kernel-fxtec-pro1x/drivers/net/forcedeth.c
Manfred Spraul 8a4ae7f2e2 forcedeth: add hardware tx checksumming
Recent forcedeth nics support checksum offloading for tx.

The attached patch, written by Ayaz Abdulla, adds the support to the
driver.

It also cleans up the handling of the three dma ring entry formats that
are supported by the driver.

Signed-off-By: Manfred Spraul <manfred@colorfullife.com>
Signed-off-By: Jeff Garzik <jgarzik@pobox.com>
2005-09-21 23:22:10 -04:00

2625 lines
77 KiB
C

/*
* forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
*
* Note: This driver is a cleanroom reimplementation based on reverse
* engineered documentation written by Carl-Daniel Hailfinger
* and Andrew de Quincey. It's neither supported nor endorsed
* by NVIDIA Corp. Use at your own risk.
*
* NVIDIA, nForce and other NVIDIA marks are trademarks or registered
* trademarks of NVIDIA Corporation in the United States and other
* countries.
*
* Copyright (C) 2003,4 Manfred Spraul
* Copyright (C) 2004 Andrew de Quincey (wol support)
* Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
* IRQ rate fixes, bigendian fixes, cleanups, verification)
* Copyright (c) 2004 NVIDIA Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Changelog:
* 0.01: 05 Oct 2003: First release that compiles without warnings.
* 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
* Check all PCI BARs for the register window.
* udelay added to mii_rw.
* 0.03: 06 Oct 2003: Initialize dev->irq.
* 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
* 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
* 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
* irq mask updated
* 0.07: 14 Oct 2003: Further irq mask updates.
* 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
* added into irq handler, NULL check for drain_ring.
* 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
* requested interrupt sources.
* 0.10: 20 Oct 2003: First cleanup for release.
* 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
* MAC Address init fix, set_multicast cleanup.
* 0.12: 23 Oct 2003: Cleanups for release.
* 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
* Set link speed correctly. start rx before starting
* tx (nv_start_rx sets the link speed).
* 0.14: 25 Oct 2003: Nic dependant irq mask.
* 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
* open.
* 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
* increased to 1628 bytes.
* 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
* the tx length.
* 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
* 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
* addresses, really stop rx if already running
* in nv_start_rx, clean up a bit.
* 0.20: 07 Dec 2003: alloc fixes
* 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
* 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
* on close.
* 0.23: 26 Jan 2004: various small cleanups
* 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
* 0.25: 09 Mar 2004: wol support
* 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
* 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
* added CK804/MCP04 device IDs, code fixes
* for registers, link status and other minor fixes.
* 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
* 0.29: 31 Aug 2004: Add backup timer for link change notification.
* 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
* into nv_close, otherwise reenabling for wol can
* cause DMA to kfree'd memory.
* 0.31: 14 Nov 2004: ethtool support for getting/setting link
* capabilities.
* 0.32: 16 Apr 2005: RX_ERROR4 handling added.
* 0.33: 16 May 2005: Support for MCP51 added.
* 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
* 0.35: 26 Jun 2005: Support for MCP55 added.
* 0.36: 28 Jun 2005: Add jumbo frame support.
* 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
* 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
* per-packet flags.
* 0.39: 18 Jul 2005: Add 64bit descriptor support.
* 0.40: 19 Jul 2005: Add support for mac address change.
* 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
* of nv_remove
* 0.42: 06 Aug 2005: Fix lack of link speed initialization
* in the second (and later) nv_open call
* 0.43: 10 Aug 2005: Add support for tx checksum.
*
* Known bugs:
* We suspect that on some hardware no TX done interrupts are generated.
* This means recovery from netif_stop_queue only happens if the hw timer
* interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
* and the timer is active in the IRQMask, or if a rx packet arrives by chance.
* If your hardware reliably generates tx done interrupts, then you can remove
* DEV_NEED_TIMERIRQ from the driver_data flags.
* DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
* superfluous timer interrupts from the nic.
*/
#define FORCEDETH_VERSION "0.43"
#define DRV_NAME "forcedeth"
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/timer.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/if_vlan.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#if 0
#define dprintk printk
#else
#define dprintk(x...) do { } while (0)
#endif
/*
* Hardware access:
*/
#define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
#define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
#define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
#define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
#define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
enum {
NvRegIrqStatus = 0x000,
#define NVREG_IRQSTAT_MIIEVENT 0x040
#define NVREG_IRQSTAT_MASK 0x1ff
NvRegIrqMask = 0x004,
#define NVREG_IRQ_RX_ERROR 0x0001
#define NVREG_IRQ_RX 0x0002
#define NVREG_IRQ_RX_NOBUF 0x0004
#define NVREG_IRQ_TX_ERR 0x0008
#define NVREG_IRQ_TX_OK 0x0010
#define NVREG_IRQ_TIMER 0x0020
#define NVREG_IRQ_LINK 0x0040
#define NVREG_IRQ_TX_ERROR 0x0080
#define NVREG_IRQ_TX1 0x0100
#define NVREG_IRQMASK_WANTED 0x00df
#define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
NVREG_IRQ_TX1))
NvRegUnknownSetupReg6 = 0x008,
#define NVREG_UNKSETUP6_VAL 3
/*
* NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
* NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
*/
NvRegPollingInterval = 0x00c,
#define NVREG_POLL_DEFAULT 970
NvRegMisc1 = 0x080,
#define NVREG_MISC1_HD 0x02
#define NVREG_MISC1_FORCE 0x3b0f3c
NvRegTransmitterControl = 0x084,
#define NVREG_XMITCTL_START 0x01
NvRegTransmitterStatus = 0x088,
#define NVREG_XMITSTAT_BUSY 0x01
NvRegPacketFilterFlags = 0x8c,
#define NVREG_PFF_ALWAYS 0x7F0008
#define NVREG_PFF_PROMISC 0x80
#define NVREG_PFF_MYADDR 0x20
NvRegOffloadConfig = 0x90,
#define NVREG_OFFLOAD_HOMEPHY 0x601
#define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
NvRegReceiverControl = 0x094,
#define NVREG_RCVCTL_START 0x01
NvRegReceiverStatus = 0x98,
#define NVREG_RCVSTAT_BUSY 0x01
NvRegRandomSeed = 0x9c,
#define NVREG_RNDSEED_MASK 0x00ff
#define NVREG_RNDSEED_FORCE 0x7f00
#define NVREG_RNDSEED_FORCE2 0x2d00
#define NVREG_RNDSEED_FORCE3 0x7400
NvRegUnknownSetupReg1 = 0xA0,
#define NVREG_UNKSETUP1_VAL 0x16070f
NvRegUnknownSetupReg2 = 0xA4,
#define NVREG_UNKSETUP2_VAL 0x16
NvRegMacAddrA = 0xA8,
NvRegMacAddrB = 0xAC,
NvRegMulticastAddrA = 0xB0,
#define NVREG_MCASTADDRA_FORCE 0x01
NvRegMulticastAddrB = 0xB4,
NvRegMulticastMaskA = 0xB8,
NvRegMulticastMaskB = 0xBC,
NvRegPhyInterface = 0xC0,
#define PHY_RGMII 0x10000000
NvRegTxRingPhysAddr = 0x100,
NvRegRxRingPhysAddr = 0x104,
NvRegRingSizes = 0x108,
#define NVREG_RINGSZ_TXSHIFT 0
