4c2ef53d3b
This is identical to tty_schedule_flip. So let us use that instead. Signed-off-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2195 lines
50 KiB
C
2195 lines
50 KiB
C
/*
|
|
* Written for linux by Johan Myreen as a translation from
|
|
* the assembly version by Linus (with diacriticals added)
|
|
*
|
|
* Some additional features added by Christoph Niemann (ChN), March 1993
|
|
*
|
|
* Loadable keymaps by Risto Kankkunen, May 1993
|
|
*
|
|
* Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
|
|
* Added decr/incr_console, dynamic keymaps, Unicode support,
|
|
* dynamic function/string keys, led setting, Sept 1994
|
|
* `Sticky' modifier keys, 951006.
|
|
*
|
|
* 11-11-96: SAK should now work in the raw mode (Martin Mares)
|
|
*
|
|
* Modified to provide 'generic' keyboard support by Hamish Macdonald
|
|
* Merge with the m68k keyboard driver and split-off of the PC low-level
|
|
* parts by Geert Uytterhoeven, May 1997
|
|
*
|
|
* 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
|
|
* 30-07-98: Dead keys redone, aeb@cwi.nl.
|
|
* 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/consolemap.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/kbd_kern.h>
|
|
#include <linux/kbd_diacr.h>
|
|
#include <linux/vt_kern.h>
|
|
#include <linux/input.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
extern void ctrl_alt_del(void);
|
|
|
|
/*
|
|
* Exported functions/variables
|
|
*/
|
|
|
|
#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
|
|
|
|
#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
|
|
#include <asm/kbdleds.h>
|
|
#else
|
|
static inline int kbd_defleds(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#define KBD_DEFLOCK 0
|
|
|
|
/*
|
|
* Handler Tables.
|
|
*/
|
|
|
|
#define K_HANDLERS\
|
|
k_self, k_fn, k_spec, k_pad,\
|
|
k_dead, k_cons, k_cur, k_shift,\
|
|
k_meta, k_ascii, k_lock, k_lowercase,\
|
|
k_slock, k_dead2, k_brl, k_ignore
|
|
|
|
typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
|
|
char up_flag);
|
|
static k_handler_fn K_HANDLERS;
|
|
static k_handler_fn *k_handler[16] = { K_HANDLERS };
|
|
|
|
#define FN_HANDLERS\
|
|
fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
|
|
fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
|
|
fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
|
|
fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
|
|
fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
|
|
|
|
typedef void (fn_handler_fn)(struct vc_data *vc);
|
|
static fn_handler_fn FN_HANDLERS;
|
|
static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
|
|
|
|
/*
|
|
* Variables exported for vt_ioctl.c
|
|
*/
|
|
|
|
struct vt_spawn_console vt_spawn_con = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
|
|
.pid = NULL,
|
|
.sig = 0,
|
|
};
|
|
|
|
|
|
/*
|
|
* Internal Data.
|
|
*/
|
|
|
|
static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
|
|
static struct kbd_struct *kbd = kbd_table;
|
|
|
|
/* maximum values each key_handler can handle */
|
|
static const int max_vals[] = {
|
|
255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
|
|
NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
|
|
255, NR_LOCK - 1, 255, NR_BRL - 1
|
|
};
|
|
|
|
static const int NR_TYPES = ARRAY_SIZE(max_vals);
|
|
|
|
static struct input_handler kbd_handler;
|
|
static DEFINE_SPINLOCK(kbd_event_lock);
|
|
static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
|
|
static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
|
|
static bool dead_key_next;
|
|
static int npadch = -1; /* -1 or number assembled on pad */
|
|
static unsigned int diacr;
|
|
static char rep; /* flag telling character repeat */
|
|
|
|
static int shift_state = 0;
|
|
|
|
static unsigned char ledstate = 0xff; /* undefined */
|
|
static unsigned char ledioctl;
|
|
|
|
static struct ledptr {
|
|
unsigned int *addr;
|
|
unsigned int mask;
|
|
unsigned char valid:1;
|
|
} ledptrs[3];
|
|
|
|
/*
|
|
* Notifier list for console keyboard events
|
|
*/
|
|
static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
|
|
|
|
int register_keyboard_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_keyboard_notifier);
|
|
|
|
int unregister_keyboard_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
|
|
|
|
/*
|
|
* Translation of scancodes to keycodes. We set them on only the first
|
|
* keyboard in the list that accepts the scancode and keycode.
|
|
* Explanation for not choosing the first attached keyboard anymore:
|
|
* USB keyboards for example have two event devices: one for all "normal"
|
|
* keys and one for extra function keys (like "volume up", "make coffee",
|
|
* etc.). So this means that scancodes for the extra function keys won't
|
|
* be valid for the first event device, but will be for the second.
|
|
*/
|
|
|
|
struct getset_keycode_data {
|
|
struct input_keymap_entry ke;
|
|
int error;
|
|
};
|
|
|
|
static int getkeycode_helper(struct input_handle *handle, void *data)
|
|
{
|
|
struct getset_keycode_data *d = data;
|
|
|
|
d->error = input_get_keycode(handle->dev, &d->ke);
|
|
|
|
return d->error == 0; /* stop as soon as we successfully get one */
|
|
}
|
|
|
|
static int getkeycode(unsigned int scancode)
|
|
{
|
|
struct getset_keycode_data d = {
|
|
.ke = {
|
|
.flags = 0,
|
|
.len = sizeof(scancode),
|
|
.keycode = 0,
|
|
},
|
|
.error = -ENODEV,
|
|
};
|
|
|
|
memcpy(d.ke.scancode, &scancode, sizeof(scancode));
|
|
|
|
input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
|
|
|
|
return d.error ?: d.ke.keycode;
|
|
}
|
|
|
|
static int setkeycode_helper(struct input_handle *handle, void *data)
|
|
{
|
|
struct getset_keycode_data *d = data;
|
|
|
|
d->error = input_set_keycode(handle->dev, &d->ke);
|
|
|
|
return d->error == 0; /* stop as soon as we successfully set one */
|
|
}
|
|
|
|
static int setkeycode(unsigned int scancode, unsigned int keycode)
|
|
{
|
|
struct getset_keycode_data d = {
|
|
.ke = {
|
|
.flags = 0,
|
|
.len = sizeof(scancode),
|
|
.keycode = keycode,
|
|
},
|
|
.error = -ENODEV,
|
|
};
|
|
|
|
memcpy(d.ke.scancode, &scancode, sizeof(scancode));
|
|
|
|
input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
|
|
|
|
return d.error;
|
|
}
|
|
|
|
/*
|
|
* Making beeps and bells. Note that we prefer beeps to bells, but when
|
|
* shutting the sound off we do both.
|
|
*/
|
|
|
|
static int kd_sound_helper(struct input_handle *handle, void *data)
|
|
{
|
|
unsigned int *hz = data;
|
|
struct input_dev *dev = handle->dev;
|
|
|
|
if (test_bit(EV_SND, dev->evbit)) {
|
|
if (test_bit(SND_TONE, dev->sndbit)) {
|
|
input_inject_event(handle, EV_SND, SND_TONE, *hz);
|
|
if (*hz)
|
|
return 0;
|
|
}
|
|
if (test_bit(SND_BELL, dev->sndbit))
|
|
input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kd_nosound(unsigned long ignored)
|
|
{
|
|
static unsigned int zero;
|
|
|
|
input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
|
|
}
|
|
|
|
static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
|
|
|
|
void kd_mksound(unsigned int hz, unsigned int ticks)
|
|
{
|
|
del_timer_sync(&kd_mksound_timer);
|
|
|
|
input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
|
|
|
|
if (hz && ticks)
|
|
mod_timer(&kd_mksound_timer, jiffies + ticks);
|
|
}
|
|
EXPORT_SYMBOL(kd_mksound);
|
|
|
|
/*
|
|
* Setting the keyboard rate.
