm, got %d back from search"
", was looking for %llu\n", ret,
(unsigned long long)bytenr);
btrfs_print_leaf(extent_root, path->nodes[0]);
}
BUG_ON(ret);
extent_slot = path->slots[0];
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, extent_slot);
}
#endif
BUG_ON(item_size < sizeof(*ei));
ei = btrfs_item_ptr(leaf, extent_slot,
struct btrfs_extent_item);
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
struct btrfs_tree_block_info *bi;
BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
bi = (struct btrfs_tree_block_info *)(ei + 1);
WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
}
refs = btrfs_extent_refs(leaf, ei);
BUG_ON(refs < refs_to_drop);
refs -= refs_to_drop;
if (refs > 0) {
if (extent_op)
__run_delayed_extent_op(extent_op, leaf, ei);
/*
* In the case of inline back ref, reference count will
* be updated by remove_extent_backref
*/
if (iref) {
BUG_ON(!found_extent);
} else {
btrfs_set_extent_refs(leaf, ei, refs);
btrfs_mark_buffer_dirty(leaf);
}
if (found_extent) {
ret = remove_extent_backref(trans, extent_root, path,
iref, refs_to_drop,
is_data);
BUG_ON(ret);
}
} else {
int mark_free = 0;
struct extent_buffer *must_clean = NULL;
if (found_extent) {
BUG_ON(is_data && refs_to_drop !=
extent_data_ref_count(root, path, iref));
if (iref) {
BUG_ON(path->slots[0] != extent_slot);
} else {
BUG_ON(path->slots[0] != extent_slot + 1);
path->slots[0] = extent_slot;
num_to_del = 2;
}
}
ret = pin_down_bytes(trans, root, path, bytenr,
num_bytes, is_data, &must_clean);
if (ret > 0)
mark_free = 1;
BUG_ON(ret < 0);
/*
* it is going to be very rare for someone to be waiting
* on the block we're freeing. del_items might need to
* schedule, so rather than get fancy, just force it
* to blocking here
*/
if (must_clean)
btrfs_set_lock_blocking(must_clean);
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
num_to_del);
BUG_ON(ret);
btrfs_release_path(extent_root, path);
if (must_clean) {
clean_tree_block(NULL, root, must_clean);
btrfs_tree_unlock(must_clean);
free_extent_buffer(must_clean);
}
if (is_data) {
ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
BUG_ON(ret);
} else {
invalidate_mapping_pages(info->btree_inode->i_mapping,
bytenr >> PAGE_CACHE_SHIFT,
(bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
}
ret = update_block_group(trans, root, bytenr, num_bytes, 0,
mark_free);
BUG_ON(ret);
}
btrfs_free_path(path);
return ret;
}
/*
* when we free an extent, it is possible (and likely) that we free the last
* delayed ref for that extent as well. This searches the delayed ref tree for
* a given extent, and if there are no other delayed refs to be processed, it
* removes it from the tree.
*/
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytenr)
{
struct btrfs_delayed_ref_head *head;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
struct rb_node *node;
int ret;
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
head = btrfs_find_delayed_ref_head(trans, bytenr);
if (!head)
goto out;
node = rb_prev(&head->node.rb_node);
if (!node)
goto out;
ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
/* there are still entries for this ref, we can't drop it */
if (ref->bytenr == bytenr)
goto out;
if (head->extent_op) {
if (!head->must_insert_reserved)
goto out;
kfree(head->extent_op);
head->extent_op = NULL;
}
/*
* waiting for the lock here would deadlock. If someone else has it
* locked they are already in the process of dropping it anyway
*/
if (!mutex_trylock(&head->mutex))
goto out;
/*
* at this point we have a head with no other entries. Go
* ahead and process it.
*/
head->node.in_tree = 0;
rb_erase(&head->node.rb_node, &delayed_refs->root);
delayed_refs->num_entries--;
/*
* we don't take a ref on the node because we're removing it from the
* tree, so we just steal the ref the tree was holding.
*/
delayed_refs->num_heads--;
if (list_empty(&head->cluster))
delayed_refs->num_heads_ready--;
list_del_init(&head->cluster);
spin_unlock(&delayed_refs->lock);
ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
&head->node, head->extent_op,
head->must_insert_reserved);
BUG_ON(ret);
btrfs_put_delayed_ref(&head->node);
return 0;
out:
spin_unlock(&delayed_refs->lock);
return 0;
}
int btrfs_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 parent,
u64 root_objectid, u64 owner, u64 offset)
{
int ret;
/*
* tree log blocks never actually go into the extent allocation
* tree, just update pinning info and exit early.
*/
if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
/* unlocks the pinned mutex */
btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
update_reserved_extents(root, bytenr, num_bytes, 0);
ret = 0;
} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
parent, root_objectid, (int)owner,
BTRFS_DROP_DELAYED_REF, NULL);
BUG_ON(ret);
ret = check_ref_cleanup(trans, root, bytenr);
BUG_ON(ret);
} else {
ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
parent, root_objectid, owner,
offset, BTRFS_DROP_DELAYED_REF, NULL);
BUG_ON(ret);
}
return ret;
}
static u64 stripe_align(struct btrfs_root *root, u64 val)
{
u64 mask = ((u64)root->stripesize - 1);
u64 ret = (val + mask) & ~mask;
return ret;
}
/*
* when we wait for progress in the block group caching, its because
* our allocation attempt failed at least once. So, we must sleep
* and let some progress happen before we try again.
*
* This function will sleep at least once waiting for new free space to
* show up, and then it will check the block group free space numbers
* for our min num_bytes. Another option is to have it go ahead
* and look in the rbtree for a free extent of a given size, but this
* is a good start.
*/
static noinline int
wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
u64 num_bytes)
{
DEFINE_WAIT(wait);
prepare_to_wait(&cache->caching_q, &wait, TASK_UNINTERRUPTIBLE);
if (block_group_cache_done(cache)) {
finish_wait(&cache->caching_q, &wait);
return 0;
}
schedule();
finish_wait(&cache->caching_q, &wait);
wait_event(cache->caching_q, block_group_cache_done(cache) ||
(cache->free_space >= num_bytes));
return 0;
}
enum btrfs_loop_type {
LOOP_CACHED_ONLY = 0,
LOOP_CACHING_NOWAIT = 1,
LOOP_CACHING_WAIT = 2,
LOOP_ALLOC_CHUNK = 3,
LOOP_NO_EMPTY_SIZE = 4,
};
/*
* walks the btree of allocated extents and find a hole of a given size.
* The key ins is changed to record the hole:
* ins->objectid == block start
* ins->flags = BTRFS_EXTENT_ITEM_KEY
* ins->offset == number of blocks
* Any available blocks before search_start are skipped.
*/
static noinline int find_free_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *orig_root,
u64 num_bytes, u64 empty_size,
u64 search_start, u64 search_end,
u64 hint_byte, struct btrfs_key *ins,
u64 exclude_start, u64 exclude_nr,
int data)
{
int ret = 0;
struct btrfs_root *root = orig_root->fs_info->extent_root;
struct btrfs_free_cluster *last_ptr = NULL;
struct btrfs_block_group_cache *block_group = NULL;
int empty_cluster = 2 * 1024 * 1024;
int allowed_chunk_alloc = 0;
struct btrfs_space_info *space_info;
int last_ptr_loop = 0;
int loop = 0;
bool found_uncached_bg = false;
WARN_ON(num_bytes < root->sectorsize);
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
ins->objectid = 0;
ins->offset = 0;
space_info = __find_space_info(root->fs_info, data);
if (orig_root->ref_cows || empty_size)
allowed_chunk_alloc = 1;
if (data & BTRFS_BLOCK_GROUP_METADATA) {
last_ptr = &root->fs_info->meta_alloc_cluster;
if (!btrfs_test_opt(root, SSD))
empty_cluster = 64 * 1024;
}
if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
last_ptr = &root->fs_info->data_alloc_cluster;
}
if (last_ptr) {
spin_lock(&last_ptr->lock);
if (last_ptr->block_group)
hint_byte = last_ptr->window_start;
spin_unlock(&last_ptr->lock);
}
search_start = max(search_start, first_logical_byte(root, 0));
search_start = max(search_start, hint_byte);
if (!last_ptr)
empty_cluster = 0;
if (search_start == hint_byte) {
block_group = btrfs_lookup_block_group(root->fs_info,
search_start);
/*
* we don't want to use the block group if it doesn't match our
* allocation bits, or if its not cached.
*/
if (block_group && block_group_bits(block_group, data) &&
block_group_cache_done(block_group)) {
down_read(&space_info->groups_sem);
if (list_empty(&block_group->list) ||
block_group->ro) {
/*
* someone is removing this block group,
* we can't jump into the have_block_group
* target because our list pointers are not
* valid
*/
btrfs_put_block_group(block_group);
up_read(&space_info->groups_sem);
} else
goto have_block_group;
} else if (block_group) {
btrfs_put_block_group(block_group);
}
}
search:
down_read(&space_info->groups_sem);
list_for_each_entry(block_group, &space_info->block_groups, list) {
u64 offset;
int cached;
atomic_inc(&block_group->count);
search_start = block_group->key.objectid;
have_block_group:
if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
/*
* we want to start caching kthreads, but not too many
* right off the bat so we don't overwhelm the system,
* so only start them if there are less than 2 and we're
* in the initial allocation phase.