#define NVREG_RINGSZ_RXSHIFT 16
NvRegUnknownTransmitterReg = 0x10c,
NvRegLinkSpeed = 0x110,
#define NVREG_LINKSPEED_FORCE 0x10000
#define NVREG_LINKSPEED_10 1000
#define NVREG_LINKSPEED_100 100
#define NVREG_LINKSPEED_1000 50
#define NVREG_LINKSPEED_MASK (0xFFF)
NvRegUnknownSetupReg5 = 0x130,
#define NVREG_UNKSETUP5_BIT31 (1<<31)
NvRegUnknownSetupReg3 = 0x13c,
#define NVREG_UNKSETUP3_VAL1 0x200010
NvRegTxRxControl = 0x144,
#define NVREG_TXRXCTL_KICK 0x0001
#define NVREG_TXRXCTL_BIT1 0x0002
#define NVREG_TXRXCTL_BIT2 0x0004
#define NVREG_TXRXCTL_IDLE 0x0008
#define NVREG_TXRXCTL_RESET 0x0010
#define NVREG_TXRXCTL_RXCHECK 0x0400
#define NVREG_TXRXCTL_DESC_1 0
#define NVREG_TXRXCTL_DESC_2 0x02100
#define NVREG_TXRXCTL_DESC_3 0x02200
NvRegMIIStatus = 0x180,
#define NVREG_MIISTAT_ERROR 0x0001
#define NVREG_MIISTAT_LINKCHANGE 0x0008
#define NVREG_MIISTAT_MASK 0x000f
#define NVREG_MIISTAT_MASK2 0x000f
NvRegUnknownSetupReg4 = 0x184,
#define NVREG_UNKSETUP4_VAL 8
NvRegAdapterControl = 0x188,
#define NVREG_ADAPTCTL_START 0x02
#define NVREG_ADAPTCTL_LINKUP 0x04
#define NVREG_ADAPTCTL_PHYVALID 0x40000
#define NVREG_ADAPTCTL_RUNNING 0x100000
#define NVREG_ADAPTCTL_PHYSHIFT 24
NvRegMIISpeed = 0x18c,
#define NVREG_MIISPEED_BIT8 (1<<8)
#define NVREG_MIIDELAY 5
NvRegMIIControl = 0x190,
#define NVREG_MIICTL_INUSE 0x08000
#define NVREG_MIICTL_WRITE 0x00400
#define NVREG_MIICTL_ADDRSHIFT 5
NvRegMIIData = 0x194,
NvRegWakeUpFlags = 0x200,
#define NVREG_WAKEUPFLAGS_VAL 0x7770
#define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
#define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
#define NVREG_WAKEUPFLAGS_D3SHIFT 12
#define NVREG_WAKEUPFLAGS_D2SHIFT 8
#define NVREG_WAKEUPFLAGS_D1SHIFT 4
#define NVREG_WAKEUPFLAGS_D0SHIFT 0
#define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
#define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
#define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
#define NVREG_WAKEUPFLAGS_ENABLE 0x1111
NvRegPatternCRC = 0x204,
NvRegPatternMask = 0x208,
NvRegPowerCap = 0x268,
#define NVREG_POWERCAP_D3SUPP (1<<30)
#define NVREG_POWERCAP_D2SUPP (1<<26)
#define NVREG_POWERCAP_D1SUPP (1<<25)
NvRegPowerState = 0x26c,
#define NVREG_POWERSTATE_POWEREDUP 0x8000
#define NVREG_POWERSTATE_VALID 0x0100
#define NVREG_POWERSTATE_MASK 0x0003
#define NVREG_POWERSTATE_D0 0x0000
#define NVREG_POWERSTATE_D1 0x0001
#define NVREG_POWERSTATE_D2 0x0002
#define NVREG_POWERSTATE_D3 0x0003
};
/* Big endian: should work, but is untested */
struct ring_desc {
u32 PacketBuffer;
u32 FlagLen;
};
struct ring_desc_ex {
u32 PacketBufferHigh;
u32 PacketBufferLow;
u32 Reserved;
u32 FlagLen;
};
typedef union _ring_type {
struct ring_desc* orig;
struct ring_desc_ex* ex;
} ring_type;