|
|
*/
|
|
|
|
static int kbd_rate_helper(struct input_handle *handle, void *data)
|
|
{
|
|
struct input_dev *dev = handle->dev;
|
|
struct kbd_repeat *rep = data;
|
|
|
|
if (test_bit(EV_REP, dev->evbit)) {
|
|
|
|
if (rep[0].delay > 0)
|
|
input_inject_event(handle,
|
|
EV_REP, REP_DELAY, rep[0].delay);
|
|
if (rep[0].period > 0)
|
|
input_inject_event(handle,
|
|
EV_REP, REP_PERIOD, rep[0].period);
|
|
|
|
rep[1].delay = dev->rep[REP_DELAY];
|
|
rep[1].period = dev->rep[REP_PERIOD];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kbd_rate(struct kbd_repeat *rep)
|
|
{
|
|
struct kbd_repeat data[2] = { *rep };
|
|
|
|
input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
|
|
*rep = data[1]; /* Copy currently used settings */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper Functions.
|
|
*/
|
|
static void put_queue(struct vc_data *vc, int ch)
|
|
{
|
|
struct tty_struct *tty = vc->port.tty;
|
|
|
|
if (tty) {
|
|
tty_insert_flip_char(tty, ch, 0);
|
|
tty_schedule_flip(tty);
|
|
}
|
|
}
|
|
|
|
static void puts_queue(struct vc_data *vc, char *cp)
|
|
{
|
|
struct tty_struct *tty = vc->port.tty;
|
|
|
|
if (!tty)
|
|
return;
|
|
|
|
while (*cp) {
|
|
tty_insert_flip_char(tty, *cp, 0);
|
|
cp++;
|
|
}
|
|
tty_schedule_flip(tty);
|
|
}
|
|
|
|
static void applkey(struct vc_data *vc, int key, char mode)
|
|
{
|
|
static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
|
|
|
|
buf[1] = (mode ? 'O' : '[');
|
|
buf[2] = key;
|
|
puts_queue(vc, buf);
|
|
}
|
|
|
|
/*
|
|
* Many other routines do put_queue, but I think either
|
|
* they produce ASCII, or they produce some user-assigned
|
|
* string, and in both cases we might assume that it is
|
|
* in utf-8 already.
|
|
*/
|
|
static void to_utf8(struct vc_data *vc, uint c)
|
|
{
|
|
if (c < 0x80)
|
|
/* 0******* */
|
|
put_queue(vc, c);
|
|
else if (c < 0x800) {
|
|
/* 110***** 10****** */
|
|
put_queue(vc, 0xc0 | (c >> 6));
|
|
put_queue(vc, 0x80 | (c & 0x3f));
|
|
} else if (c < 0x10000) {
|
|
if (c >= 0xD800 && c < 0xE000)
|
|
return;
|
|
if (c == 0xFFFF)
|
|
return;
|
|
/* 1110**** 10****** 10****** */
|
|
put_queue(vc, 0xe0 | (c >> 12));
|
|
put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
|
|
put_queue(vc, 0x80 | (c & 0x3f));
|
|
} else if (c < 0x110000) {
|
|
/* 11110*** 10****** 10****** 10****** */
|
|
put_queue(vc, 0xf0 | (c >> 18));
|
|
put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
|
|
put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
|
|
put_queue(vc, 0x80 | (c & 0x3f));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called after returning from RAW mode or when changing consoles - recompute
|
|
* shift_down[] and shift_state from key_down[] maybe called when keymap is
|
|
* undefined, so that shiftkey release is seen. The caller must hold the
|
|
* kbd_event_lock.
|
|
*/
|
|
|
|
static void do_compute_shiftstate(void)
|
|
{
|
|
unsigned int i, j, k, sym, val;
|
|
|
|
shift_state = 0;
|
|
memset(shift_down, 0, sizeof(shift_down));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(key_down); i++) {
|
|
|
|
if (!key_down[i])
|
|
continue;
|
|
|
|
k = i * BITS_PER_LONG;
|
|
|
|
for (j = 0; j < BITS_PER_LONG; j++, k++) {
|
|
|
|
if (!test_bit(k, key_down))
|
|
continue;
|
|
|
|
sym = U(key_maps[0][k]);
|
|
if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
|
|
continue;
|
|
|
|
val = KVAL(sym);
|
|
if (val == KVAL(K_CAPSSHIFT))
|
|
val = KVAL(K_SHIFT);
|
|
|
|
shift_down[val]++;
|
|
shift_state |= (1 << val);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We still have to export this method to vt.c */
|
|
void compute_shiftstate(void)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
do_compute_shiftstate();
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* We have a combining character DIACR here, followed by the character CH.
|
|
* If the combination occurs in the table, return the corresponding value.
|
|
* Otherwise, if CH is a space or equals DIACR, return DIACR.
|
|
* Otherwise, conclude that DIACR was not combining after all,
|
|
* queue it and return CH.
|
|
*/
|
|
static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
|
|
{
|
|
unsigned int d = diacr;
|
|
unsigned int i;
|
|
|
|
diacr = 0;
|
|
|
|
if ((d & ~0xff) == BRL_UC_ROW) {
|
|
if ((ch & ~0xff) == BRL_UC_ROW)
|
|
return d | ch;
|
|
} else {
|
|
for (i = 0; i < accent_table_size; i++)
|
|
if (accent_table[i].diacr == d && accent_table[i].base == ch)
|
|
return accent_table[i].result;
|
|
}
|
|
|
|
if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
|
|
return d;
|
|
|
|
if (kbd->kbdmode == VC_UNICODE)
|
|
to_utf8(vc, d);
|
|
else {
|
|
int c = conv_uni_to_8bit(d);
|
|
if (c != -1)
|
|
put_queue(vc, c);
|
|
}
|
|
|
|
return ch;
|
|
}
|
|
|
|
/*
|
|
* Special function handlers
|
|
*/
|
|
static void fn_enter(struct vc_data *vc)
|
|
{
|
|
if (diacr) {
|
|
if (kbd->kbdmode == VC_UNICODE)
|
|
to_utf8(vc, diacr);
|
|
else {
|
|
int c = conv_uni_to_8bit(diacr);
|
|
if (c != -1)
|
|
put_queue(vc, c);
|
|
}
|
|
diacr = 0;
|
|
}
|
|
|
|
put_queue(vc, 13);
|
|
if (vc_kbd_mode(kbd, VC_CRLF))
|
|
put_queue(vc, 10);
|
|
}
|
|
|
|
static void fn_caps_toggle(struct vc_data *vc)
|
|
{
|
|
if (rep)
|
|
return;
|
|
|
|
chg_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
static void fn_caps_on(struct vc_data *vc)
|
|
{
|
|
if (rep)
|
|
return;
|
|
|
|
set_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
static void fn_show_ptregs(struct vc_data *vc)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
|
|
if (regs)
|
|
show_regs(regs);
|
|
}
|
|
|
|
static void fn_hold(struct vc_data *vc)
|
|
{
|
|
struct tty_struct *tty = vc->port.tty;
|
|
|
|
if (rep || !tty)
|
|
return;
|
|
|
|
/*
|
|
* Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
|
|
* these routines are also activated by ^S/^Q.
|
|
* (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
|
|
*/
|
|
if (tty->stopped)
|
|
start_tty(tty);
|
|
else
|
|
stop_tty(tty);
|
|
}
|
|
|
|
static void fn_num(struct vc_data *vc)
|
|
{
|
|
if (vc_kbd_mode(kbd, VC_APPLIC))
|
|
applkey(vc, 'P', 1);
|
|
else
|
|
fn_bare_num(vc);
|
|
}
|
|
|
|
/*
|
|
* Bind this to Shift-NumLock if you work in application keypad mode
|
|
* but want to be able to change the NumLock flag.
|
|
* Bind this to NumLock if you prefer that the NumLock key always
|
|
* changes the NumLock flag.