*/
if (loop > LOOP_CACHING_NOWAIT ||
atomic_read(&space_info->caching_threads) < 2) {
ret = cache_block_group(block_group);
BUG_ON(ret);
}
}
cached = block_group_cache_done(block_group);
if (unlikely(!cached)) {
found_uncached_bg = true;
/* if we only want cached bgs, loop */
if (loop == LOOP_CACHED_ONLY)
goto loop;
}
if (unlikely(block_group->ro))
goto loop;
if (last_ptr) {
/*
* the refill lock keeps out other
* people trying to start a new cluster
*/
spin_lock(&last_ptr->refill_lock);
if (last_ptr->block_group &&
(last_ptr->block_group->ro ||
!block_group_bits(last_ptr->block_group, data))) {
offset = 0;
goto refill_cluster;
}
offset = btrfs_alloc_from_cluster(block_group, last_ptr,
num_bytes, search_start);
if (offset) {
/* we have a block, we're done */
spin_unlock(&last_ptr->refill_lock);
goto checks;
}
spin_lock(&last_ptr->lock);
/*
* whoops, this cluster doesn't actually point to
* this block group. Get a ref on the block
* group is does point to and try again
*/
if (!last_ptr_loop && last_ptr->block_group &&
last_ptr->block_group != block_group) {
btrfs_put_block_group(block_group);
block_group = last_ptr->block_group;
atomic_inc(&block_group->count);
spin_unlock(&last_ptr->lock);
spin_unlock(&last_ptr->refill_lock);
last_ptr_loop = 1;
search_start = block_group->key.objectid;
/*
* we know this block group is properly
* in the list because
* btrfs_remove_block_group, drops the
* cluster before it removes the block
* group from the list
*/
goto have_block_group;
}
spin_unlock(&last_ptr->lock);
refill_cluster:
/*
* this cluster didn't work out, free it and
* start over
*/
btrfs_return_cluster_to_free_space(NULL, last_ptr);
last_ptr_loop = 0;
/* allocate a cluster in this block group */
ret = btrfs_find_space_cluster(trans, root,
block_group, last_ptr,
offset, num_bytes,
empty_cluster + empty_size);
if (ret == 0) {
/*
* now pull our allocation out of this
* cluster
*/
offset = btrfs_alloc_from_cluster(block_group,
last_ptr, num_bytes,
search_start);
if (offset) {
/* we found one, proceed */
spin_unlock(&last_ptr->refill_lock);
goto checks;
}
} else if (!cached && loop > LOOP_CACHING_NOWAIT) {
spin_unlock(&last_ptr->refill_lock);
wait_block_group_cache_progress(block_group,
num_bytes + empty_cluster + empty_size);
goto have_block_group;
}
/*
* at this point we either didn't find a cluster
* or we weren't able to allocate a block from our
* cluster. Free the cluster we've been trying
* to use, and go to the next block group
*/
if (loop < LOOP_NO_EMPTY_SIZE) {
btrfs_return_cluster_to_free_space(NULL,
last_ptr);
spin_unlock(&last_ptr->refill_lock);
goto loop;
}
spin_unlock(&last_ptr->refill_lock);
}
offset = btrfs_find_space_for_alloc(block_group, search_start,
num_bytes, empty_size);
if (!offset && (cached || (!cached &&
loop == LOOP_CACHING_NOWAIT))) {
goto loop;
} else if (!offset && (!cached &&
loop > LOOP_CACHING_NOWAIT)) {
wait_block_group_cache_progress(block_group,
num_bytes + empty_size);
goto have_block_group;
}
checks:
search_start = stripe_align(root, offset);
/* move on to the next group */
if (search_start + num_bytes >= search_end) {
btrfs_add_free_space(block_group, offset, num_bytes);
goto loop;
}
/* move on to the next group */
if (search_start + num_bytes >
block_group->key.objectid + block_group->key.offset) {
btrfs_add_free_space(block_group, offset, num_bytes);
goto loop;
}
if (exclude_nr > 0 &&
(search_start + num_bytes > exclude_start &&
search_start < exclude_start + exclude_nr)) {
search_start = exclude_start + exclude_nr;
btrfs_add_free_space(block_group, offset, num_bytes);
/*
* if search_start is still in this block group
* then we just re-search this block group
*/
if (search_start >= block_group->key.objectid &&
search_start < (block_group->key.objectid +
block_group->key.offset))
goto have_block_group;
goto loop;
}
ins->objectid = search_start;
ins->offset = num_bytes;
if (offset < search_start)
btrfs_add_free_space(block_group, offset,
search_start - offset);
BUG_ON(offset > search_start);
/* we are all good, lets return */
break;
loop:
btrfs_put_block_group(block_group);
}
up_read(&space_info->groups_sem);
/* LOOP_CACHED_ONLY, only search fully cached block groups
* LOOP_CACHING_NOWAIT, search partially cached block groups, but
* dont wait foR them to finish caching
* LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
* LOOP_ALLOC_CHUNK, force a chunk allocation and try again
* LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
* again
*/
if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
(found_uncached_bg || empty_size || empty_cluster ||
allowed_chunk_alloc)) {
if (found_uncached_bg) {
found_uncached_bg = false;
if (loop < LOOP_CACHING_WAIT) {
loop++;
goto search;
}
}
if (loop == LOOP_ALLOC_CHUNK) {
empty_size = 0;
empty_cluster = 0;
}
if (allowed_chunk_alloc) {
ret = do_chunk_alloc(trans, root, num_bytes +
2 * 1024 * 1024, data, 1);
allowed_chunk_alloc = 0;
} else {
space_info->force_alloc = 1;
}
if (loop < LOOP_NO_EMPTY_SIZE) {
loop++;
goto search;
}
ret = -ENOSPC;
} else if (!ins->objectid) {
ret = -ENOSPC;
}
/* we found what we needed */
if (ins->objectid) {
if (!(data & BTRFS_BLOCK_GROUP_DATA))
trans->block_group = block_group->key.objectid;
btrfs_put_block_group(block_group);
ret = 0;
}
return ret;
}
static void dump_space_info(struct btrfs_space_info *info, u64 bytes)
{
struct btrfs_block_group_cache *cache;
printk(KERN_INFO "space_info has %llu free, is %sfull\n",
(unsigned long long)(info->total_bytes - info->bytes_used -
info->bytes_pinned - info->bytes_reserved),
(info->full) ? "" : "not ");
printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
" may_use=%llu, used=%llu\n",
(unsigned long long)info->total_bytes,
(unsigned long long)info->bytes_pinned,
(unsigned long long)info->bytes_delalloc,
(unsigned long long)info->bytes_may_use,
(unsigned long long)info->bytes_used);
down_read(&info->groups_sem);
list_for_each_entry(cache, &info->block_groups, list) {
spin_lock(&cache->lock);
printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
"%llu pinned %llu reserved\n",
(unsigned long long)cache->key.objectid,
(unsigned long long)cache->key.offset,
(unsigned long long)btrfs_block_group_used(&cache->item),
(unsigned long long)cache->pinned,
(unsigned long long)cache->reserved);
btrfs_dump_free_space(cache, bytes);
spin_unlock(&cache->lock);
}
up_read(&info->groups_sem);
}
static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 num_bytes, u64 min_alloc_size,
u64 empty_size, u64 hint_byte,
u64 search_end, struct btrfs_key *ins,
u64 data)
{
int ret;
u64 search_start = 0;
struct btrfs_fs_info *info = root->fs_info;
data = btrfs_get_alloc_profile(root, data);
again:
/*
* the only place that sets empty_size is btrfs_realloc_node, which
* is not called recursively on allocations
*/
if (empty_size || root->ref_cows) {
if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2 * 1024 * 1024,
BTRFS_BLOCK_GROUP_METADATA |
(info->metadata_alloc_profile &
info->avail_metadata_alloc_bits), 0);
}
ret = do_chunk_alloc(trans, root->fs_info->extent_root,
num_bytes + 2 * 1024 * 1024, data, 0);
}
WARN_ON(num_bytes < root->sectorsize);
ret = find_free_extent(trans, root, num_bytes, empty_size,
search_start, search_end, hint_byte, ins,
trans->alloc_exclude_start,
trans->alloc_exclude_nr, data);
if (ret == -ENOSPC && num_bytes > min_alloc_size) {
num_bytes = num_bytes >> 1;
num_bytes = num_bytes & ~(root->sectorsize - 1);
num_bytes = max(num_bytes, min_alloc_size);
do_chunk_alloc(trans, root->fs_info->extent_root,
num_bytes, data, 1);
goto again;
}
if (ret == -ENOSPC) {
struct btrfs_space_info *sinfo;
sinfo = __find_space_info(root->fs_info, data);
printk(KERN_ERR "btrfs allocation failed flags %llu, "
"wanted %llu\n", (unsigned long long)data,
(unsigned long long)num_bytes);
dump_space_info(sinfo, num_bytes);
}
return ret;
}
int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
{
struct btrfs_block_group_cache *cache;
int ret = 0;
cache = btrfs_lookup_block_group(root->fs_info, start);
if (!cache) {
printk(KERN_ERR "Unable to find block group for %llu\n",
(unsigned long long)start);
return -ENOSPC;
}
ret = btrfs_discard_extent(root, start, len);
btrfs_add_free_space(cache, start, len);
btrfs_put_block_group(cache);
update_reserved_extents(root, start, len, 0);
return ret;
}
int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 num_bytes, u64 min_alloc_size,
u64 empty_size, u64 hint_byte,
u64 search_end, struct btrfs_key *ins,
u64 data)
{
int ret;
ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size,
empty_size, hint_byte, search_end, ins,
data);
if (!ret)
update_reserved_extents(root, ins->objectid, ins->offset, 1);
return ret;
}
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent, u64 root_objectid,
u64 flags, u64 owner, u64 offset,
struct btrfs_key *ins, int ref_mod)
{
int ret;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_extent_item *extent_item;
struct btrfs_extent_inline_ref *iref;
struct btrfs_path *path;
struct extent_buffer *leaf;
int type;
u32 size;
if (parent > 0)
type = BTRFS_SHARED_DATA_REF_KEY;
else
type = BTRFS_EXTENT_DATA_REF_KEY;
size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
path = btrfs_alloc_path();
BUG_ON(!path);
path->leave_spinning = 1;
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
ins, size);
BUG_ON(ret);
leaf = path->nodes[0];
extent_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item);
btrfs_set_extent_refs(leaf, extent_item, ref_mod);
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
btrfs_set_extent_flags(leaf, extent_item,
flags | BTRFS_EXTENT_FLAG_DATA);
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
btrfs_set_extent_inline_ref_type(leaf, iref, type);
if (parent > 0) {
struct btrfs_shared_data_ref *ref;
ref = (struct btrfs_shared_data_ref *)(iref + 1);
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
} else {
struct btrfs_extent_data_ref *ref;
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
}
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_free_path(path);
ret = update_block_group(trans, root, ins->objectid, ins->offset,
1, 0);
if (ret) {
printk(KERN_ERR "btrfs update block group failed for %llu "
"%llu\n", (unsigned long long)ins->objectid,
(unsigned long long)ins->offset);
BUG();
}
return ret;
}
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 parent, u64 root_objectid,
u64 flags, struct btrfs_disk_key *key,
int level, struct btrfs_key *ins)
{
int ret;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_extent_item *extent_item;
struct btrfs_tree_block_info *block_info;
struct btrfs_extent_inline_ref *iref;
struct btrfs_path *path;
struct extent_buffer *leaf;
u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
path = btrfs_alloc_path();
BUG_ON(!path);
path->leave_spinning = 1;
ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
ins, size);
BUG_ON(ret);
leaf = path->nodes[0];
extent_item = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item);
btrfs_set_extent_refs(leaf, extent_item, 1);
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
btrfs_set_extent_flags(leaf, extent_item,
flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
btrfs_set_tree_block_key(leaf, block_info, key);
btrfs_set_tree_block_level(leaf, block_info, level);
iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
if (parent > 0) {
BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
btrfs_set_extent_inline_ref_type(leaf, iref,
BTRFS_SHARED_BLOCK_REF_KEY);
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
} else {
btrfs_set_extent_inline_ref_type(leaf, iref,
BTRFS_TREE_BLOCK_REF_KEY);
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
}
btrfs_mark_buffer_dirty(leaf);
btrfs_free_path(path);
ret = update_block_group(trans, root, ins->objectid, ins->offset,
1, 0);
if (ret) {
printk(KERN_ERR "btrfs update block group failed for %llu "
"%llu\n", (unsigned long long)ins->objectid,
(unsigned long long)ins->offset);
BUG();
}
return ret;
}
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 root_objectid, u64 owner,
u64 offset, struct btrfs_key *ins)
{
int ret;
BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
0, root_objectid, owner, offset,
BTRFS_ADD_DELAYED_EXTENT, NULL);
return ret;
}
/*
* this is used by the tree logging recovery code. It records that
* an extent has been allocated and makes sure to clear the free
* space cache bits as well
*/
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 root_objectid, u64 owner, u64 offset,
struct btrfs_key *ins)
{
int ret;
struct btrfs_block_group_cache *block_group;
block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
cache_block_group(block_group);
wait_event(block_group->caching_q,
block_group_cache_done(block_group));
ret = btrfs_remove_free_space(block_group, ins->objectid,
ins->offset);
BUG_ON(ret);
btrfs_put_block_group(block_group);
ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
0, owner, offset, ins, 1);
return ret;
}
/*
* finds a free extent and does all the dirty work required for allocation
* returns the key for the extent through ins, and a tree buffer for
* the first block of the extent through buf.
*
* returns 0 if everything worked, non-zero otherwise.
*/
static int alloc_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 num_bytes, u64 parent, u64 root_objectid,
struct btrfs_disk_key *key, int level,
u64 empty_size, u64 hint_byte, u64 search_end,
struct btrfs_key *ins)
{
int ret;
u64 flags = 0;
ret = __btrfs_reserve_extent(trans, root, num_bytes, num_bytes,
empty_size, hint_byte, search_end,
ins, 0);
if (ret)
return ret;
if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
if (parent == 0)
parent = ins->objectid;
flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
} else
BUG_ON(parent > 0);
update_reserved_extents(root, ins->objectid, ins->offset, 1);
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
struct btrfs_delayed_extent_op *extent_op;
extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
BUG_ON(!extent_op);
if (key)
memcpy(&extent_op->key, key, sizeof(extent_op->key));
else
memset(&extent_op->key, 0, sizeof(extent_op->key));
extent_op->flags_to_set = flags;
extent_op->update_key = 1;
extent_op->update_flags = 1;
extent_op->is_data = 0;
ret = btrfs_add_delayed_tree_ref(trans, ins->objectid,
ins->offset, parent, root_objectid,
level, BTRFS_ADD_DELAYED_EXTENT,
extent_op);
BUG_ON(ret);
}
return ret;
}
struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u32 blocksize,
int level)
{
struct extent_buffer *buf;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return ERR_PTR(-ENOMEM);
btrfs_set_header_generation(buf, trans->transid);
btrfs_set_buffer_lockdep_class(buf, level);
btrfs_tree_lock(buf);
clean_tree_block(trans, root, buf);
btrfs_set_lock_blocking(buf);
btrfs_set_buffer_uptodate(buf);
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
set_extent_dirty(&root->dirty_log_pages, buf->start,
buf->start + buf->len - 1, GFP_NOFS);
} else {
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
buf->start + buf->len - 1, GFP_NOFS);
}
trans->blocks_used++;
/* this returns a buffer locked for blocking */
return buf;
}
/*
* helper function to allocate a block for a given tree
* returns the tree buffer or NULL.