#define FLAG_MASK_V1 0xffff0000
#define FLAG_MASK_V2 0xffffc000
#define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
#define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
#define NV_TX_LASTPACKET (1<<16)
#define NV_TX_RETRYERROR (1<<19)
#define NV_TX_FORCED_INTERRUPT (1<<24)
#define NV_TX_DEFERRED (1<<26)
#define NV_TX_CARRIERLOST (1<<27)
#define NV_TX_LATECOLLISION (1<<28)
#define NV_TX_UNDERFLOW (1<<29)
#define NV_TX_ERROR (1<<30)
#define NV_TX_VALID (1<<31)
#define NV_TX2_LASTPACKET (1<<29)
#define NV_TX2_RETRYERROR (1<<18)
#define NV_TX2_FORCED_INTERRUPT (1<<30)
#define NV_TX2_DEFERRED (1<<25)
#define NV_TX2_CARRIERLOST (1<<26)
#define NV_TX2_LATECOLLISION (1<<27)
#define NV_TX2_UNDERFLOW (1<<28)
/* error and valid are the same for both */
#define NV_TX2_ERROR (1<<30)
#define NV_TX2_VALID (1<<31)
#define NV_TX2_CHECKSUM_L3 (1<<27)
#define NV_TX2_CHECKSUM_L4 (1<<26)
#define NV_RX_DESCRIPTORVALID (1<<16)
#define NV_RX_MISSEDFRAME (1<<17)
#define NV_RX_SUBSTRACT1 (1<<18)
#define NV_RX_ERROR1 (1<<23)
#define NV_RX_ERROR2 (1<<24)
#define NV_RX_ERROR3 (1<<25)
#define NV_RX_ERROR4 (1<<26)
#define NV_RX_CRCERR (1<<27)
#define NV_RX_OVERFLOW (1<<28)
#define NV_RX_FRAMINGERR (1<<29)
#define NV_RX_ERROR (1<<30)
#define NV_RX_AVAIL (1<<31)
#define NV_RX2_CHECKSUMMASK (0x1C000000)
#define NV_RX2_CHECKSUMOK1 (0x10000000)
#define NV_RX2_CHECKSUMOK2 (0x14000000)
#define NV_RX2_CHECKSUMOK3 (0x18000000)
#define NV_RX2_DESCRIPTORVALID (1<<29)
#define NV_RX2_SUBSTRACT1 (1<<25)
#define NV_RX2_ERROR1 (1<<18)
#define NV_RX2_ERROR2 (1<<19)
#define NV_RX2_ERROR3 (1<<20)
#define NV_RX2_ERROR4 (1<<21)
#define NV_RX2_CRCERR (1<<22)
#define NV_RX2_OVERFLOW (1<<23)
#define NV_RX2_FRAMINGERR (1<<24)
/* error and avail are the same for both */
#define NV_RX2_ERROR (1<<30)
#define NV_RX2_AVAIL (1<<31)
/* Miscelaneous hardware related defines: */
#define NV_PCI_REGSZ 0x270
/* various timeout delays: all in usec */
#define NV_TXRX_RESET_DELAY 4
#define NV_TXSTOP_DELAY1 10
#define NV_TXSTOP_DELAY1MAX 500000
#define NV_TXSTOP_DELAY2 100
#define NV_RXSTOP_DELAY1 10
#define NV_RXSTOP_DELAY1MAX 500000
#define NV_RXSTOP_DELAY2 100
#define NV_SETUP5_DELAY 5
#define NV_SETUP5_DELAYMAX 50000
#define NV_POWERUP_DELAY 5
#define NV_POWERUP_DELAYMAX 5000
#define NV_MIIBUSY_DELAY 50
#define NV_MIIPHY_DELAY 10
#define NV_MIIPHY_DELAYMAX 10000
#define NV_WAKEUPPATTERNS 5
#define NV_WAKEUPMASKENTRIES 4
/* General driver defaults */
#define NV_WATCHDOG_TIMEO (5*HZ)
#define RX_RING 128
#define TX_RING 64
/*
* If your nic mysteriously hangs then try to reduce the limits
* to 1/0: It might be required to set NV_TX_LASTPACKET in the
* last valid ring entry. But this would be impossible to
* implement - probably a disassembly error.