|
|
*/
|
|
static void fn_bare_num(struct vc_data *vc)
|
|
{
|
|
if (!rep)
|
|
chg_vc_kbd_led(kbd, VC_NUMLOCK);
|
|
}
|
|
|
|
static void fn_lastcons(struct vc_data *vc)
|
|
{
|
|
/* switch to the last used console, ChN */
|
|
set_console(last_console);
|
|
}
|
|
|
|
static void fn_dec_console(struct vc_data *vc)
|
|
{
|
|
int i, cur = fg_console;
|
|
|
|
/* Currently switching? Queue this next switch relative to that. */
|
|
if (want_console != -1)
|
|
cur = want_console;
|
|
|
|
for (i = cur - 1; i != cur; i--) {
|
|
if (i == -1)
|
|
i = MAX_NR_CONSOLES - 1;
|
|
if (vc_cons_allocated(i))
|
|
break;
|
|
}
|
|
set_console(i);
|
|
}
|
|
|
|
static void fn_inc_console(struct vc_data *vc)
|
|
{
|
|
int i, cur = fg_console;
|
|
|
|
/* Currently switching? Queue this next switch relative to that. */
|
|
if (want_console != -1)
|
|
cur = want_console;
|
|
|
|
for (i = cur+1; i != cur; i++) {
|
|
if (i == MAX_NR_CONSOLES)
|
|
i = 0;
|
|
if (vc_cons_allocated(i))
|
|
break;
|
|
}
|
|
set_console(i);
|
|
}
|
|
|
|
static void fn_send_intr(struct vc_data *vc)
|
|
{
|
|
struct tty_struct *tty = vc->port.tty;
|
|
|
|
if (!tty)
|
|
return;
|
|
tty_insert_flip_char(tty, 0, TTY_BREAK);
|
|
tty_schedule_flip(tty);
|
|
}
|
|
|
|
static void fn_scroll_forw(struct vc_data *vc)
|
|
{
|
|
scrollfront(vc, 0);
|
|
}
|
|
|
|
static void fn_scroll_back(struct vc_data *vc)
|
|
{
|
|
scrollback(vc, 0);
|
|
}
|
|
|
|
static void fn_show_mem(struct vc_data *vc)
|
|
{
|
|
show_mem(0);
|
|
}
|
|
|
|
static void fn_show_state(struct vc_data *vc)
|
|
{
|
|
show_state();
|
|
}
|
|
|
|
static void fn_boot_it(struct vc_data *vc)
|
|
{
|
|
ctrl_alt_del();
|
|
}
|
|
|
|
static void fn_compose(struct vc_data *vc)
|
|
{
|
|
dead_key_next = true;
|
|
}
|
|
|
|
static void fn_spawn_con(struct vc_data *vc)
|
|
{
|
|
spin_lock(&vt_spawn_con.lock);
|
|
if (vt_spawn_con.pid)
|
|
if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
|
|
put_pid(vt_spawn_con.pid);
|
|
vt_spawn_con.pid = NULL;
|
|
}
|
|
spin_unlock(&vt_spawn_con.lock);
|
|
}
|
|
|
|
static void fn_SAK(struct vc_data *vc)
|
|
{
|
|
struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
|
|
schedule_work(SAK_work);
|
|
}
|
|
|
|
static void fn_null(struct vc_data *vc)
|
|
{
|
|
do_compute_shiftstate();
|
|
}
|
|
|
|
/*
|
|
* Special key handlers
|
|
*/
|
|
static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
}
|
|
|
|
static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
if (value >= ARRAY_SIZE(fn_handler))
|
|
return;
|
|
if ((kbd->kbdmode == VC_RAW ||
|
|
kbd->kbdmode == VC_MEDIUMRAW ||
|
|
kbd->kbdmode == VC_OFF) &&
|
|
value != KVAL(K_SAK))
|
|
return; /* SAK is allowed even in raw mode */
|
|
fn_handler[value](vc);
|
|
}
|
|
|
|
static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
pr_err("k_lowercase was called - impossible\n");
|
|
}
|
|
|
|
static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return; /* no action, if this is a key release */
|
|
|
|
if (diacr)
|
|
value = handle_diacr(vc, value);
|
|
|
|
if (dead_key_next) {
|
|
dead_key_next = false;
|
|
diacr = value;
|
|
return;
|
|
}
|
|
if (kbd->kbdmode == VC_UNICODE)
|
|
to_utf8(vc, value);
|
|
else {
|
|
int c = conv_uni_to_8bit(value);
|
|
if (c != -1)
|
|
put_queue(vc, c);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle dead key. Note that we now may have several
|
|
* dead keys modifying the same character. Very useful
|
|
* for Vietnamese.
|
|
*/
|
|
static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
|
|
diacr = (diacr ? handle_diacr(vc, value) : value);
|
|
}
|
|
|
|
static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
k_unicode(vc, conv_8bit_to_uni(value), up_flag);
|
|
}
|
|
|
|
static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
k_deadunicode(vc, value, up_flag);
|
|
}
|
|
|
|
/*
|
|
* Obsolete - for backwards compatibility only
|
|
*/
|
|
static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
|
|
|
|
k_deadunicode(vc, ret_diacr[value], up_flag);
|
|
}
|
|
|
|
static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
|
|
set_console(value);
|
|
}
|
|
|
|
static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
|
|
if ((unsigned)value < ARRAY_SIZE(func_table)) {
|
|
if (func_table[value])
|
|
puts_queue(vc, func_table[value]);
|
|
} else
|
|
pr_err("k_fn called with value=%d\n", value);
|
|
}
|
|
|
|
static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
static const char cur_chars[] = "BDCA";
|
|
|
|
if (up_flag)
|
|
return;
|
|
|
|
applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
|
|
}
|
|
|
|
static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
static const char pad_chars[] = "0123456789+-*/\015,.?()#";
|
|
static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
|
|
|
|
if (up_flag)
|
|
return; /* no action, if this is a key release */
|
|
|
|
/* kludge... shift forces cursor/number keys */
|
|
if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
|
|
applkey(vc, app_map[value], 1);
|
|
return;
|
|
}
|
|
|
|
if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
|
|
|
|
switch (value) {
|
|
case KVAL(K_PCOMMA):
|
|
case KVAL(K_PDOT):
|
|
k_fn(vc, KVAL(K_REMOVE), 0);
|
|
return;
|
|
case KVAL(K_P0):
|
|
k_fn(vc, KVAL(K_INSERT), 0);
|
|
return;
|
|
case KVAL(K_P1):
|
|
k_fn(vc, KVAL(K_SELECT), 0);
|
|
return;
|
|
case KVAL(K_P2):
|
|
k_cur(vc, KVAL(K_DOWN), 0);
|
|
return;
|
|
case KVAL(K_P3):
|
|
k_fn(vc, KVAL(K_PGDN), 0);
|
|
return;
|
|
case KVAL(K_P4):
|
|
k_cur(vc, KVAL(K_LEFT), 0);
|
|
return;
|
|
case KVAL(K_P6):
|
|
k_cur(vc, KVAL(K_RIGHT), 0);
|
|
return;
|
|
case KVAL(K_P7):
|
|
k_fn(vc, KVAL(K_FIND), 0);
|
|
return;
|
|
case KVAL(K_P8):
|
|
k_cur(vc, KVAL(K_UP), 0);
|
|
return;
|
|
case KVAL(K_P9):
|
|
k_fn(vc, KVAL(K_PGUP), 0);
|
|
return;
|
|
case KVAL(K_P5):
|
|
applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
|
|
return;
|
|
}
|
|
}
|
|
|
|
put_queue(vc, pad_chars[value]);
|
|
if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
|
|
put_queue(vc, 10);
|
|
}
|
|
|
|
static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
int old_state = shift_state;
|
|
|
|
if (rep)
|
|
return;
|
|
/*
|
|
* Mimic typewriter:
|
|
* a CapsShift key acts like Shift but undoes CapsLock
|
|
*/
|
|
if (value == KVAL(K_CAPSSHIFT)) {
|
|
value = KVAL(K_SHIFT);
|
|
if (!up_flag)
|
|
clr_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
if (up_flag) {
|
|
/*
|
|
* handle the case that two shift or control
|
|
* keys are depressed simultaneously
|
|
*/
|
|
if (shift_down[value])
|
|
shift_down[value]--;
|
|
} else
|
|
shift_down[value]++;
|
|
|
|
if (shift_down[value])
|
|
shift_state |= (1 << value);
|
|
else
|
|
shift_state &= ~(1 << value);
|
|
|
|
/* kludge */