*/
struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u32 blocksize,
u64 parent, u64 root_objectid,
struct btrfs_disk_key *key, int level,
u64 hint, u64 empty_size)
{
struct btrfs_key ins;
int ret;
struct extent_buffer *buf;
ret = alloc_tree_block(trans, root, blocksize, parent, root_objectid,
key, level, empty_size, hint, (u64)-1, &ins);
if (ret) {
BUG_ON(ret > 0);
return ERR_PTR(ret);
}
buf = btrfs_init_new_buffer(trans, root, ins.objectid,
blocksize, level);
return buf;
}
#if 0
int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct extent_buffer *leaf)
{
u64 disk_bytenr;
u64 num_bytes;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
u32 nritems;
int i;
int ret;
BUG_ON(!btrfs_is_leaf(leaf));
nritems = btrfs_header_nritems(leaf);
for (i = 0; i < nritems; i++) {
cond_resched();
btrfs_item_key_to_cpu(leaf, &key, i);
/* only extents have references, skip everything else */
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
/* inline extents live in the btree, they don't have refs */
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
/* holes don't have refs */
if (disk_bytenr == 0)
continue;
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
ret = btrfs_free_extent(trans, root, disk_bytenr, num_bytes,
leaf->start, 0, key.objectid, 0);
BUG_ON(ret);
}
return 0;
}
static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_leaf_ref *ref)
{
int i;
int ret;
struct btrfs_extent_info *info;
struct refsort *sorted;
if (ref->nritems == 0)
return 0;
sorted = kmalloc(sizeof(*sorted) * ref->nritems, GFP_NOFS);
for (i = 0; i < ref->nritems; i++) {
sorted[i].bytenr = ref->extents[i].bytenr;
sorted[i].slot = i;
}
sort(sorted, ref->nritems, sizeof(struct refsort), refsort_cmp, NULL);
/*
* the items in the ref were sorted when the ref was inserted
* into the ref cache, so this is already in order
*/
for (i = 0; i < ref->nritems; i++) {
info = ref->extents + sorted[i].slot;
ret = btrfs_free_extent(trans, root, info->bytenr,
info->num_bytes, ref->bytenr,
ref->owner, ref->generation,
info->objectid, 0);
atomic_inc(&root->fs_info->throttle_gen);
wake_up(&root->fs_info->transaction_throttle);
cond_resched();
BUG_ON(ret);
info++;
}
kfree(sorted);
return 0;
}
static int drop_snap_lookup_refcount(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 start,
u64 len, u32 *refs)
{
int ret;
ret = btrfs_lookup_extent_refs(trans, root, start, len, refs);
BUG_ON(ret);
#if 0 /* some debugging code in case we see problems here */
/* if the refs count is one, it won't get increased again. But
* if the ref count is > 1, someone may be decreasing it at
* the same time we are.
*/
if (*refs != 1) {
struct extent_buffer *eb = NULL;
eb = btrfs_find_create_tree_block(root, start, len);
if (eb)
btrfs_tree_lock(eb);
mutex_lock(&root->fs_info->alloc_mutex);
ret = lookup_extent_ref(NULL, root, start, len, refs);
BUG_ON(ret);
mutex_unlock(&root->fs_info->alloc_mutex);
if (eb) {
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
}
if (*refs == 1) {
printk(KERN_ERR "btrfs block %llu went down to one "
"during drop_snap\n", (unsigned long long)start);
}
}
#endif
cond_resched();
return ret;
}
/*
* this is used while deleting old snapshots, and it drops the refs
* on a whole subtree starting from a level 1 node.
*
* The idea is to sort all the leaf pointers, and then drop the
* ref on all the leaves in order. Most of the time the leaves
* will have ref cache entries, so no leaf IOs will be required to
* find the extents they have references on.
*
* For each leaf, any references it has are also dropped in order
*
* This ends up dropping the references in something close to optimal
* order for reading and modifying the extent allocation tree.
*/
static noinline int drop_level_one_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path)
{
u64 bytenr;
u64 root_owner;
u64 root_gen;
struct extent_buffer *eb = path->nodes[1];
struct extent_buffer *leaf;
struct btrfs_leaf_ref *ref;
struct refsort *sorted = NULL;
int nritems = btrfs_header_nritems(eb);
int ret;
int i;
int refi = 0;
int slot = path->slots[1];
u32 blocksize = btrfs_level_size(root, 0);
u32 refs;
if (nritems == 0)
goto out;
root_owner = btrfs_header_owner(eb);
root_gen = btrfs_header_generation(eb);
sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
/*
* step one, sort all the leaf pointers so we don't scribble
* randomly into the extent allocation tree
*/
for (i = slot; i < nritems; i++) {
sorted[refi].bytenr = btrfs_node_blockptr(eb, i);
sorted[refi].slot = i;
refi++;
}
/*
* nritems won't be zero, but if we're picking up drop_snapshot
* after a crash, slot might be > 0, so double check things
* just in case.
*/
if (refi == 0)
goto out;
sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
/*
* the first loop frees everything the leaves point to
*/
for (i = 0; i < refi; i++) {
u64 ptr_gen;
bytenr = sorted[i].bytenr;
/*
* check the reference count on this leaf. If it is > 1
* we just decrement it below and don't update any
* of the refs the leaf points to.
*/
ret = drop_snap_lookup_refcount(trans, root, bytenr,
blocksize, &refs);
BUG_ON(ret);
if (refs != 1)
continue;
ptr_gen = btrfs_node_ptr_generation(eb, sorted[i].slot);
/*
* the leaf only had one reference, which means the
* only thing pointing to this leaf is the snapshot
* we're deleting. It isn't possible for the reference
* count to increase again later
*
* The reference cache is checked for the leaf,
* and if found we'll be able to drop any refs held by
* the leaf without needing to read it in.
*/
ref = btrfs_lookup_leaf_ref(root, bytenr);
if (ref && ref->generation != ptr_gen) {
btrfs_free_leaf_ref(root, ref);
ref = NULL;
}
if (ref) {
ret = cache_drop_leaf_ref(trans, root, ref);
BUG_ON(ret);
btrfs_remove_leaf_ref(root, ref);
btrfs_free_leaf_ref(root, ref);
} else {
/*
* the leaf wasn't in the reference cache, so
* we have to read it.
*/
leaf = read_tree_block(root, bytenr, blocksize,
ptr_gen);
ret = btrfs_drop_leaf_ref(trans, root, leaf);
BUG_ON(ret);
free_extent_buffer(leaf);
}
atomic_inc(&root->fs_info->throttle_gen);
wake_up(&root->fs_info->transaction_throttle);
cond_resched();
}
/*
* run through the loop again to free the refs on the leaves.
* This is faster than doing it in the loop above because
* the leaves are likely to be clustered together. We end up
* working in nice chunks on the extent allocation tree.
*/
for (i = 0; i < refi; i++) {
bytenr = sorted[i].bytenr;
ret = btrfs_free_extent(trans, root, bytenr,
blocksize, eb->start,
root_owner, root_gen, 0, 1);
BUG_ON(ret);
atomic_inc(&root->fs_info->throttle_gen);
wake_up(&root->fs_info->transaction_throttle);
cond_resched();
}
out:
kfree(sorted);
/*
* update the path to show we've processed the entire level 1
* node. This will get saved into the root's drop_snapshot_progress
* field so these drops are not repeated again if this transaction
* commits.
*/
path->slots[1] = nritems;
return 0;
}
/*
* helper function for drop_snapshot, this walks down the tree dropping ref
* counts as it goes.
*/
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level)
{
u64 root_owner;
u64 root_gen;
u64 bytenr;
u64 ptr_gen;
struct extent_buffer *next;
struct extent_buffer *cur;
struct extent_buffer *parent;
u32 blocksize;
int ret;
u32 refs;
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
ret = drop_snap_lookup_refcount(trans, root, path->nodes[*level]->start,
path->nodes[*level]->len, &refs);
BUG_ON(ret);
if (refs > 1)
goto out;
/*
* walk down to the last node level and free all the leaves
*/
while (*level >= 0) {
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
cur = path->nodes[*level];
if (btrfs_header_level(cur) != *level)
WARN_ON(1);
if (path->slots[*level] >=
btrfs_header_nritems(cur))
break;
/* the new code goes down to level 1 and does all the
* leaves pointed to that node in bulk. So, this check
* for level 0 will always be false.
*
* But, the disk format allows the drop_snapshot_progress
* field in the root to leave things in a state where
* a leaf will need cleaning up here. If someone crashes
* with the old code and then boots with the new code,
* we might find a leaf here.
*/
if (*level == 0) {
ret = btrfs_drop_leaf_ref(trans, root, cur);
BUG_ON(ret);
break;
}
/*
* once we get to level one, process the whole node
* at once, including everything below it.
*/
if (*level == 1) {
ret = drop_level_one_refs(trans, root, path);
BUG_ON(ret);
break;
}
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
blocksize = btrfs_level_size(root, *level - 1);
ret = drop_snap_lookup_refcount(trans, root, bytenr,
blocksize, &refs);
BUG_ON(ret);
/*
* if there is more than one reference, we don't need
* to read that node to drop any references it has. We
* just drop the ref we hold on that node and move on to the
* next slot in this level.
*/
if (refs != 1) {
parent = path->nodes[*level];
root_owner = btrfs_header_owner(parent);
root_gen = btrfs_header_generation(parent);
path->slots[*level]++;
ret = btrfs_free_extent(trans, root, bytenr,
blocksize, parent->start,
root_owner, root_gen,
*level - 1, 1);
BUG_ON(ret);
atomic_inc(&root->fs_info->throttle_gen);
wake_up(&root->fs_info->transaction_throttle);
cond_resched();
continue;
}
/*
* we need to keep freeing things in the next level down.
* read the block and loop around to process it
*/
next = read_tree_block(root, bytenr, blocksize, ptr_gen);
WARN_ON(*level <= 0);
if (path->nodes[*level-1])
free_extent_buffer(path->nodes[*level-1]);
path->nodes[*level-1] = next;
*level = btrfs_header_level(next);
path->slots[*level] = 0;
cond_resched();
}
out:
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
if (path->nodes[*level] == root->node) {
parent = path->nodes[*level];
bytenr = path->nodes[*level]->start;
} else {
parent = path->nodes[*level + 1];
bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]);
}
blocksize = btrfs_level_size(root, *level);
root_owner = btrfs_header_owner(parent);
root_gen = btrfs_header_generation(parent);
/*
* cleanup and free the reference on the last node
* we processed
*/
ret = btrfs_free_extent(trans, root, bytenr, blocksize,
parent->start, root_owner, root_gen,
*level, 1);
free_extent_buffer(path->nodes[*level]);
path->nodes[*level] = NULL;
*level += 1;
BUG_ON(ret);
cond_resched();
return 0;
}
#endif
struct walk_control {
u64 refs[BTRFS_MAX_LEVEL];
u64 flags[BTRFS_MAX_LEVEL];
struct btrfs_key update_progress;
int stage;
int level;
int shared_level;
int update_ref;
int keep_locks;
};
#define DROP_REFERENCE 1
#define UPDATE_BACKREF 2
/*
* hepler to process tree block while walking down the tree.
*
* when wc->stage == DROP_REFERENCE, this function checks
* reference count of the block. if the block is shared and
* we need update back refs for the subtree rooted at the
* block, this function changes wc->stage to UPDATE_BACKREF
*
* when wc->stage == UPDATE_BACKREF, this function updates
* back refs for pointers in the block.
*
* NOTE: return value 1 means we should stop walking down.
*/
static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc)
{
int level = wc->level;
struct extent_buffer *eb = path->nodes[level];
struct btrfs_key key;
u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
int ret;
if (wc->stage == UPDATE_BACKREF &&
btrfs_header_owner(eb) != root->root_key.objectid)
return 1;
/*
* when reference count of tree block is 1, it won't increase
* again. once full backref flag is set, we never clear it.