*/
#define TX_LIMIT_STOP 63
#define TX_LIMIT_START 62
/* rx/tx mac addr + type + vlan + align + slack*/
#define NV_RX_HEADERS (64)
/* even more slack. */
#define NV_RX_ALLOC_PAD (64)
/* maximum mtu size */
#define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
#define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
#define OOM_REFILL (1+HZ/20)
#define POLL_WAIT (1+HZ/100)
#define LINK_TIMEOUT (3*HZ)
/*
* desc_ver values:
* The nic supports three different descriptor types:
* - DESC_VER_1: Original
* - DESC_VER_2: support for jumbo frames.
* - DESC_VER_3: 64-bit format.
*/
#define DESC_VER_1 1
#define DESC_VER_2 2
#define DESC_VER_3 3
/* PHY defines */
#define PHY_OUI_MARVELL 0x5043
#define PHY_OUI_CICADA 0x03f1
#define PHYID1_OUI_MASK 0x03ff
#define PHYID1_OUI_SHFT 6
#define PHYID2_OUI_MASK 0xfc00
#define PHYID2_OUI_SHFT 10
#define PHY_INIT1 0x0f000
#define PHY_INIT2 0x0e00
#define PHY_INIT3 0x01000
#define PHY_INIT4 0x0200
#define PHY_INIT5 0x0004
#define PHY_INIT6 0x02000
#define PHY_GIGABIT 0x0100
#define PHY_TIMEOUT 0x1
#define PHY_ERROR 0x2
#define PHY_100 0x1
#define PHY_1000 0x2
#define PHY_HALF 0x100
/* FIXME: MII defines that should be added to <linux/mii.h> */
#define MII_1000BT_CR 0x09
#define MII_1000BT_SR 0x0a
#define ADVERTISE_1000FULL 0x0200
#define ADVERTISE_1000HALF 0x0100
#define LPA_1000FULL 0x0800
#define LPA_1000HALF 0x0400
/*
* SMP locking:
* All hardware access under dev->priv->lock, except the performance
* critical parts:
* - rx is (pseudo-) lockless: it relies on the single-threading provided
* by the arch code for interrupts.
* - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
* needs dev->priv->lock :-(
* - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
*/
/* in dev: base, irq */
struct fe_priv {
spinlock_t lock;
/* General data:
* Locking: spin_lock(&np->lock); */
struct net_device_stats stats;
int in_shutdown;
u32 linkspeed;
int duplex;
int autoneg;
int fixed_mode;
int phyaddr;
int wolenabled;
unsigned int phy_oui;
u16 gigabit;
/* General data: RO fields */
dma_addr_t ring_addr;
struct pci_dev *pci_dev;
u32 orig_mac[2];
u32 irqmask;
u32 desc_ver;
u32 txrxctl_bits;
void __iomem *base;
/* rx specific fields.
* Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
*/
ring_type rx_ring;
unsigned int cur_rx, refill_rx;
struct sk_buff *rx_skbuff[RX_RING];
dma_addr_t rx_dma[RX_RING];
unsigned int rx_buf_sz;
unsigned int pkt_limit;
struct timer_list oom_kick;
struct timer_list nic_poll;
/* media detection workaround.
* Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
*/
int need_linktimer;
unsigned long link_timeout;
/*
* tx specific fields.
*/
ring_type tx_ring;
unsigned int next_tx, nic_tx;
struct sk_buff *tx_skbuff[TX_RING];
dma_addr_t tx_dma[TX_RING];
u32 tx_flags;
};
/*
* Maximum number of loops until we assume that a bit in the irq mask
* is stuck. Overridable with module param.