|
|
if (up_flag && shift_state != old_state && npadch != -1) {
|
|
if (kbd->kbdmode == VC_UNICODE)
|
|
to_utf8(vc, npadch);
|
|
else
|
|
put_queue(vc, npadch & 0xff);
|
|
npadch = -1;
|
|
}
|
|
}
|
|
|
|
static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
|
|
if (vc_kbd_mode(kbd, VC_META)) {
|
|
put_queue(vc, '\033');
|
|
put_queue(vc, value);
|
|
} else
|
|
put_queue(vc, value | 0x80);
|
|
}
|
|
|
|
static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
int base;
|
|
|
|
if (up_flag)
|
|
return;
|
|
|
|
if (value < 10) {
|
|
/* decimal input of code, while Alt depressed */
|
|
base = 10;
|
|
} else {
|
|
/* hexadecimal input of code, while AltGr depressed */
|
|
value -= 10;
|
|
base = 16;
|
|
}
|
|
|
|
if (npadch == -1)
|
|
npadch = value;
|
|
else
|
|
npadch = npadch * base + value;
|
|
}
|
|
|
|
static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag || rep)
|
|
return;
|
|
|
|
chg_vc_kbd_lock(kbd, value);
|
|
}
|
|
|
|
static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
k_shift(vc, value, up_flag);
|
|
if (up_flag || rep)
|
|
return;
|
|
|
|
chg_vc_kbd_slock(kbd, value);
|
|
/* try to make Alt, oops, AltGr and such work */
|
|
if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
|
|
kbd->slockstate = 0;
|
|
chg_vc_kbd_slock(kbd, value);
|
|
}
|
|
}
|
|
|
|
/* by default, 300ms interval for combination release */
|
|
static unsigned brl_timeout = 300;
|
|
MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
|
|
module_param(brl_timeout, uint, 0644);
|
|
|
|
static unsigned brl_nbchords = 1;
|
|
MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
|
|
module_param(brl_nbchords, uint, 0644);
|
|
|
|
static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
|
|
{
|
|
static unsigned long chords;
|
|
static unsigned committed;
|
|
|
|
if (!brl_nbchords)
|
|
k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
|
|
else {
|
|
committed |= pattern;
|
|
chords++;
|
|
if (chords == brl_nbchords) {
|
|
k_unicode(vc, BRL_UC_ROW | committed, up_flag);
|
|
chords = 0;
|
|
committed = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
|
|
{
|
|
static unsigned pressed, committing;
|
|
static unsigned long releasestart;
|
|
|
|
if (kbd->kbdmode != VC_UNICODE) {
|
|
if (!up_flag)
|
|
pr_warning("keyboard mode must be unicode for braille patterns\n");
|
|
return;
|
|
}
|
|
|
|
if (!value) {
|
|
k_unicode(vc, BRL_UC_ROW, up_flag);
|
|
return;
|
|
}
|
|
|
|
if (value > 8)
|
|
return;
|
|
|
|
if (!up_flag) {
|
|
pressed |= 1 << (value - 1);
|
|
if (!brl_timeout)
|
|
committing = pressed;
|
|
} else if (brl_timeout) {
|
|
if (!committing ||
|
|
time_after(jiffies,
|
|
releasestart + msecs_to_jiffies(brl_timeout))) {
|
|
committing = pressed;
|
|
releasestart = jiffies;
|
|
}
|
|
pressed &= ~(1 << (value - 1));
|
|
if (!pressed && committing) {
|
|
k_brlcommit(vc, committing, 0);
|
|
committing = 0;
|
|
}
|
|
} else {
|
|
if (committing) {
|
|
k_brlcommit(vc, committing, 0);
|
|
committing = 0;
|
|
}
|
|
pressed &= ~(1 << (value - 1));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
|
|
* or (ii) whatever pattern of lights people want to show using KDSETLED,
|
|
* or (iii) specified bits of specified words in kernel memory.
|
|
*/
|
|
unsigned char getledstate(void)
|
|
{
|
|
return ledstate;
|
|
}
|
|
|
|
void setledstate(struct kbd_struct *kbd, unsigned int led)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
if (!(led & ~7)) {
|
|
ledioctl = led;
|
|
kbd->ledmode = LED_SHOW_IOCTL;
|
|
} else
|
|
kbd->ledmode = LED_SHOW_FLAGS;
|
|
|
|
set_leds();
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
}
|
|
|
|
static inline unsigned char getleds(void)
|
|
{
|
|
struct kbd_struct *kbd = kbd_table + fg_console;
|
|
unsigned char leds;
|
|
int i;
|
|
|
|
if (kbd->ledmode == LED_SHOW_IOCTL)
|
|
return ledioctl;
|
|
|
|
leds = kbd->ledflagstate;
|
|
|
|
if (kbd->ledmode == LED_SHOW_MEM) {
|
|
for (i = 0; i < 3; i++)
|
|
if (ledptrs[i].valid) {
|
|
if (*ledptrs[i].addr & ledptrs[i].mask)
|
|
leds |= (1 << i);
|
|
else
|
|
leds &= ~(1 << i);
|
|
}
|
|
}
|
|
return leds;
|
|
}
|
|
|
|
static int kbd_update_leds_helper(struct input_handle *handle, void *data)
|
|
{
|
|
unsigned char leds = *(unsigned char *)data;
|
|
|
|
if (test_bit(EV_LED, handle->dev->evbit)) {
|
|
input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
|
|
input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
|
|
input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
|
|
input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* vt_get_leds - helper for braille console
|
|
* @console: console to read
|
|
* @flag: flag we want to check
|
|
*
|
|
* Check the status of a keyboard led flag and report it back
|
|
*/
|
|
int vt_get_leds(int console, int flag)
|
|
{
|
|
unsigned long flags;
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
ret = vc_kbd_led(kbd, flag);
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vt_get_leds);
|
|
|
|
/**
|
|
* vt_set_led_state - set LED state of a console
|
|
* @console: console to set
|
|
* @leds: LED bits
|
|
*
|
|
* Set the LEDs on a console. This is a wrapper for the VT layer
|
|
* so that we can keep kbd knowledge internal
|
|
*/
|
|
void vt_set_led_state(int console, int leds)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
setledstate(kbd, leds);
|
|
}
|
|
|
|
/**
|
|
* vt_kbd_con_start - Keyboard side of console start
|
|
* @console: console
|
|
*
|
|
* Handle console start. This is a wrapper for the VT layer
|
|
* so that we can keep kbd knowledge internal
|
|
*
|
|
* FIXME: We eventually need to hold the kbd lock here to protect
|
|
* the LED updating. We can't do it yet because fn_hold calls stop_tty
|
|
* and start_tty under the kbd_event_lock, while normal tty paths
|
|
* don't hold the lock. We probably need to split out an LED lock
|
|
* but not during an -rc release!
|
|
*/
|
|
void vt_kbd_con_start(int console)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
/* unsigned long flags; */
|
|
/* spin_lock_irqsave(&kbd_event_lock, flags); */
|
|
clr_vc_kbd_led(kbd, VC_SCROLLOCK);
|
|
set_leds();
|
|
/* spin_unlock_irqrestore(&kbd_event_lock, flags); */
|
|
}
|
|
|
|
/**
|
|
* vt_kbd_con_stop - Keyboard side of console stop
|
|
* @console: console
|
|
*
|
|
* Handle console stop. This is a wrapper for the VT layer
|
|
* so that we can keep kbd knowledge internal
|
|
*
|
|
* FIXME: We eventually need to hold the kbd lock here to protect
|
|
* the LED updating. We can't do it yet because fn_hold calls stop_tty
|
|
* and start_tty under the kbd_event_lock, while normal tty paths
|
|
* don't hold the lock. We probably need to split out an LED lock
|
|
* but not during an -rc release!