*/
if ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
(wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag))) {
BUG_ON(!path->locks[level]);
ret = btrfs_lookup_extent_info(trans, root,
eb->start, eb->len,
&wc->refs[level],
&wc->flags[level]);
BUG_ON(ret);
BUG_ON(wc->refs[level] == 0);
}
if (wc->stage == DROP_REFERENCE &&
wc->update_ref && wc->refs[level] > 1) {
BUG_ON(eb == root->node);
BUG_ON(path->slots[level] > 0);
if (level == 0)
btrfs_item_key_to_cpu(eb, &key, path->slots[level]);
else
btrfs_node_key_to_cpu(eb, &key, path->slots[level]);
if (btrfs_header_owner(eb) == root->root_key.objectid &&
btrfs_comp_cpu_keys(&key, &wc->update_progress) >= 0) {
wc->stage = UPDATE_BACKREF;
wc->shared_level = level;
}
}
if (wc->stage == DROP_REFERENCE) {
if (wc->refs[level] > 1)
return 1;
if (path->locks[level] && !wc->keep_locks) {
btrfs_tree_unlock(eb);
path->locks[level] = 0;
}
return 0;
}
/* wc->stage == UPDATE_BACKREF */
if (!(wc->flags[level] & flag)) {
BUG_ON(!path->locks[level]);
ret = btrfs_inc_ref(trans, root, eb, 1);
BUG_ON(ret);
ret = btrfs_dec_ref(trans, root, eb, 0);
BUG_ON(ret);
ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
eb->len, flag, 0);
BUG_ON(ret);
wc->flags[level] |= flag;
}
/*
* the block is shared by multiple trees, so it's not good to
* keep the tree lock
*/
if (path->locks[level] && level > 0) {
btrfs_tree_unlock(eb);
path->locks[level] = 0;
}
return 0;
}
/*
* hepler to process tree block while walking up the tree.
*
* when wc->stage == DROP_REFERENCE, this function drops
* reference count on the block.
*
* when wc->stage == UPDATE_BACKREF, this function changes
* wc->stage back to DROP_REFERENCE if we changed wc->stage
* to UPDATE_BACKREF previously while processing the block.
*
* NOTE: return value 1 means we should stop walking up.
*/
static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc)
{
int ret = 0;
int level = wc->level;
struct extent_buffer *eb = path->nodes[level];
u64 parent = 0;
if (wc->stage == UPDATE_BACKREF) {
BUG_ON(wc->shared_level < level);
if (level < wc->shared_level)
goto out;
BUG_ON(wc->refs[level] <= 1);
ret = find_next_key(path, level + 1, &wc->update_progress);
if (ret > 0)
wc->update_ref = 0;
wc->stage = DROP_REFERENCE;
wc->shared_level = -1;
path->slots[level] = 0;
/*
* check reference count again if the block isn't locked.
* we should start walking down the tree again if reference
* count is one.
*/
if (!path->locks[level]) {
BUG_ON(level == 0);
btrfs_tree_lock(eb);
btrfs_set_lock_blocking(eb);
path->locks[level] = 1;
ret = btrfs_lookup_extent_info(trans, root,
eb->start, eb->len,
&wc->refs[level],
&wc->flags[level]);
BUG_ON(ret);
BUG_ON(wc->refs[level] == 0);
if (wc->refs[level] == 1) {
btrfs_tree_unlock(eb);
path->locks[level] = 0;
return 1;
}
} else {
BUG_ON(level != 0);
}
}
/* wc->stage == DROP_REFERENCE */
BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
if (wc->refs[level] == 1) {
if (level == 0) {
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
ret = btrfs_dec_ref(trans, root, eb, 1);
else
ret = btrfs_dec_ref(trans, root, eb, 0);
BUG_ON(ret);
}
/* make block locked assertion in clean_tree_block happy */
if (!path->locks[level] &&
btrfs_header_generation(eb) == trans->transid) {
btrfs_tree_lock(eb);
btrfs_set_lock_blocking(eb);
path->locks[level] = 1;
}
clean_tree_block(trans, root, eb);
}
if (eb == root->node) {
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
parent = eb->start;
else
BUG_ON(root->root_key.objectid !=
btrfs_header_owner(eb));
} else {
if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
parent = path->nodes[level + 1]->start;
else
BUG_ON(root->root_key.objectid !=
btrfs_header_owner(path->nodes[level + 1]));
}
ret = btrfs_free_extent(trans, root, eb->start, eb->len, parent,
root->root_key.objectid, level, 0);
BUG_ON(ret);
out:
wc->refs[level] = 0;
wc->flags[level] = 0;
return ret;
}
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc)
{
struct extent_buffer *next;
struct extent_buffer *cur;
u64 bytenr;
u64 ptr_gen;
u32 blocksize;
int level = wc->level;
int ret;
while (level >= 0) {
cur = path->nodes[level];
BUG_ON(path->slots[level] >= btrfs_header_nritems(cur));
ret = walk_down_proc(trans, root, path, wc);
if (ret > 0)
break;
if (level == 0)
break;
bytenr = btrfs_node_blockptr(cur, path->slots[level]);
blocksize = btrfs_level_size(root, level - 1);
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[level]);
next = read_tree_block(root, bytenr, blocksize, ptr_gen);
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
level--;
BUG_ON(level != btrfs_header_level(next));
path->nodes[level] = next;
path->slots[level] = 0;
path->locks[level] = 1;
wc->level = level;
}
return 0;
}
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct walk_control *wc, int max_level)
{
int level = wc->level;
int ret;
path->slots[level] = btrfs_header_nritems(path->nodes[level]);
while (level < max_level && path->nodes[level]) {
wc->level = level;
if (path->slots[level] + 1 <
btrfs_header_nritems(path->nodes[level])) {
path->slots[level]++;
return 0;
} else {
ret = walk_up_proc(trans, root, path, wc);
if (ret > 0)
return 0;
if (path->locks[level]) {
btrfs_tree_unlock(path->nodes[level]);
path->locks[level] = 0;
}
free_extent_buffer(path->nodes[level]);
path->nodes[level] = NULL;
level++;
}
}
return 1;
}
/*
* drop a subvolume tree.
*
* this function traverses the tree freeing any blocks that only
* referenced by the tree.
*
* when a shared tree block is found. this function decreases its
* reference count by one. if update_ref is true, this function
* also make sure backrefs for the shared block and all lower level
* blocks are properly updated.
*/
int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref)
{
struct btrfs_path *path;
struct btrfs_trans_handle *trans;
struct btrfs_root *tree_root = root->fs_info->tree_root;
struct btrfs_root_item *root_item = &root->root_item;
struct walk_control *wc;
struct btrfs_key key;
int err = 0;
int ret;
int level;
path = btrfs_alloc_path();
BUG_ON(!path);
wc = kzalloc(sizeof(*wc), GFP_NOFS);
BUG_ON(!wc);
trans = btrfs_start_transaction(tree_root, 1);
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
level = btrfs_header_level(root->node);
path->nodes[level] = btrfs_lock_root_node(root);
btrfs_set_lock_blocking(path->nodes[level]);
path->slots[level] = 0;
path->locks[level] = 1;
memset(&wc->update_progress, 0,
sizeof(wc->update_progress));
} else {
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
memcpy(&wc->update_progress, &key,
sizeof(wc->update_progress));
level = root_item->drop_level;
BUG_ON(level == 0);
path->lowest_level = level;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
path->lowest_level = 0;
if (ret < 0) {
err = ret;
goto out;
}
btrfs_node_key_to_cpu(path->nodes[level], &key,
path->slots[level]);
WARN_ON(memcmp(&key, &wc->update_progress, sizeof(key)));
/*
* unlock our path, this is safe because only this
* function is allowed to delete this snapshot
*/
btrfs_unlock_up_safe(path, 0);
level = btrfs_header_level(root->node);
while (1) {
btrfs_tree_lock(path->nodes[level]);
btrfs_set_lock_blocking(path->nodes[level]);
ret = btrfs_lookup_extent_info(trans, root,
path->nodes[level]->start,
path->nodes[level]->len,
&wc->refs[level],
&wc->flags[level]);
BUG_ON(ret);
BUG_ON(wc->refs[level] == 0);
if (level == root_item->drop_level)
break;
btrfs_tree_unlock(path->nodes[level]);
WARN_ON(wc->refs[level] != 1);
level--;
}
}
wc->level = level;
wc->shared_level = -1;
wc->stage = DROP_REFERENCE;
wc->update_ref = update_ref;
wc->keep_locks = 0;
while (1) {
ret = walk_down_tree(trans, root, path, wc);
if (ret < 0) {
err = ret;
break;
}
ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
if (ret < 0) {
err = ret;
break;
}
if (ret > 0) {
BUG_ON(wc->stage != DROP_REFERENCE);
break;
}
if (wc->stage == DROP_REFERENCE) {
level = wc->level;
btrfs_node_key(path->nodes[level],
&root_item->drop_progress,
path->slots[level]);
root_item->drop_level = level;
}
BUG_ON(wc->level == 0);
if (trans->transaction->in_commit ||
trans->transaction->delayed_refs.flushing) {
ret = btrfs_update_root(trans, tree_root,
&root->root_key,
root_item);
BUG_ON(ret);
btrfs_end_transaction(trans, tree_root);
trans = btrfs_start_transaction(tree_root, 1);
} else {
unsigned long update;
update = trans->delayed_ref_updates;
trans->delayed_ref_updates = 0;
if (update)
btrfs_run_delayed_refs(trans, tree_root,
update);
}
}
btrfs_release_path(root, path);
BUG_ON(err);
ret = btrfs_del_root(trans, tree_root, &root->root_key);
BUG_ON(ret);
free_extent_buffer(root->node);
free_extent_buffer(root->commit_root);
kfree(root);
out:
btrfs_end_transaction(trans, tree_root);
kfree(wc);
btrfs_free_path(path);
return err;
}
/*
* drop subtree rooted at tree block 'node'.