|
|
*/
|
|
void vt_kbd_con_stop(int console)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
/* unsigned long flags; */
|
|
/* spin_lock_irqsave(&kbd_event_lock, flags); */
|
|
set_vc_kbd_led(kbd, VC_SCROLLOCK);
|
|
set_leds();
|
|
/* spin_unlock_irqrestore(&kbd_event_lock, flags); */
|
|
}
|
|
|
|
/*
|
|
* This is the tasklet that updates LED state on all keyboards
|
|
* attached to the box. The reason we use tasklet is that we
|
|
* need to handle the scenario when keyboard handler is not
|
|
* registered yet but we already getting updates from the VT to
|
|
* update led state.
|
|
*/
|
|
static void kbd_bh(unsigned long dummy)
|
|
{
|
|
unsigned char leds = getleds();
|
|
|
|
if (leds != ledstate) {
|
|
input_handler_for_each_handle(&kbd_handler, &leds,
|
|
kbd_update_leds_helper);
|
|
ledstate = leds;
|
|
}
|
|
}
|
|
|
|
DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
|
|
|
|
#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
|
|
defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
|
|
defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
|
|
(defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
|
|
defined(CONFIG_AVR32)
|
|
|
|
#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
|
|
((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
|
|
|
|
static const unsigned short x86_keycodes[256] =
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
|
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
|
|
284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
|
|
367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
|
|
360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
|
|
103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
|
|
291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
|
|
264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
|
|
377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
|
|
308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
|
|
332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
|
|
|
|
#ifdef CONFIG_SPARC
|
|
static int sparc_l1_a_state;
|
|
extern void sun_do_break(void);
|
|
#endif
|
|
|
|
static int emulate_raw(struct vc_data *vc, unsigned int keycode,
|
|
unsigned char up_flag)
|
|
{
|
|
int code;
|
|
|
|
switch (keycode) {
|
|
|
|
case KEY_PAUSE:
|
|
put_queue(vc, 0xe1);
|
|
put_queue(vc, 0x1d | up_flag);
|
|
put_queue(vc, 0x45 | up_flag);
|
|
break;
|
|
|
|
case KEY_HANGEUL:
|
|
if (!up_flag)
|
|
put_queue(vc, 0xf2);
|
|
break;
|
|
|
|
case KEY_HANJA:
|
|
if (!up_flag)
|
|
put_queue(vc, 0xf1);
|
|
break;
|
|
|
|
case KEY_SYSRQ:
|
|
/*
|
|
* Real AT keyboards (that's what we're trying
|
|
* to emulate here emit 0xe0 0x2a 0xe0 0x37 when
|
|
* pressing PrtSc/SysRq alone, but simply 0x54
|
|
* when pressing Alt+PrtSc/SysRq.
|
|
*/
|
|
if (test_bit(KEY_LEFTALT, key_down) ||
|
|
test_bit(KEY_RIGHTALT, key_down)) {
|
|
put_queue(vc, 0x54 | up_flag);
|
|
} else {
|
|
put_queue(vc, 0xe0);
|
|
put_queue(vc, 0x2a | up_flag);
|
|
put_queue(vc, 0xe0);
|
|
put_queue(vc, 0x37 | up_flag);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (keycode > 255)
|
|
return -1;
|
|
|
|
code = x86_keycodes[keycode];
|
|
if (!code)
|
|
return -1;
|
|
|
|
if (code & 0x100)
|
|
put_queue(vc, 0xe0);
|
|
put_queue(vc, (code & 0x7f) | up_flag);
|
|
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
#define HW_RAW(dev) 0
|
|
|
|
static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
|
|
{
|
|
if (keycode > 127)
|
|
return -1;
|
|
|
|
put_queue(vc, keycode | up_flag);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void kbd_rawcode(unsigned char data)
|
|
{
|
|
struct vc_data *vc = vc_cons[fg_console].d;
|
|
|
|
kbd = kbd_table + vc->vc_num;
|
|
if (kbd->kbdmode == VC_RAW)
|
|
put_queue(vc, data);
|
|
}
|
|
|
|
static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
|
|
{
|
|
struct vc_data *vc = vc_cons[fg_console].d;
|
|
unsigned short keysym, *key_map;
|
|
unsigned char type;
|
|
bool raw_mode;
|
|
struct tty_struct *tty;
|
|
int shift_final;
|
|
struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
|
|
int rc;
|
|
|
|
tty = vc->port.tty;
|
|
|
|
if (tty && (!tty->driver_data)) {
|
|
/* No driver data? Strange. Okay we fix it then. */
|
|
tty->driver_data = vc;
|
|
}
|
|
|
|
kbd = kbd_table + vc->vc_num;
|
|
|
|
#ifdef CONFIG_SPARC
|
|
if (keycode == KEY_STOP)
|
|
sparc_l1_a_state = down;
|
|
#endif
|
|
|
|
rep = (down == 2);
|
|
|
|
raw_mode = (kbd->kbdmode == VC_RAW);
|
|
if (raw_mode && !hw_raw)
|
|
if (emulate_raw(vc, keycode, !down << 7))
|
|
if (keycode < BTN_MISC && printk_ratelimit())
|
|
pr_warning("can't emulate rawmode for keycode %d\n",
|
|
keycode);
|
|
|
|
#ifdef CONFIG_SPARC
|
|
if (keycode == KEY_A && sparc_l1_a_state) {
|
|
sparc_l1_a_state = false;
|
|
sun_do_break();
|
|
}
|
|
#endif
|
|
|
|
if (kbd->kbdmode == VC_MEDIUMRAW) {
|
|
/*
|
|
* This is extended medium raw mode, with keys above 127
|
|
* encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
|
|
* the 'up' flag if needed. 0 is reserved, so this shouldn't
|
|
* interfere with anything else. The two bytes after 0 will
|
|
* always have the up flag set not to interfere with older
|
|
* applications. This allows for 16384 different keycodes,
|
|
* which should be enough.