*
* NOTE: this function will unlock and release tree block 'node'
*/
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *node,
struct extent_buffer *parent)
{
struct btrfs_path *path;
struct walk_control *wc;
int level;
int parent_level;
int ret = 0;
int wret;
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
path = btrfs_alloc_path();
BUG_ON(!path);
wc = kzalloc(sizeof(*wc), GFP_NOFS);
BUG_ON(!wc);
btrfs_assert_tree_locked(parent);
parent_level = btrfs_header_level(parent);
extent_buffer_get(parent);
path->nodes[parent_level] = parent;
path->slots[parent_level] = btrfs_header_nritems(parent);
btrfs_assert_tree_locked(node);
level = btrfs_header_level(node);
path->nodes[level] = node;
path->slots[level] = 0;
path->locks[level] = 1;
wc->refs[parent_level] = 1;
wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
wc->level = level;
wc->shared_level = -1;
wc->stage = DROP_REFERENCE;
wc->update_ref = 0;
wc->keep_locks = 1;
while (1) {
wret = walk_down_tree(trans, root, path, wc);
if (wret < 0) {
ret = wret;
break;
}
wret = walk_up_tree(trans, root, path, wc, parent_level);
if (wret < 0)
ret = wret;
if (wret != 0)
break;
}
kfree(wc);
btrfs_free_path(path);
return ret;
}
#if 0
static unsigned long calc_ra(unsigned long start, unsigned long last,
unsigned long nr)
{
return min(last, start + nr - 1);
}
static noinline int relocate_inode_pages(struct inode *inode, u64 start,
u64 len)
{
u64 page_start;
u64 page_end;
unsigned long first_index;
unsigned long last_index;
unsigned long i;
struct page *page;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct file_ra_state *ra;
struct btrfs_ordered_extent *ordered;
unsigned int total_read = 0;
unsigned int total_dirty = 0;
int ret = 0;
ra = kzalloc(sizeof(*ra), GFP_NOFS);
mutex_lock(&inode->i_mutex);
first_index = start >> PAGE_CACHE_SHIFT;
last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
/* make sure the dirty trick played by the caller work */
ret = invalidate_inode_pages2_range(inode->i_mapping,
first_index, last_index);
if (ret)
goto out_unlock;
file_ra_state_init(ra, inode->i_mapping);
for (i = first_index ; i <= last_index; i++) {
if (total_read % ra->ra_pages == 0) {
btrfs_force_ra(inode->i_mapping, ra, NULL, i,
calc_ra(i, last_index, ra->ra_pages));
}
total_read++;
again:
if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
BUG_ON(1);
page = grab_cache_page(inode->i_mapping, i);
if (!page) {
ret = -ENOMEM;
goto out_unlock;
}
if (!PageUptodate(page)) {
btrfs_readpage(NULL, page);
lock_page(page);
if (!PageUptodate(page)) {
unlock_page(page);
page_cache_release(page);
ret = -EIO;
goto out_unlock;
}
}
wait_on_page_writeback(page);
page_start = (u64)page->index << PAGE_CACHE_SHIFT;
page_end = page_start + PAGE_CACHE_SIZE - 1;
lock_extent(io_tree, page_start, page_end, GFP_NOFS);
ordered = btrfs_lookup_ordered_extent(inode, page_start);
if (ordered) {
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
unlock_page(page);
page_cache_release(page);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
goto again;
}
set_page_extent_mapped(page);
if (i == first_index)
set_extent_bits(io_tree, page_start, page_end,
EXTENT_BOUNDARY, GFP_NOFS);
btrfs_set_extent_delalloc(inode, page_start, page_end);
set_page_dirty(page);
total_dirty++;
unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
unlock_page(page);
page_cache_release(page);
}
out_unlock:
kfree(ra);
mutex_unlock(&inode->i_mutex);
balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
return ret;
}
static noinline int relocate_data_extent(struct inode *reloc_inode,
struct btrfs_key *extent_key,
u64 offset)
{
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
struct extent_map *em;
u64 start = extent_key->objectid - offset;
u64 end = start + extent_key->offset - 1;
em = alloc_extent_map(GFP_NOFS);
BUG_ON(!em || IS_ERR(em));
em->start = start;
em->len = extent_key->offset;
em->block_len = extent_key->offset;
em->block_start = extent_key->objectid;
em->bdev = root->fs_info->fs_devices->latest_bdev;
set_bit(EXTENT_FLAG_PINNED, &em->flags);
/* setup extent map to cheat btrfs_readpage */
lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
while (1) {
int ret;
spin_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
spin_unlock(&em_tree->lock);
if (ret != -EEXIST) {
free_extent_map(em);
break;
}
btrfs_drop_extent_cache(reloc_inode, start, end, 0);
}
unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
return relocate_inode_pages(reloc_inode, start, extent_key->offset);
}
struct btrfs_ref_path {
u64 extent_start;
u64 nodes[BTRFS_MAX_LEVEL];
u64 root_objectid;
u64 root_generation;
u64 owner_objectid;
u32 num_refs;
int lowest_level;
int current_level;
int shared_level;
struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
u64 new_nodes[BTRFS_MAX_LEVEL];
};
struct disk_extent {
u64 ram_bytes;
u64 disk_bytenr;
u64 disk_num_bytes;
u64 offset;
u64 num_bytes;
u8 compression;
u8 encryption;
u16 other_encoding;
};
static int is_cowonly_root(u64 root_objectid)
{
if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
root_objectid == BTRFS_DEV_TREE_OBJECTID ||
root_objectid == BTRFS_TREE_LOG_OBJECTID ||
root_objectid == BTRFS_CSUM_TREE_OBJECTID)
return 1;
return 0;
}
static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_ref_path *ref_path,
int first_time)
{
struct extent_buffer *leaf;
struct btrfs_path *path;
struct btrfs_extent_ref *ref;
struct btrfs_key key;
struct btrfs_key found_key;
u64 bytenr;
u32 nritems;
int level;
int ret = 1;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (first_time) {
ref_path->lowest_level = -1;
ref_path->current_level = -1;
ref_path->shared_level = -1;
goto walk_up;
}
walk_down:
level = ref_path->current_level - 1;
while (level >= -1) {
u64 parent;
if (level < ref_path->lowest_level)
break;
if (level >= 0)
bytenr = ref_path->nodes[level];
else
bytenr = ref_path->extent_start;
BUG_ON(bytenr == 0);
parent = ref_path->nodes[level + 1];
ref_path->nodes[level + 1] = 0;
ref_path->current_level = level;
BUG_ON(parent == 0);
key.objectid = bytenr;
key.offset = parent + 1;
key.type = BTRFS_EXTENT_REF_KEY;
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
BUG_ON(ret == 0);
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0)
goto out;
if (ret > 0)
goto next;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid == bytenr &&
found_key.type == BTRFS_EXTENT_REF_KEY) {
if (level < ref_path->shared_level)
ref_path->shared_level = level;
goto found;
}
next:
level--;
btrfs_release_path(extent_root, path);
cond_resched();
}
/* reached lowest level */
ret = 1;
goto out;
walk_up:
level = ref_path->current_level;
while (level < BTRFS_MAX_LEVEL - 1) {
u64 ref_objectid;
if (level >= 0)
bytenr = ref_path->nodes[level];
else
bytenr = ref_path->extent_start;
BUG_ON(bytenr == 0);
key.objectid = bytenr;
key.offset = 0;
key.type = BTRFS_EXTENT_REF_KEY;
ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0)
goto out;
if (ret > 0) {
/* the extent was freed by someone */
if (ref_path->lowest_level == level)
goto out;
btrfs_release_path(extent_root, path);
goto walk_down;
}
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid != bytenr ||
found_key.type != BTRFS_EXTENT_REF_KEY) {
/* the extent was freed by someone */
if (ref_path->lowest_level == level) {
ret = 1;
goto out;
}
btrfs_release_path(extent_root, path);
goto walk_down;
}
found:
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_ref);
ref_objectid = btrfs_ref_objectid(leaf, ref);
if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
if (first_time) {
level = (int)ref_objectid;
BUG_ON(level >= BTRFS_MAX_LEVEL);
ref_path->lowest_level = level;
ref_path->current_level = level;
ref_path->nodes[level] = bytenr;
} else {
WARN_ON(ref_objectid != level);
}
} else {
WARN_ON(level != -1);
}
first_time = 0;
if (ref_path->lowest_level == level) {
ref_path->owner_objectid = ref_objectid;
ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
}
/*
* the block is tree root or the block isn't in reference
* counted tree.
*/
if (found_key.objectid == found_key.offset ||
is_cowonly_root(btrfs_ref_root(leaf, ref))) {
ref_path->root_objectid = btrfs_ref_root(leaf, ref);
ref_path->root_generation =
btrfs_ref_generation(leaf, ref);
if (level < 0) {
/* special reference from the tree log */
ref_path->nodes[0] = found_key.offset;
ref_path->current_level = 0;
}
ret = 0;
goto out;
}
level++;
BUG_ON(ref_path->nodes[level] != 0);
ref_path->nodes[level] = found_key.offset;
ref_path->current_level = level;
/*
* the reference was created in the running transaction,
* no need to continue walking up.
*/
if (btrfs_ref_generation(leaf, ref) == trans->transid) {
ref_path->root_objectid = btrfs_ref_root(leaf, ref);
ref_path->root_generation =
btrfs_ref_generation(leaf, ref);
ret = 0;
goto out;
}
btrfs_release_path(extent_root, path);
cond_resched();
}
/* reached max tree level, but no tree root found. */
BUG();
out:
btrfs_free_path(path);
return ret;
}
static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_ref_path *ref_path,
u64 extent_start)
{
memset(ref_path, 0, sizeof(*ref_path));
ref_path->extent_start = extent_start;
return __next_ref_path(trans, extent_root, ref_path, 1);
}
static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_ref_path *ref_path)
{
return __next_ref_path(trans, extent_root, ref_path, 0);
}
static noinline int get_new_locations(struct inode *reloc_inode,
struct btrfs_key *extent_key,
u64 offset, int no_fragment,
struct disk_extent **extents,
int *nr_extents)
{
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
struct btrfs_path *path;
struct btrfs_file_extent_item *fi;
struct extent_buffer *leaf;
struct disk_extent *exts = *extents;
struct btrfs_key found_key;
u64 cur_pos;
u64 last_byte;
u32 nritems;
int nr = 0;
int max = *nr_extents;
int ret;
WARN_ON(!no_fragment && *extents);
if (!exts) {
max = 1;
exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
if (!exts)
return -ENOMEM;
}
path = btrfs_alloc_path();
BUG_ON(!path);
cur_pos = extent_key->objectid - offset;
last_byte = extent_key->objectid + extent_key->offset;
ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
cur_pos, 0);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
while (1) {
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
if (ret > 0)
break;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.offset != cur_pos ||
found_key.type != BTRFS_EXTENT_DATA_KEY ||
found_key.objectid != reloc_inode->i_ino)
break;
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) !=
BTRFS_FILE_EXTENT_REG ||
btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
break;
if (nr == max) {
struct disk_extent *old = exts;
max *= 2;
exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
memcpy(exts, old, sizeof(*exts) * nr);
if (old != *extents)
kfree(old);
}
exts[nr].disk_bytenr =
btrfs_file_extent_disk_bytenr(leaf, fi);
exts[nr].disk_num_bytes =
btrfs_file_extent_disk_num_bytes(leaf, fi);
exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
fi);
BUG_ON(exts[nr].offset > 0);
BUG_ON(exts[nr].compression || exts[nr].encryption);
BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
cur_pos += exts[nr].num_bytes;
nr++;
if (cur_pos + offset >= last_byte)
break;
if (no_fragment) {
ret = 1;
goto out;
}
path->slots[0]++;
}
BUG_ON(cur_pos + offset > last_byte);
if (cur_pos + offset < last_byte) {
ret = -ENOENT;
goto out;
}
ret = 0;
out:
btrfs_free_path(path);
if (ret) {
if (exts != *extents)
kfree(exts);
} else {
*extents = exts;
*nr_extents = nr;
}
return ret;
}
static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *extent_key,
struct btrfs_key *leaf_key,
struct btrfs_ref_path *ref_path,
struct disk_extent *new_extents,
int nr_extents)
{
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct inode *inode = NULL;
struct btrfs_key key;
u64 lock_start = 0;
u64 lock_end = 0;
u64 num_bytes;
u64 ext_offset;
u64 search_end = (u64)-1;
u32 nritems;
int nr_scaned = 0;
int extent_locked = 0;
int extent_type;
int ret;
memcpy(&key, leaf_key, sizeof(key));
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
if (key.objectid < ref_path->owner_objectid ||
(key.objectid == ref_path->owner_objectid &&
key.type < BTRFS_EXTENT_DATA_KEY)) {
key.objectid = ref_path->owner_objectid;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = 0;
}
}
while (1) {
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret < 0)
goto out;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
next:
if (extent_locked && ret > 0) {
/*
* the file extent item was modified by someone
* before the extent got locked.
*/
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
lock_end, GFP_NOFS);
extent_locked = 0;
}
if (path->slots[0] >= nritems) {
if (++nr_scaned > 2)
break;
BUG_ON(extent_locked);
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
if (ret > 0)
break;
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
if ((key.objectid > ref_path->owner_objectid) ||
(key.objectid == ref_path->owner_objectid &&
key.type > BTRFS_EXTENT_DATA_KEY) ||
key.offset >= search_end)
break;
}
if (inode && key.objectid != inode->i_ino) {
BUG_ON(extent_locked);
btrfs_release_path(root, path);
mutex_unlock(&inode->i_mutex);
iput(inode);
inode = NULL;
continue;
}
if (key.type != BTRFS_EXTENT_DATA_KEY) {
path->slots[0]++;
ret = 1;
goto next;
}
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if ((extent_type != BTRFS_FILE_EXTENT_REG &&
extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
(btrfs_file_extent_disk_bytenr(leaf, fi) !=
extent_key->objectid)) {
path->slots[0]++;
ret = 1;
goto next;
}
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
ext_offset = btrfs_file_extent_offset(leaf, fi);
if (search_end == (u64)-1) {
search_end = key.offset - ext_offset +
btrfs_file_extent_ram_bytes(leaf, fi);
}
if (!extent_locked) {
lock_start = key.offset;
lock_end = lock_start + num_bytes - 1;
} else {
if (lock_start > key.offset ||
lock_end + 1 < key.offset + num_bytes) {
unlock_extent(&BTRFS_I(inode)->io_tree,
lock_start, lock_end, GFP_NOFS);
extent_locked = 0;
}
}
if (!inode) {
btrfs_release_path(root, path);
inode = btrfs_iget_locked(root->fs_info->sb,
key.objectid, root);
if (inode->i_state & I_NEW) {
BTRFS_I(inode)->root = root;
BTRFS_I(inode)->location.objectid =
key.objectid;
BTRFS_I(inode)->location.type =
BTRFS_INODE_ITEM_KEY;
BTRFS_I(inode)->location.offset = 0;
btrfs_read_locked_inode(inode);
unlock_new_inode(inode);
}
/*
* some code call btrfs_commit_transaction while
* holding the i_mutex, so we can't use mutex_lock
* here.
*/
if (is_bad_inode(inode) ||
!mutex_trylock(&inode->i_mutex)) {
iput(inode);
inode = NULL;
key.offset = (u64)-1;
goto skip;
}
}
if (!extent_locked) {
struct btrfs_ordered_extent *ordered;
btrfs_release_path(root, path);
lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
lock_end, GFP_NOFS);
ordered = btrfs_lookup_first_ordered_extent(inode,
lock_end);
if (ordered &&
ordered->file_offset <= lock_end &&
ordered->file_offset + ordered->len > lock_start) {
unlock_extent(&BTRFS_I(inode)->io_tree,
lock_start, lock_end, GFP_NOFS);
btrfs_start_ordered_extent(inode, ordered, 1);
btrfs_put_ordered_extent(ordered);
key.offset += num_bytes;
goto skip;
}
if (ordered)
btrfs_put_ordered_extent(ordered);
extent_locked = 1;
continue;
}
if (nr_extents == 1) {
/* update extent pointer in place */
btrfs_set_file_extent_disk_bytenr(leaf, fi,
new_extents[0].disk_bytenr);
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
new_extents[0].disk_num_bytes);
btrfs_mark_buffer_dirty(leaf);
btrfs_drop_extent_cache(inode, key.offset,
key.offset + num_bytes - 1, 0);
ret = btrfs_inc_extent_ref(trans, root,
new_extents[0].disk_bytenr,
new_extents[0].disk_num_bytes,
leaf->start,
root->root_key.objectid,
trans->transid,
key.objectid);
BUG_ON(ret);
ret = btrfs_free_extent(trans, root,
extent_key->objectid,
extent_key->offset,
leaf->start,
btrfs_header_owner(leaf),
btrfs_header_generation(leaf),
key.objectid, 0);
BUG_ON(ret);
btrfs_release_path(root, path);
key.offset += num_bytes;
} else {
BUG_ON(1);
#if 0
u64 alloc_hint;
u64 extent_len;
int i;
/*
* drop old extent pointer at first, then insert the
* new pointers one bye one
*/
btrfs_release_path(root, path);
ret = btrfs_drop_extents(trans, root, inode, key.offset,
key.offset + num_bytes,
key.offset, &alloc_hint);
BUG_ON(ret);
for (i = 0; i < nr_extents; i++) {
if (ext_offset >= new_extents[i].num_bytes) {
ext_offset -= new_extents[i].num_bytes;
continue;
}
extent_len = min(new_extents[i].num_bytes -
ext_offset, num_bytes);
ret = btrfs_insert_empty_item(trans, root,
path, &key,
sizeof(*fi));
BUG_ON(ret);
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi,
trans->transid);
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_disk_bytenr(leaf, fi,
new_extents[i].disk_bytenr);
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
new_extents[i].disk_num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, fi,
new_extents[i].ram_bytes);
btrfs_set_file_extent_compression(leaf, fi,
new_extents[i].compression);
btrfs_set_file_extent_encryption(leaf, fi,
new_extents[i].encryption);
btrfs_set_file_extent_other_encoding(leaf, fi,
new_extents[i].other_encoding);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_len);
ext_offset += new_extents[i].offset;
btrfs_set_file_extent_offset(leaf, fi,
ext_offset);
btrfs_mark_buffer_dirty(leaf);
btrfs_drop_extent_cache(inode, key.offset,
key.offset + extent_len - 1, 0);
ret = btrfs_inc_extent_ref(trans, root,
new_extents[i].disk_bytenr,
new_extents[i].disk_num_bytes,
leaf->start,
root->root_key.objectid,
trans->transid, key.objectid);
BUG_ON(ret);
btrfs_release_path(root, path);
inode_add_bytes(inode, extent_len);
ext_offset = 0;
num_bytes -= extent_len;
key.offset += extent_len;
if (num_bytes == 0)
break;
}
BUG_ON(i >= nr_extents);
#endif
}
if (extent_locked) {
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
lock_end, GFP_NOFS);
extent_locked = 0;
}
skip:
if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
key.offset >= search_end)
break;
cond_resched();
}
ret = 0;
out:
btrfs_release_path(root, path);
if (inode) {
mutex_unlock(&inode->i_mutex);
if (extent_locked) {
unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
lock_end, GFP_NOFS);
}
iput(inode);
}
return ret;
}
int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *buf, u64 orig_start)
{
int level;
int ret;
BUG_ON(btrfs_header_generation(buf) != trans->transid);
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
level = btrfs_header_level(buf);
if (level == 0) {
struct btrfs_leaf_ref *ref;
struct btrfs_leaf_ref *orig_ref;
orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
if (!orig_ref)
return -ENOENT;
ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
if (!ref) {
btrfs_free_leaf_ref(root, orig_ref);
return -ENOMEM;
}
ref->nritems = orig_ref->nritems;
memcpy(ref->extents, orig_ref->extents,
sizeof(ref->extents[0]) * ref->nritems);
btrfs_free_leaf_ref(root, orig_ref);
ref->root_gen = trans->transid;
ref->bytenr = buf->start;
ref->owner = btrfs_header_owner(buf);
ref->generation = btrfs_header_generation(buf);
ret = btrfs_add_leaf_ref(root, ref, 0);
WARN_ON(ret);
btrfs_free_leaf_ref(root, ref);
}
return 0;
}
static noinline int invalidate_extent_cache(struct btrfs_root *root,
struct extent_buffer *leaf,
struct btrfs_block_group_cache *group,
struct btrfs_root *target_root)
{
struct btrfs_key key;
struct inode *inode = NULL;
struct btrfs_file_extent_item *fi;
u64 num_bytes;
u64 skip_objectid = 0;
u32 nritems;
u32 i;
nritems = btrfs_header_nritems(leaf);
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(leaf, &key, i);
if (key.objectid == skip_objectid ||
key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
continue;
if (!inode || inode->i_ino != key.objectid) {
iput(inode);
inode = btrfs_ilookup(target_root->fs_info->sb,
key.objectid, target_root, 1);
}
if (!inode) {
skip_objectid = key.objectid;
continue;
}
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
key.offset + num_bytes - 1, GFP_NOFS);
btrfs_drop_extent_cache(inode, key.offset,
key.offset + num_bytes - 1, 1);
unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
key.offset + num_bytes - 1, GFP_NOFS);
cond_resched();
}
iput(inode);
return 0;
}
static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *leaf,
struct btrfs_block_group_cache *group,
struct inode *reloc_inode)
{
struct btrfs_key key;
struct btrfs_key extent_key;
struct btrfs_file_extent_item *fi;
struct btrfs_leaf_ref *ref;
struct disk_extent *new_extent;
u64 bytenr;
u64 num_bytes;
u32 nritems;
u32 i;
int ext_index;
int nr_extent;
int ret;
new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
BUG_ON(!new_extent);
ref = btrfs_lookup_leaf_ref(root, leaf->start);
BUG_ON(!ref);
ext_index = -1;
nritems = btrfs_header_nritems(leaf);
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(leaf, &key, i);
if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
if (bytenr == 0)
continue;
ext_index++;
if (bytenr >= group->key.objectid + group->key.offset ||
bytenr + num_bytes <= group->key.objectid)
continue;
extent_key.objectid = bytenr;
extent_key.offset = num_bytes;
extent_key.type = BTRFS_EXTENT_ITEM_KEY;
nr_extent = 1;
ret = get_new_locations(reloc_inode, &extent_key,
group->key.objectid, 1,
&new_extent, &nr_extent);
if (ret > 0)
continue;
BUG_ON(ret < 0);
BUG_ON(ref->extents[ext_index].bytenr != bytenr);
BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
btrfs_set_file_extent_disk_bytenr(leaf, fi,
new_extent->disk_bytenr);
btrfs_set_file_extent_disk_num_bytes(leaf, fi,
new_extent->disk_num_bytes);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_inc_extent_ref(trans, root,
new_extent->disk_bytenr,
new_extent->disk_num_bytes,
leaf->start,
root->root_key.objectid,
trans->transid, key.objectid);
BUG_ON(ret);
ret = btrfs_free_extent(trans, root,
bytenr, num_bytes, leaf->start,
btrfs_header_owner(leaf),
btrfs_header_generation(leaf),
key.objectid, 0);
BUG_ON(ret);
cond_resched();
}
kfree(new_extent);
BUG_ON(ext_index + 1 != ref->nritems);
btrfs_free_leaf_ref(root, ref);
return 0;
}
int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_root *reloc_root;
int ret;
if (root->reloc_root) {
reloc_root = root->reloc_root;
root->reloc_root = NULL;
list_add(&reloc_root->dead_list,
&root->fs_info->dead_reloc_roots);
btrfs_set_root_bytenr(&reloc_root->root_item,
reloc_root->node->start);
btrfs_set_root_level(&root->root_item,
btrfs_header_level(reloc_root->node));
memset(&reloc_root->root_item.drop_progress, 0,
sizeof(struct btrfs_disk_key));
reloc_root->root_item.drop_level = 0;
ret = btrfs_update_root(trans, root->fs_info->tree_root,
&reloc_root->root_key,
&reloc_root->root_item);
BUG_ON(ret);
}
return 0;
}
int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *reloc_root;
struct btrfs_root *prev_root = NULL;
struct list_head dead_roots;
int ret;
unsigned long nr;
INIT_LIST_HEAD(&dead_roots);
list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
while (!list_empty(&dead_roots)) {
reloc_root = list_entry(dead_roots.prev,
struct btrfs_root, dead_list);
list_del_init(&reloc_root->dead_list);
BUG_ON(reloc_root->commit_root != NULL);
while (1) {
trans = btrfs_join_transaction(root, 1);
BUG_ON(!trans);
mutex_lock(&root->fs_info->drop_mutex);
ret = btrfs_drop_snapshot(trans, reloc_root);
if (ret != -EAGAIN)
break;
mutex_unlock(&root->fs_info->drop_mutex);
nr = trans->blocks_used;
ret = btrfs_end_transaction(trans, root);
BUG_ON(ret);
btrfs_btree_balance_dirty(root, nr);
}
free_extent_buffer(reloc_root->node);
ret = btrfs_del_root(trans, root->fs_info->tree_root,
&reloc_root->root_key);
BUG_ON(ret);
mutex_unlock(&root->fs_info->drop_mutex);
nr = trans->blocks_used;
ret = btrfs_end_transaction(trans, root);
BUG_ON(ret);
btrfs_btree_balance_dirty(root, nr);
kfree(prev_root);
prev_root = reloc_root;
}
if (prev_root) {
btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
kfree(prev_root);
}
return 0;
}
int btrfs_add_dead_reloc_root(struct btrfs_root *root)
{
list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
return 0;
}
int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
{
struct btrfs_root *reloc_root;
struct btrfs_trans_handle *trans;
struct btrfs_key location;
int found;
int ret;
mutex_lock(&root->fs_info->tree_reloc_mutex);
ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
BUG_ON(ret);
found = !list_empty(&root->fs_info->dead_reloc_roots);
mutex_unlock(&root->fs_info->tree_reloc_mutex);
if (found) {
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
ret = btrfs_commit_transaction(trans, root);
BUG_ON(ret);
}
location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
location.offset = (u64)-1;
location.type = BTRFS_ROOT_ITEM_KEY;
reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
BUG_ON(!reloc_root);
btrfs_orphan_cleanup(reloc_root);
return 0;
}
static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_root *reloc_root;
struct extent_buffer *eb;
struct btrfs_root_item *root_item;
struct btrfs_key root_key;
int ret;
BUG_ON(!root->ref_cows);
if (root->reloc_root)
return 0;
root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
BUG_ON(!root_item);
ret = btrfs_copy_root(trans, root, root->commit_root,
&eb, BTRFS_TREE_RELOC_OBJECTID);
BUG_ON(ret);
root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
root_key.offset = root->root_key.objectid;
root_key.type = BTRFS_ROOT_ITEM_KEY;
memcpy(root_item, &root->root_item, sizeof(root_item));
btrfs_set_root_refs(root_item, 0);
btrfs_set_root_bytenr(root_item, eb->start);
btrfs_set_root_level(root_item, btrfs_header_level(eb));
btrfs_set_root_generation(root_item, trans->transid);
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
&root_key, root_item);
BUG_ON(ret);
kfree(root_item);
reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
&root_key);
BUG_ON(!reloc_root);
reloc_root->last_trans = trans->transid;
reloc_root->commit_root = NULL;
reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
root->reloc_root = reloc_root;
return 0;
}
/*
* Core function of space balance.