|
|
*/
|
|
if (keycode < 128) {
|
|
put_queue(vc, keycode | (!down << 7));
|
|
} else {
|
|
put_queue(vc, !down << 7);
|
|
put_queue(vc, (keycode >> 7) | 0x80);
|
|
put_queue(vc, keycode | 0x80);
|
|
}
|
|
raw_mode = true;
|
|
}
|
|
|
|
if (down)
|
|
set_bit(keycode, key_down);
|
|
else
|
|
clear_bit(keycode, key_down);
|
|
|
|
if (rep &&
|
|
(!vc_kbd_mode(kbd, VC_REPEAT) ||
|
|
(tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
|
|
/*
|
|
* Don't repeat a key if the input buffers are not empty and the
|
|
* characters get aren't echoed locally. This makes key repeat
|
|
* usable with slow applications and under heavy loads.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
|
|
param.ledstate = kbd->ledflagstate;
|
|
key_map = key_maps[shift_final];
|
|
|
|
rc = atomic_notifier_call_chain(&keyboard_notifier_list,
|
|
KBD_KEYCODE, ¶m);
|
|
if (rc == NOTIFY_STOP || !key_map) {
|
|
atomic_notifier_call_chain(&keyboard_notifier_list,
|
|
KBD_UNBOUND_KEYCODE, ¶m);
|
|
do_compute_shiftstate();
|
|
kbd->slockstate = 0;
|
|
return;
|
|
}
|
|
|
|
if (keycode < NR_KEYS)
|
|
keysym = key_map[keycode];
|
|
else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
|
|
keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
|
|
else
|
|
return;
|
|
|
|
type = KTYP(keysym);
|
|
|
|
if (type < 0xf0) {
|
|
param.value = keysym;
|
|
rc = atomic_notifier_call_chain(&keyboard_notifier_list,
|
|
KBD_UNICODE, ¶m);
|
|
if (rc != NOTIFY_STOP)
|
|
if (down && !raw_mode)
|
|
to_utf8(vc, keysym);
|
|
return;
|
|
}
|
|
|
|
type -= 0xf0;
|
|
|
|
if (type == KT_LETTER) {
|
|
type = KT_LATIN;
|
|
if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
|
|
key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
|
|
if (key_map)
|
|
keysym = key_map[keycode];
|
|
}
|
|
}
|
|
|
|
param.value = keysym;
|
|
rc = atomic_notifier_call_chain(&keyboard_notifier_list,
|
|
KBD_KEYSYM, ¶m);
|
|
if (rc == NOTIFY_STOP)
|
|
return;
|
|
|
|
if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
|
|
return;
|
|
|
|
(*k_handler[type])(vc, keysym & 0xff, !down);
|
|
|
|
param.ledstate = kbd->ledflagstate;
|
|
atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
|
|
|
|
if (type != KT_SLOCK)
|
|
kbd->slockstate = 0;
|
|
}
|
|
|
|
static void kbd_event(struct input_handle *handle, unsigned int event_type,
|
|
unsigned int event_code, int value)
|
|
{
|
|
/* We are called with interrupts disabled, just take the lock */
|
|
spin_lock(&kbd_event_lock);
|
|
|
|
if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
|
|
kbd_rawcode(value);
|
|
if (event_type == EV_KEY)
|
|
kbd_keycode(event_code, value, HW_RAW(handle->dev));
|
|
|
|
spin_unlock(&kbd_event_lock);
|
|
|
|
tasklet_schedule(&keyboard_tasklet);
|
|
do_poke_blanked_console = 1;
|
|
schedule_console_callback();
|
|
}
|
|
|
|
static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
|
|
{
|
|
int i;
|
|
|
|
if (test_bit(EV_SND, dev->evbit))
|
|
return true;
|
|
|
|
if (test_bit(EV_KEY, dev->evbit)) {
|
|
for (i = KEY_RESERVED; i < BTN_MISC; i++)
|
|
if (test_bit(i, dev->keybit))
|
|
return true;
|
|
for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
|
|
if (test_bit(i, dev->keybit))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* When a keyboard (or other input device) is found, the kbd_connect
|
|
* function is called. The function then looks at the device, and if it
|
|
* likes it, it can open it and get events from it. In this (kbd_connect)
|
|
* function, we should decide which VT to bind that keyboard to initially.
|
|
*/
|
|
static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
|
|
const struct input_device_id *id)
|
|
{
|
|
struct input_handle *handle;
|
|
int error;
|
|
|
|
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
|
|
if (!handle)
|
|
return -ENOMEM;
|
|
|
|
handle->dev = dev;
|
|
handle->handler = handler;
|
|
handle->name = "kbd";
|
|
|
|
error = input_register_handle(handle);
|
|
if (error)
|
|
goto err_free_handle;
|
|
|
|
error = input_open_device(handle);
|
|
if (error)
|
|
goto err_unregister_handle;
|
|
|
|
return 0;
|
|
|
|
err_unregister_handle:
|
|
input_unregister_handle(handle);
|
|
err_free_handle:
|
|
kfree(handle);
|
|
return error;
|
|
}
|
|
|
|
static void kbd_disconnect(struct input_handle *handle)
|
|
{
|
|
input_close_device(handle);
|
|
input_unregister_handle(handle);
|
|
kfree(handle);
|
|
}
|
|
|
|
/*
|
|
* Start keyboard handler on the new keyboard by refreshing LED state to
|
|
* match the rest of the system.
|
|
*/
|
|
static void kbd_start(struct input_handle *handle)
|
|
{
|
|
tasklet_disable(&keyboard_tasklet);
|
|
|
|
if (ledstate != 0xff)
|
|
kbd_update_leds_helper(handle, &ledstate);
|
|
|
|
tasklet_enable(&keyboard_tasklet);
|
|
}
|
|
|
|
static const struct input_device_id kbd_ids[] = {
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
|
|
.evbit = { BIT_MASK(EV_KEY) },
|
|
},
|
|
|
|
{
|
|
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
|
|
.evbit = { BIT_MASK(EV_SND) },
|
|
},
|
|
|
|
{ }, /* Terminating entry */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(input, kbd_ids);
|
|
|
|
static struct input_handler kbd_handler = {
|
|
.event = kbd_event,
|
|
.match = kbd_match,
|
|
.connect = kbd_connect,
|
|
.disconnect = kbd_disconnect,
|
|
.start = kbd_start,
|
|
.name = "kbd",
|
|
.id_table = kbd_ids,
|
|
};
|
|
|
|
int __init kbd_init(void)
|
|
{
|
|
int i;
|
|
int error;
|
|
|
|
for (i = 0; i < MAX_NR_CONSOLES; i++) {
|
|
kbd_table[i].ledflagstate = kbd_defleds();
|
|
kbd_table[i].default_ledflagstate = kbd_defleds();
|
|
kbd_table[i].ledmode = LED_SHOW_FLAGS;
|
|
kbd_table[i].lockstate = KBD_DEFLOCK;
|
|
kbd_table[i].slockstate = 0;
|
|
kbd_table[i].modeflags = KBD_DEFMODE;
|
|
kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
|
|
}
|
|
|
|
error = input_register_handler(&kbd_handler);
|
|
if (error)
|
|
return error;
|
|
|
|
tasklet_enable(&keyboard_tasklet);
|
|
tasklet_schedule(&keyboard_tasklet);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Ioctl support code */
|
|
|
|
/**
|
|
* vt_do_diacrit - diacritical table updates
|
|
* @cmd: ioctl request
|
|
* @up: pointer to user data for ioctl
|
|
* @perm: permissions check computed by caller
|
|
*
|
|
* Update the diacritical tables atomically and safely. Lock them
|
|
* against simultaneous keypresses
|
|
*/
|
|
int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
|
|
{
|
|
struct kbdiacrs __user *a = up;
|
|
unsigned long flags;
|
|
int asize;
|
|
int ret = 0;
|
|
|
|
switch (cmd) {
|
|
case KDGKBDIACR:
|
|
{
|
|
struct kbdiacr *diacr;
|
|
int i;
|
|
|
|
diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
|
|
GFP_KERNEL);
|
|
if (diacr == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Lock the diacriticals table, make a copy and then
|
|
copy it after we unlock */
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
|
|
asize = accent_table_size;
|
|
for (i = 0; i < asize; i++) {
|
|
diacr[i].diacr = conv_uni_to_8bit(
|
|
accent_table[i].diacr);
|
|
diacr[i].base = conv_uni_to_8bit(
|
|
accent_table[i].base);
|
|
diacr[i].result = conv_uni_to_8bit(
|
|
accent_table[i].result);
|
|
}
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
|
|
if (put_user(asize, &a->kb_cnt))
|
|
ret = -EFAULT;
|
|
else if (copy_to_user(a->kbdiacr, diacr,
|
|
asize * sizeof(struct kbdiacr)))
|
|
ret = -EFAULT;
|
|
kfree(diacr);
|
|
return ret;
|
|
}
|
|
case KDGKBDIACRUC:
|
|
{
|
|
struct kbdiacrsuc __user *a = up;
|
|
void *buf;
|
|
|
|
buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
|
|
GFP_KERNEL);
|
|
if (buf == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Lock the diacriticals table, make a copy and then
|
|
copy it after we unlock */
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
|
|
asize = accent_table_size;
|
|
memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
|
|
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
|
|
if (put_user(asize, &a->kb_cnt))
|
|
ret = -EFAULT;
|
|
else if (copy_to_user(a->kbdiacruc, buf,
|
|
asize*sizeof(struct kbdiacruc)))
|
|
ret = -EFAULT;
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
case KDSKBDIACR:
|
|
{
|
|
struct kbdiacrs __user *a = up;
|
|
struct kbdiacr *diacr = NULL;
|
|
unsigned int ct;
|
|
int i;
|
|
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (get_user(ct, &a->kb_cnt))
|
|
return -EFAULT;
|
|
if (ct >= MAX_DIACR)
|
|
return -EINVAL;
|
|
|
|
if (ct) {
|
|
diacr = kmalloc(sizeof(struct kbdiacr) * ct,
|
|
GFP_KERNEL);
|
|
if (diacr == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(diacr, a->kbdiacr,
|
|
sizeof(struct kbdiacr) * ct)) {
|
|
kfree(diacr);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
accent_table_size = ct;
|
|
for (i = 0; i < ct; i++) {
|
|
accent_table[i].diacr =
|
|
conv_8bit_to_uni(diacr[i].diacr);
|
|
accent_table[i].base =
|
|
conv_8bit_to_uni(diacr[i].base);
|
|
accent_table[i].result =
|
|
conv_8bit_to_uni(diacr[i].result);
|
|
}
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
kfree(diacr);
|
|
return 0;
|
|
}
|
|
|
|
case KDSKBDIACRUC:
|
|
{
|
|
struct kbdiacrsuc __user *a = up;
|
|
unsigned int ct;
|
|
void *buf = NULL;
|
|
|
|
if (!perm)
|
|
return -EPERM;
|
|
|
|
if (get_user(ct, &a->kb_cnt))
|
|
return -EFAULT;
|
|
|
|
if (ct >= MAX_DIACR)
|
|
return -EINVAL;
|
|
|
|
if (ct) {
|
|
buf = kmalloc(ct * sizeof(struct kbdiacruc),
|
|
GFP_KERNEL);
|
|
if (buf == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (copy_from_user(buf, a->kbdiacruc,
|
|
ct * sizeof(struct kbdiacruc))) {
|
|
kfree(buf);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
if (ct)
|
|
memcpy(accent_table, buf,
|
|
ct * sizeof(struct kbdiacruc));
|
|
accent_table_size = ct;
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
kfree(buf);
|
|
return 0;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vt_do_kdskbmode - set keyboard mode ioctl
|
|
* @console: the console to use
|
|
* @arg: the requested mode
|
|
*
|
|
* Update the keyboard mode bits while holding the correct locks.
|
|
* Return 0 for success or an error code.
|
|
*/
|
|
int vt_do_kdskbmode(int console, unsigned int arg)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
switch(arg) {
|
|
case K_RAW:
|
|
kbd->kbdmode = VC_RAW;
|
|
break;
|
|
case K_MEDIUMRAW:
|
|
kbd->kbdmode = VC_MEDIUMRAW;
|
|
break;
|
|
case K_XLATE:
|
|
kbd->kbdmode = VC_XLATE;
|
|
do_compute_shiftstate();
|
|
break;
|
|
case K_UNICODE:
|
|
kbd->kbdmode = VC_UNICODE;
|
|
do_compute_shiftstate();
|
|
break;
|
|
case K_OFF:
|
|
kbd->kbdmode = VC_OFF;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vt_do_kdskbmeta - set keyboard meta state
|
|
* @console: the console to use
|
|
* @arg: the requested meta state
|
|
*
|
|
* Update the keyboard meta bits while holding the correct locks.
|
|
* Return 0 for success or an error code.
|
|
*/
|
|
int vt_do_kdskbmeta(int console, unsigned int arg)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
switch(arg) {
|
|
case K_METABIT:
|
|
clr_vc_kbd_mode(kbd, VC_META);
|
|
break;
|
|
case K_ESCPREFIX:
|
|
set_vc_kbd_mode(kbd, VC_META);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
|
|
int perm)
|
|
{
|
|
struct kbkeycode tmp;
|
|
int kc = 0;
|
|
|
|
if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
|
|
return -EFAULT;
|
|
switch (cmd) {
|
|
case KDGETKEYCODE:
|
|
kc = getkeycode(tmp.scancode);
|
|
if (kc >= 0)
|
|
kc = put_user(kc, &user_kbkc->keycode);
|
|
break;
|
|
case KDSETKEYCODE:
|
|
if (!perm)
|
|
return -EPERM;
|
|
kc = setkeycode(tmp.scancode, tmp.keycode);
|
|
break;
|
|
}
|
|
return kc;
|
|
}
|
|
|
|
#define i (tmp.kb_index)
|
|
#define s (tmp.kb_table)
|
|
#define v (tmp.kb_value)
|
|
|
|
int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
|
|
int console)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
struct kbentry tmp;
|
|
ushort *key_map, *new_map, val, ov;
|
|
unsigned long flags;
|
|
|
|
if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
|
|
return -EFAULT;
|
|
|
|
if (!capable(CAP_SYS_TTY_CONFIG))
|
|
perm = 0;
|
|
|
|
switch (cmd) {
|
|
case KDGKBENT:
|
|
/* Ensure another thread doesn't free it under us */
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
key_map = key_maps[s];
|
|
if (key_map) {
|
|
val = U(key_map[i]);
|
|
if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
|
|
val = K_HOLE;
|
|
} else
|
|
val = (i ? K_HOLE : K_NOSUCHMAP);
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
return put_user(val, &user_kbe->kb_value);
|
|
case KDSKBENT:
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (!i && v == K_NOSUCHMAP) {
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
/* deallocate map */
|
|
key_map = key_maps[s];
|
|
if (s && key_map) {
|
|
key_maps[s] = NULL;
|
|
if (key_map[0] == U(K_ALLOCATED)) {
|
|
kfree(key_map);
|
|
keymap_count--;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
break;
|
|
}
|
|
|
|
if (KTYP(v) < NR_TYPES) {
|
|
if (KVAL(v) > max_vals[KTYP(v)])
|
|
return -EINVAL;
|
|
} else
|
|
if (kbd->kbdmode != VC_UNICODE)
|
|
return -EINVAL;
|
|
|
|
/* ++Geert: non-PC keyboards may generate keycode zero */
|
|
#if !defined(__mc68000__) && !defined(__powerpc__)
|
|
/* assignment to entry 0 only tests validity of args */
|
|
if (!i)
|
|
break;
|
|
#endif
|
|
|
|
new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
|
|
if (!new_map)
|
|
return -ENOMEM;
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
key_map = key_maps[s];
|
|
if (key_map == NULL) {
|
|
int j;
|
|
|
|
if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
|
|
!capable(CAP_SYS_RESOURCE)) {
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
kfree(new_map);
|
|
return -EPERM;
|
|
}
|
|
key_maps[s] = new_map;
|
|
key_map = new_map;
|
|
key_map[0] = U(K_ALLOCATED);
|
|
for (j = 1; j < NR_KEYS; j++)
|
|
key_map[j] = U(K_HOLE);
|
|
keymap_count++;
|
|
} else
|
|
kfree(new_map);
|
|
|
|
ov = U(key_map[i]);
|
|
if (v == ov)
|
|
goto out;
|
|
/*
|
|
* Attention Key.