*
* The idea is using reloc trees to relocate tree blocks in reference
* counted roots. There is one reloc tree for each subvol, and all
* reloc trees share same root key objectid. Reloc trees are snapshots
* of the latest committed roots of subvols (root->commit_root).
*
* To relocate a tree block referenced by a subvol, there are two steps.
* COW the block through subvol's reloc tree, then update block pointer
* in the subvol to point to the new block. Since all reloc trees share
* same root key objectid, doing special handing for tree blocks owned
* by them is easy. Once a tree block has been COWed in one reloc tree,
* we can use the resulting new block directly when the same block is
* required to COW again through other reloc trees. By this way, relocated
* tree blocks are shared between reloc trees, so they are also shared
* between subvols.
*/
static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *first_key,
struct btrfs_ref_path *ref_path,
struct btrfs_block_group_cache *group,
struct inode *reloc_inode)
{
struct btrfs_root *reloc_root;
struct extent_buffer *eb = NULL;
struct btrfs_key *keys;
u64 *nodes;
int level;
int shared_level;
int lowest_level = 0;
int ret;
if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
lowest_level = ref_path->owner_objectid;
if (!root->ref_cows) {
path->lowest_level = lowest_level;
ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
BUG_ON(ret < 0);
path->lowest_level = 0;
btrfs_release_path(root, path);
return 0;
}
mutex_lock(&root->fs_info->tree_reloc_mutex);
ret = init_reloc_tree(trans, root);
BUG_ON(ret);
reloc_root = root->reloc_root;
shared_level = ref_path->shared_level;
ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
keys = ref_path->node_keys;
nodes = ref_path->new_nodes;
memset(&keys[shared_level + 1], 0,
sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
memset(&nodes[shared_level + 1], 0,
sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
if (nodes[lowest_level] == 0) {
path->lowest_level = lowest_level;
ret = btrfs_search_slot(trans, reloc_root, first_key, path,
0, 1);
BUG_ON(ret);
for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
eb = path->nodes[level];
if (!eb || eb == reloc_root->node)
break;
nodes[level] = eb->start;
if (level == 0)
btrfs_item_key_to_cpu(eb, &keys[level], 0);
else
btrfs_node_key_to_cpu(eb, &keys[level], 0);
}
if (nodes[0] &&
ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
eb = path->nodes[0];
ret = replace_extents_in_leaf(trans, reloc_root, eb,
group, reloc_inode);
BUG_ON(ret);
}
btrfs_release_path(reloc_root, path);
} else {
ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
lowest_level);
BUG_ON(ret);
}
/*
* replace tree blocks in the fs tree with tree blocks in
* the reloc tree.
*/
ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
BUG_ON(ret < 0);
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
ret = btrfs_search_slot(trans, reloc_root, first_key, path,
0, 0);
BUG_ON(ret);
extent_buffer_get(path->nodes[0]);
eb = path->nodes[0];
btrfs_release_path(reloc_root, path);
ret = invalidate_extent_cache(reloc_root, eb, group, root);
BUG_ON(ret);
free_extent_buffer(eb);
}
mutex_unlock(&root->fs_info->tree_reloc_mutex);
path->lowest_level = 0;
return 0;
}
static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_key *first_key,
struct btrfs_ref_path *ref_path)
{
int ret;
ret = relocate_one_path(trans, root, path, first_key,
ref_path, NULL, NULL);
BUG_ON(ret);
return 0;
}
static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct btrfs_path *path,
struct btrfs_key *extent_key)
{
int ret;
ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
if (ret)
goto out;
ret = btrfs_del_item(trans, extent_root, path);
out:
btrfs_release_path(extent_root, path);
return ret;
}
static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
struct btrfs_ref_path *ref_path)
{
struct btrfs_key root_key;
root_key.objectid = ref_path->root_objectid;
root_key.type = BTRFS_ROOT_ITEM_KEY;
if (is_cowonly_root(ref_path->root_objectid))
root_key.offset = 0;
else
root_key.offset = (u64)-1;
return btrfs_read_fs_root_no_name(fs_info, &root_key);
}
static noinline int relocate_one_extent(struct btrfs_root *extent_root,
struct btrfs_path *path,
struct btrfs_key *extent_key,
struct btrfs_block_group_cache *group,
struct inode *reloc_inode, int pass)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *found_root;
struct btrfs_ref_path *ref_path = NULL;
struct disk_extent *new_extents = NULL;
int nr_extents = 0;
int loops;
int ret;
int level;
struct btrfs_key first_key;
u64 prev_block = 0;
trans = btrfs_start_transaction(extent_root, 1);
BUG_ON(!trans);
if (extent_key->objectid == 0) {
ret = del_extent_zero(trans, extent_root, path, extent_key);
goto out;
}
ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
if (!ref_path) {
ret = -ENOMEM;
goto out;
}
for (loops = 0; ; loops++) {
if (loops == 0) {
ret = btrfs_first_ref_path(trans, extent_root, ref_path,
extent_key->objectid);
} else {
ret = btrfs_next_ref_path(trans, extent_root, ref_path);
}
if (ret < 0)
goto out;
if (ret > 0)
break;
if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
continue;
found_root = read_ref_root(extent_root->fs_info, ref_path);
BUG_ON(!found_root);
/*
* for reference counted tree, only process reference paths
* rooted at the latest committed root.
*/
if (found_root->ref_cows &&
ref_path->root_generation != found_root->root_key.offset)
continue;
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
if (pass == 0) {
/*
* copy data extents to new locations
*/
u64 group_start = group->key.objectid;
ret = relocate_data_extent(reloc_inode,
extent_key,
group_start);
if (ret < 0)
goto out;
break;
}
level = 0;
} else {
level = ref_path->owner_objectid;
}
if (prev_block != ref_path->nodes[level]) {
struct extent_buffer *eb;
u64 block_start = ref_path->nodes[level];
u64 block_size = btrfs_level_size(found_root, level);
eb = read_tree_block(found_root, block_start,
block_size, 0);
btrfs_tree_lock(eb);
BUG_ON(level != btrfs_header_level(eb));
if (level == 0)
btrfs_item_key_to_cpu(eb, &first_key, 0);
else
btrfs_node_key_to_cpu(eb, &first_key, 0);
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
prev_block = block_start;
}
mutex_lock(&extent_root->fs_info->trans_mutex);
btrfs_record_root_in_trans(found_root);
mutex_unlock(&extent_root->fs_info->trans_mutex);
if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
/*
* try to update data extent references while
* keeping metadata shared between snapshots.
*/
if (pass == 1) {
ret = relocate_one_path(trans, found_root,
path, &first_key, ref_path,
group, reloc_inode);
if (ret < 0)
goto out;
continue;
}
/*
* use fallback method to process the remaining
* references.
*/
if (!new_extents) {
u64 group_start = group->key.objectid;
new_extents = kmalloc(sizeof(*new_extents),
GFP_NOFS);
nr_extents = 1;
ret = get_new_locations(reloc_inode,
extent_key,
group_start, 1,
&new_extents,
&nr_extents);
if (ret)
goto out;
}
ret = replace_one_extent(trans, found_root,
path, extent_key,
&first_key, ref_path,
new_extents, nr_extents);
} else {
ret = relocate_tree_block(trans, found_root, path,
&first_key, ref_path);
}
if (ret < 0)
goto out;
}
ret = 0;
out:
btrfs_end_transaction(trans, extent_root);
kfree(new_extents);
kfree(ref_path);
return ret;
}
#endif
static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
{
u64 num_devices;
u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
num_devices = root->fs_info->fs_devices->rw_devices;
if (num_devices == 1) {
stripped |= BTRFS_BLOCK_GROUP_DUP;
stripped = flags & ~stripped;
/* turn raid0 into single device chunks */
if (flags & BTRFS_BLOCK_GROUP_RAID0)
return stripped;
/* turn mirroring into duplication */
if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10))
return stripped | BTRFS_BLOCK_GROUP_DUP;
return flags;
} else {
/* they already had raid on here, just return */
if (flags & stripped)
return flags;
stripped |= BTRFS_BLOCK_GROUP_DUP;
stripped = flags & ~stripped;
/* switch duplicated blocks with raid1 */
if (flags & BTRFS_BLOCK_GROUP_DUP)
return stripped | BTRFS_BLOCK_GROUP_RAID1;
/* turn single device chunks into raid0 */
return stripped | BTRFS_BLOCK_GROUP_RAID0;
}
return flags;
}
static int __alloc_chunk_for_shrink(struct btrfs_root *root,
struct btrfs_block_group_cache *shrink_block_group,
int force)
{
struct btrfs_trans_handle *trans;
u64 new_alloc_flags;
u64 calc;
spin_lock(&shrink_block_group->lock);
if (btrfs_block_group_used(&shrink_block_group->item) +
shrink_block_group->reserved > 0) {
spin_unlock(&shrink_block_group->lock);
trans = btrfs_start_transaction(root, 1);
spin_lock(&shrink_block_group->lock);
new_alloc_flags = update_block_group_flags(root,
shrink_block_group->flags);
if (new_alloc_flags != shrink_block_group->flags) {
calc =
btrfs_block_group_used(&shrink_block_group->item);
} else {
calc = shrink_block_group->key.offset;
}
spin_unlock(&shrink_block_group->lock);
do_chunk_alloc(trans, root->fs_info->extent_root,
calc + 2 * 1024 * 1024, new_alloc_flags, force);
btrfs_end_transaction(trans, root);
} else
spin_unlock(&shrink_block_group->lock);
return 0;
}
int btrfs_prepare_block_group_relocation(struct btrfs_root *root,
struct btrfs_block_group_cache *group)
{
__alloc_chunk_for_shrink(root, group, 1);
set_block_group_readonly(group);
return 0;
}
#if 0
static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, u64 size)
{
struct btrfs_path *path;
struct btrfs_inode_item *item;
struct extent_buffer *leaf;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->leave_spinning = 1;
ret = btrfs_insert_empty_inode(trans, root, path, objectid);
if (ret)
goto out;
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
btrfs_set_inode_generation(leaf, item, 1);
btrfs_set_inode_size(leaf, item, size);
btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(root, path);
out:
btrfs_free_path(path);
return ret;
}
static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
struct btrfs_block_group_cache *group)
{
struct inode *inode = NULL;
struct btrfs_trans_handle *trans;
struct btrfs_root *root;
struct btrfs_key root_key;
u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
int err = 0;
root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = (u64)-1;
root = btrfs_read_fs_root_no_name(fs_info, &root_key);
if (IS_ERR(root))
return ERR_CAST(root);
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
if (err)
goto out;
err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
BUG_ON(err);
err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
group->key.offset, 0, group->key.offset,
0, 0, 0);
BUG_ON(err);
inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
if (inode->i_state & I_NEW) {
BTRFS_I(inode)->root = root;
BTRFS_I(inode)->location.objectid = objectid;
BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
BTRFS_I(inode)->location.offset = 0;
btrfs_read_locked_inode(inode);
unlock_new_inode(inode);
BUG_ON(is_bad_inode(inode));
} else {
BUG_ON(1);
}
BTRFS_I(inode)->index_cnt = group->key.objectid;
err = btrfs_orphan_add(trans, inode);
out:
btrfs_end_transaction(trans, root);
if (err) {
if (inode)
iput(inode);
inode = ERR_PTR(err);
}
return inode;
}
int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
{
struct btrfs_ordered_sum *sums;
struct btrfs_sector_sum *sector_sum;
struct btrfs_ordered_extent *ordered;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct list_head list;
size_t offset;
int ret;
u64 disk_bytenr;
INIT_LIST_HEAD(&list);
ordered = btrfs_lookup_ordered_extent(inode, file_pos);
BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
disk_bytenr + len - 1, &list);
while (!list_empty(&list)) {
sums = list_entry(list.next, struct btrfs_ordered_sum, list);
list_del_init(&sums->list);
sector_sum = sums->sums;
sums->bytenr = ordered->start;
offset = 0;
while (offset < sums->len) {