|
|
*/
|
|
if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
return -EPERM;
|
|
}
|
|
key_map[i] = U(v);
|
|
if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
|
|
do_compute_shiftstate();
|
|
out:
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
#undef i
|
|
#undef s
|
|
#undef v
|
|
|
|
/* FIXME: This one needs untangling and locking */
|
|
int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
|
|
{
|
|
struct kbsentry *kbs;
|
|
char *p;
|
|
u_char *q;
|
|
u_char __user *up;
|
|
int sz;
|
|
int delta;
|
|
char *first_free, *fj, *fnw;
|
|
int i, j, k;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_TTY_CONFIG))
|
|
perm = 0;
|
|
|
|
kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
|
|
if (!kbs) {
|
|
ret = -ENOMEM;
|
|
goto reterr;
|
|
}
|
|
|
|
/* we mostly copy too much here (512bytes), but who cares ;) */
|
|
if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
|
|
ret = -EFAULT;
|
|
goto reterr;
|
|
}
|
|
kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
|
|
i = kbs->kb_func;
|
|
|
|
switch (cmd) {
|
|
case KDGKBSENT:
|
|
sz = sizeof(kbs->kb_string) - 1; /* sz should have been
|
|
a struct member */
|
|
up = user_kdgkb->kb_string;
|
|
p = func_table[i];
|
|
if(p)
|
|
for ( ; *p && sz; p++, sz--)
|
|
if (put_user(*p, up++)) {
|
|
ret = -EFAULT;
|
|
goto reterr;
|
|
}
|
|
if (put_user('\0', up)) {
|
|
ret = -EFAULT;
|
|
goto reterr;
|
|
}
|
|
kfree(kbs);
|
|
return ((p && *p) ? -EOVERFLOW : 0);
|
|
case KDSKBSENT:
|
|
if (!perm) {
|
|
ret = -EPERM;
|
|
goto reterr;
|
|
}
|
|
|
|
q = func_table[i];
|
|
first_free = funcbufptr + (funcbufsize - funcbufleft);
|
|
for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
|
|
;
|
|
if (j < MAX_NR_FUNC)
|
|
fj = func_table[j];
|
|
else
|
|
fj = first_free;
|
|
|
|
delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
|
|
if (delta <= funcbufleft) { /* it fits in current buf */
|
|
if (j < MAX_NR_FUNC) {
|
|
memmove(fj + delta, fj, first_free - fj);
|
|
for (k = j; k < MAX_NR_FUNC; k++)
|
|
if (func_table[k])
|
|
func_table[k] += delta;
|
|
}
|
|
if (!q)
|
|
func_table[i] = fj;
|
|
funcbufleft -= delta;
|
|
} else { /* allocate a larger buffer */
|
|
sz = 256;
|
|
while (sz < funcbufsize - funcbufleft + delta)
|
|
sz <<= 1;
|
|
fnw = kmalloc(sz, GFP_KERNEL);
|
|
if(!fnw) {
|
|
ret = -ENOMEM;
|
|
goto reterr;
|
|
}
|
|
|
|
if (!q)
|
|
func_table[i] = fj;
|
|
if (fj > funcbufptr)
|
|
memmove(fnw, funcbufptr, fj - funcbufptr);
|
|
for (k = 0; k < j; k++)
|
|
if (func_table[k])
|
|
func_table[k] = fnw + (func_table[k] - funcbufptr);
|
|
|
|
if (first_free > fj) {
|
|
memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
|
|
for (k = j; k < MAX_NR_FUNC; k++)
|
|
if (func_table[k])
|
|
func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
|
|
}
|
|
if (funcbufptr != func_buf)
|
|
kfree(funcbufptr);
|
|
funcbufptr = fnw;
|
|
funcbufleft = funcbufleft - delta + sz - funcbufsize;
|
|
funcbufsize = sz;
|
|
}
|
|
strcpy(func_table[i], kbs->kb_string);
|
|
break;
|
|
}
|
|
ret = 0;
|
|
reterr:
|
|
kfree(kbs);
|
|
return ret;
|
|
}
|
|
|
|
int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
unsigned long flags;
|
|
unsigned char ucval;
|
|
|
|
switch(cmd) {
|
|
/* the ioctls below read/set the flags usually shown in the leds */
|
|
/* don't use them - they will go away without warning */
|
|
case KDGKBLED:
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
return put_user(ucval, (char __user *)arg);
|
|
|
|
case KDSKBLED:
|
|
if (!perm)
|
|
return -EPERM;
|
|
if (arg & ~0x77)
|
|
return -EINVAL;
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
kbd->ledflagstate = (arg & 7);
|
|
kbd->default_ledflagstate = ((arg >> 4) & 7);
|
|
set_leds();
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
return 0;
|
|
|
|
/* the ioctls below only set the lights, not the functions */
|
|
/* for those, see KDGKBLED and KDSKBLED above */
|
|
case KDGETLED:
|
|
ucval = getledstate();
|
|
return put_user(ucval, (char __user *)arg);
|
|
|
|
case KDSETLED:
|
|
if (!perm)
|
|
return -EPERM;
|
|
setledstate(kbd, arg);
|
|
return 0;
|
|
}
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
int vt_do_kdgkbmode(int console)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
/* This is a spot read so needs no locking */
|
|
switch (kbd->kbdmode) {
|
|
case VC_RAW:
|
|
return K_RAW;
|
|
case VC_MEDIUMRAW:
|
|
return K_MEDIUMRAW;
|
|
case VC_UNICODE:
|
|
return K_UNICODE;
|
|
case VC_OFF:
|
|
return K_OFF;
|
|
default:
|
|
return K_XLATE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* vt_do_kdgkbmeta - report meta status
|
|
* @console: console to report
|
|
*
|
|
* Report the meta flag status of this console
|
|
*/
|
|
int vt_do_kdgkbmeta(int console)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
/* Again a spot read so no locking */
|
|
return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
|
|
}
|
|
|
|
/**
|
|
* vt_reset_unicode - reset the unicode status
|
|
* @console: console being reset
|
|
*
|
|
* Restore the unicode console state to its default
|
|
*/
|
|
void vt_reset_unicode(int console)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* vt_get_shiftstate - shift bit state
|
|
*
|
|
* Report the shift bits from the keyboard state. We have to export
|
|
* this to support some oddities in the vt layer.
|
|
*/
|
|
int vt_get_shift_state(void)
|
|
{
|
|
/* Don't lock as this is a transient report */
|
|
return shift_state;
|
|
}
|
|
|
|
/**
|
|
* vt_reset_keyboard - reset keyboard state
|
|
* @console: console to reset
|
|
*
|
|
* Reset the keyboard bits for a console as part of a general console
|
|
* reset event
|
|
*/
|
|
void vt_reset_keyboard(int console)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
set_vc_kbd_mode(kbd, VC_REPEAT);
|
|
clr_vc_kbd_mode(kbd, VC_CKMODE);
|
|
clr_vc_kbd_mode(kbd, VC_APPLIC);
|
|
clr_vc_kbd_mode(kbd, VC_CRLF);
|
|
kbd->lockstate = 0;
|
|
kbd->slockstate = 0;
|
|
kbd->ledmode = LED_SHOW_FLAGS;
|
|
kbd->ledflagstate = kbd->default_ledflagstate;
|
|
/* do not do set_leds here because this causes an endless tasklet loop
|
|
when the keyboard hasn't been initialized yet */
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* vt_get_kbd_mode_bit - read keyboard status bits
|
|
* @console: console to read from
|
|
* @bit: mode bit to read
|
|
*
|
|
* Report back a vt mode bit. We do this without locking so the
|
|
* caller must be sure that there are no synchronization needs
|
|
*/
|
|
|
|
int vt_get_kbd_mode_bit(int console, int bit)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
return vc_kbd_mode(kbd, bit);
|
|
}
|
|
|
|
/**
|
|
* vt_set_kbd_mode_bit - read keyboard status bits
|
|
* @console: console to read from
|
|
* @bit: mode bit to read
|
|
*
|
|
* Set a vt mode bit. We do this without locking so the
|
|
* caller must be sure that there are no synchronization needs
|
|
*/
|
|
|
|
void vt_set_kbd_mode_bit(int console, int bit)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
set_vc_kbd_mode(kbd, bit);
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* vt_clr_kbd_mode_bit - read keyboard status bits
|
|
* @console: console to read from
|
|
* @bit: mode bit to read
|
|
*
|
|
* Report back a vt mode bit. We do this without locking so the
|
|
* caller must be sure that there are no synchronization needs
|
|
*/
|
|
|
|
void vt_clr_kbd_mode_bit(int console, int bit)
|
|
{
|
|
struct kbd_struct * kbd = kbd_table + console;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&kbd_event_lock, flags);
|
|
clr_vc_kbd_mode(kbd, bit);
|
|
spin_unlock_irqrestore(&kbd_event_lock, flags);
|
|
}
|