sector_sum->bytenr += ordered->start - disk_bytenr;
sector_sum++;
offset += root->sectorsize;
}
btrfs_add_ordered_sum(inode, ordered, sums);
}
btrfs_put_ordered_extent(ordered);
return 0;
}
int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start)
{
struct btrfs_trans_handle *trans;
struct btrfs_path *path;
struct btrfs_fs_info *info = root->fs_info;
struct extent_buffer *leaf;
struct inode *reloc_inode;
struct btrfs_block_group_cache *block_group;
struct btrfs_key key;
u64 skipped;
u64 cur_byte;
u64 total_found;
u32 nritems;
int ret;
int progress;
int pass = 0;
root = root->fs_info->extent_root;
block_group = btrfs_lookup_block_group(info, group_start);
BUG_ON(!block_group);
printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n",
(unsigned long long)block_group->key.objectid,
(unsigned long long)block_group->flags);
path = btrfs_alloc_path();
BUG_ON(!path);
reloc_inode = create_reloc_inode(info, block_group);
BUG_ON(IS_ERR(reloc_inode));
__alloc_chunk_for_shrink(root, block_group, 1);
set_block_group_readonly(block_group);
btrfs_start_delalloc_inodes(info->tree_root);
btrfs_wait_ordered_extents(info->tree_root, 0);
again:
skipped = 0;
total_found = 0;
progress = 0;
key.objectid = block_group->key.objectid;
key.offset = 0;
key.type = 0;
cur_byte = key.objectid;
trans = btrfs_start_transaction(info->tree_root, 1);
btrfs_commit_transaction(trans, info->tree_root);
mutex_lock(&root->fs_info->cleaner_mutex);
btrfs_clean_old_snapshots(info->tree_root);
btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1);
mutex_unlock(&root->fs_info->cleaner_mutex);
trans = btrfs_start_transaction(info->tree_root, 1);
btrfs_commit_transaction(trans, info->tree_root);
while (1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
next:
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
if (ret == 1) {
ret = 0;
break;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid >= block_group->key.objectid +
block_group->key.offset)
break;
if (progress && need_resched()) {
btrfs_release_path(root, path);
cond_resched();
progress = 0;
continue;
}
progress = 1;
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY ||
key.objectid + key.offset <= cur_byte) {
path->slots[0]++;
goto next;
}
total_found++;
cur_byte = key.objectid + key.offset;
btrfs_release_path(root, path);
__alloc_chunk_for_shrink(root, block_group, 0);
ret = relocate_one_extent(root, path, &key, block_group,
reloc_inode, pass);
BUG_ON(ret < 0);
if (ret > 0)
skipped++;
key.objectid = cur_byte;
key.type = 0;
key.offset = 0;
}
btrfs_release_path(root, path);
if (pass == 0) {
btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1);
invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1);
}
if (total_found > 0) {
printk(KERN_INFO "btrfs found %llu extents in pass %d\n",
(unsigned long long)total_found, pass);
pass++;
if (total_found == skipped && pass > 2) {
iput(reloc_inode);
reloc_inode = create_reloc_inode(info, block_group);
pass = 0;
}
goto again;
}
/* delete reloc_inode */
iput(reloc_inode);
/* unpin extents in this range */
trans = btrfs_start_transaction(info->tree_root, 1);
btrfs_commit_transaction(trans, info->tree_root);
spin_lock(&block_group->lock);
WARN_ON(block_group->pinned > 0);
WARN_ON(block_group->reserved > 0);
WARN_ON(btrfs_block_group_used(&block_group->item) > 0);
spin_unlock(&block_group->lock);
btrfs_put_block_group(block_group);
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
#endif
static int find_first_block_group(struct btrfs_root *root,
struct btrfs_path *path, struct btrfs_key *key)
{
int ret = 0;
struct btrfs_key found_key;
struct extent_buffer *leaf;
int slot;
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret < 0)
goto out;
while (1) {
slot = path->slots[0];
leaf = path->nodes[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto out;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.objectid >= key->objectid &&
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
ret = 0;
goto out;
}
path->slots[0]++;
}
ret = -ENOENT;
out:
return ret;
}
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
struct btrfs_block_group_cache *block_group;
struct btrfs_space_info *space_info;
struct rb_node *n;
spin_lock(&info->block_group_cache_lock);
while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
block_group = rb_entry(n, struct btrfs_block_group_cache,
cache_node);
rb_erase(&block_group->cache_node,
&info->block_group_cache_tree);
spin_unlock(&info->block_group_cache_lock);
down_write(&block_group->space_info->groups_sem);
list_del(&block_group->list);
up_write(&block_group->space_info->groups_sem);
if (block_group->cached == BTRFS_CACHE_STARTED)
wait_event(block_group->caching_q,
block_group_cache_done(block_group));
btrfs_remove_free_space_cache(block_group);
WARN_ON(atomic_read(&block_group->count) != 1);
kfree(block_group);
spin_lock(&info->block_group_cache_lock);
}
spin_unlock(&info->block_group_cache_lock);
/* now that all the block groups are freed, go through and
* free all the space_info structs. This is only called during
* the final stages of unmount, and so we know nobody is
* using them. We call synchronize_rcu() once before we start,
* just to be on the safe side.
*/
synchronize_rcu();
while(!list_empty(&info->space_info)) {
space_info = list_entry(info->space_info.next,
struct btrfs_space_info,
list);
list_del(&space_info->list);
kfree(space_info);
}
return 0;
}
int btrfs_read_block_groups(struct btrfs_root *root)
{
struct btrfs_path *path;
int ret;
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_space_info *space_info;
struct btrfs_key key;
struct btrfs_key found_key;
struct extent_buffer *leaf;
root = info->extent_root;
key.objectid = 0;
key.offset = 0;
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while (1) {
ret = find_first_block_group(root, path, &key);
if (ret > 0) {
ret = 0;
goto error;
}
if (ret != 0)
goto error;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
cache = kzalloc(sizeof(*cache), GFP_NOFS);
if (!cache) {
ret = -ENOMEM;
break;
}
atomic_set(&cache->count, 1);
spin_lock_init(&cache->lock);
spin_lock_init(&cache->tree_lock);
cache->fs_info = info;
init_waitqueue_head(&cache->caching_q);
INIT_LIST_HEAD(&cache->list);
INIT_LIST_HEAD(&cache->cluster_list);
/*
* we only want to have 32k of ram per block group for keeping
* track of free space, and if we pass 1/2 of that we want to
* start converting things over to using bitmaps
*/
cache->extents_thresh = ((1024 * 32) / 2) /
sizeof(struct btrfs_free_space);
read_extent_buffer(leaf, &cache->item,
btrfs_item_ptr_offset(leaf, path->slots[0]),
sizeof(cache->item));
memcpy(&cache->key, &found_key, sizeof(found_key));
key.objectid = found_key.objectid + found_key.offset;
btrfs_release_path(root, path);
cache->flags = btrfs_block_group_flags(&cache->item);
cache->sectorsize = root->sectorsize;
remove_sb_from_cache(root, cache);
/*
* check for two cases, either we are full, and therefore
* don't need to bother with the caching work since we won't
* find any space, or we are empty, and we can just add all
* the space in and be done with it. This saves us _alot_ of
* time, particularly in the full case.
*/
if (found_key.offset == btrfs_block_group_used(&cache->item)) {
cache->cached = BTRFS_CACHE_FINISHED;
} else if (btrfs_block_group_used(&cache->item) == 0) {
cache->cached = BTRFS_CACHE_FINISHED;
add_new_free_space(cache, root->fs_info,
found_key.objectid,
found_key.objectid +
found_key.offset);
}
ret = update_space_info(info, cache->flags, found_key.offset,
btrfs_block_group_used(&cache->item),
&space_info);
BUG_ON(ret);
cache->space_info = space_info;
down_write(&space_info->groups_sem);
list_add_tail(&cache->list, &space_info->block_groups);
up_write(&space_info->groups_sem);
ret = btrfs_add_block_group_cache(root->fs_info, cache);
BUG_ON(ret);
set_avail_alloc_bits(root->fs_info, cache->flags);
if (btrfs_chunk_readonly(root, cache->key.objectid))
set_block_group_readonly(cache);
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
int btrfs_make_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 bytes_used,
u64 type, u64 chunk_objectid, u64 chunk_offset,
u64 size)
{
int ret;
struct btrfs_root *extent_root;
struct btrfs_block_group_cache *cache;
extent_root = root->fs_info->extent_root;
root->fs_info->last_trans_log_full_commit = trans->transid;
cache = kzalloc(sizeof(*cache), GFP_NOFS);
if (!cache)
return -ENOMEM;
cache->key.objectid = chunk_offset;
cache->key.offset = size;
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
cache->sectorsize = root->sectorsize;
/*
* we only want to have 32k of ram per block group for keeping track
* of free space, and if we pass 1/2 of that we want to start
* converting things over to using bitmaps
*/
cache->extents_thresh = ((1024 * 32) / 2) /
sizeof(struct btrfs_free_space);
atomic_set(&cache->count, 1);
spin_lock_init(&cache->lock);
spin_lock_init(&cache->tree_lock);
init_waitqueue_head(&cache->caching_q);
INIT_LIST_HEAD(&cache->list);
INIT_LIST_HEAD(&cache->cluster_list);
btrfs_set_block_group_used(&cache->item, bytes_used);
btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
cache->flags = type;
btrfs_set_block_group_flags(&cache->item, type);
cache->cached = BTRFS_CACHE_FINISHED;
remove_sb_from_cache(root, cache);
add_new_free_space(cache, root->fs_info, chunk_offset,
chunk_offset + size);
ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
&cache->space_info);
BUG_ON(ret);
down_write(&cache->space_info->groups_sem);
list_add_tail(&cache->list, &cache->space_info->block_groups);
up_write(&cache->space_info->groups_sem);
ret = btrfs_add_block_group_cache(root->fs_info, cache);
BUG_ON(ret);
ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
sizeof(cache->item));
BUG_ON(ret);
set_avail_alloc_bits(extent_root->fs_info, type);
return 0;
}
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 group_start)
{
struct btrfs_path *path;
struct btrfs_block_group_cache *block_group;
struct btrfs_free_cluster *cluster;
struct btrfs_key key;
int ret;
root = root->fs_info->extent_root;
block_group = btrfs_lookup_block_group(root->fs_info, group_start);
BUG_ON(!block_group);
BUG_ON(!block_group->ro);
memcpy(&key, &block_group->key, sizeof(key));
/* make sure this block group isn't part of an allocation cluster */
cluster = &root->fs_info->data_alloc_cluster;
spin_lock(&cluster->refill_lock);
btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
/*
* make sure this block group isn't part of a metadata
* allocation cluster
*/
cluster = &root->fs_info->meta_alloc_cluster;
spin_lock(&cluster->refill_lock);
btrfs_return_cluster_to_free_space(block_group, cluster);
spin_unlock(&cluster->refill_lock);
path = btrfs_alloc_path();
BUG_ON(!path);
spin_lock(&root->fs_info->block_group_cache_lock);
rb_erase(&block_group->cache_node,
&root->fs_info->block_group_cache_tree);
spin_unlock(&root->fs_info->block_group_cache_lock);
down_write(&block_group->space_info->groups_sem);
/*
* we must use list_del_init so people can check to see if they
* are still on the list after taking the semaphore
*/
list_del_init(&block_group->list);
up_write(&block_group->space_info->groups_sem);
if (block_group->cached == BTRFS_CACHE_STARTED)
wait_event(block_group->caching_q,
block_group_cache_done(block_group));
btrfs_remove_free_space_cache(block_group);
spin_lock(&block_group->space_info->lock);
block_group->space_info->total_bytes -= block_group->key.offset;
block_group->space_info->bytes_readonly -= block_group->key.offset;
spin_unlock(&block_group->space_info->lock);
btrfs_clear_space_info_full(root->fs_info);
btrfs_put_block_group(block_group);
btrfs_put_block_group(block_group);
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0)
ret = -EIO;
if (ret < 0)
goto out;
ret = btrfs_del_item(trans, root, path);
out:
btrfs_free_path(path);
return ret;
}