*/
static int max_interrupt_work = 5;
static inline struct fe_priv *get_nvpriv(struct net_device *dev)
{
return netdev_priv(dev);
}
static inline u8 __iomem *get_hwbase(struct net_device *dev)
{
return get_nvpriv(dev)->base;
}
static inline void pci_push(u8 __iomem *base)
{
/* force out pending posted writes */
readl(base);
}
static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
{
return le32_to_cpu(prd->FlagLen)
& ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
}
static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
{
return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
}
static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
int delay, int delaymax, const char *msg)
{
u8 __iomem *base = get_hwbase(dev);
pci_push(base);
do {
udelay(delay);
delaymax -= delay;
if (delaymax < 0) {
if (msg)
printk(msg);
return 1;
}
} while ((readl(base + offset) & mask) != target);
return 0;
}
#define MII_READ (-1)
/* mii_rw: read/write a register on the PHY.
*
* Caller must guarantee serialization
*/
static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
{
u8 __iomem *base = get_hwbase(dev);
u32 reg;
int retval;
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
reg = readl(base + NvRegMIIControl);
if (reg & NVREG_MIICTL_INUSE) {
writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
udelay(NV_MIIBUSY_DELAY);
}
reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
if (value != MII_READ) {
writel(value, base + NvRegMIIData);
reg |= NVREG_MIICTL_WRITE;
}
writel(reg, base + NvRegMIIControl);
if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
dev->name, miireg, addr);
retval = -1;
} else if (value != MII_READ) {
/* it was a write operation - fewer failures are detectable */
dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
dev->name, value, miireg, addr);
retval = 0;
} else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
dev->name, miireg, addr);
retval = -1;
} else {
retval = readl(base + NvRegMIIData);
dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
dev->name, miireg, addr, retval);
}
return retval;
}
static int phy_reset(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u32 miicontrol;
unsigned int tries = 0;
miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
miicontrol |= BMCR_RESET;
if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
return -1;
}
/* wait for 500ms */
msleep(500);
/* must wait till reset is deasserted */
while (miicontrol & BMCR_RESET) {
msleep(10);
miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
/* FIXME: 100 tries seem excessive */
if (tries++ > 100)
return -1;
}
return 0;
}
static int phy_init(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
/* set advertise register */
reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
/* get phy interface type */
phyinterface = readl(base + NvRegPhyInterface);
/* see if gigabit phy */
mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
if (mii_status & PHY_GIGABIT) {
np->gigabit = PHY_GIGABIT;
mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
mii_control_1000 &= ~ADVERTISE_1000HALF;
if (phyinterface & PHY_RGMII)
mii_control_1000 |= ADVERTISE_1000FULL;
else
mii_control_1000 &= ~ADVERTISE_1000FULL;
if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
else
np->gigabit = 0;
/* reset the phy */
if (phy_reset(dev)) {
printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
/* phy vendor specific configuration */
if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
phy_reserved |= (PHY_INIT3 | PHY_INIT4);
if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
phy_reserved |= PHY_INIT5;
if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
if (np->phy_oui == PHY_OUI_CICADA) {
phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
phy_reserved |= PHY_INIT6;
if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
/* restart auto negotiation */
mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
return PHY_ERROR;
}
return 0;
}
static void nv_start_rx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
/* Already running? Stop it. */
if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
writel(0, base + NvRegReceiverControl);
pci_push(base);
}
writel(np->linkspeed, base + NvRegLinkSpeed);
pci_push(base);
writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
dev->name, np->duplex, np->linkspeed);
pci_push(base);
}
static void nv_stop_rx(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
writel(0, base + NvRegReceiverControl);
reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
udelay(NV_RXSTOP_DELAY2);
writel(0, base + NvRegLinkSpeed);
}
static void nv_start_tx(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
pci_push(base);
}
static void nv_stop_tx(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
writel(0, base + NvRegTransmitterControl);
reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
udelay(NV_TXSTOP_DELAY2);
writel(0, base + NvRegUnknownTransmitterReg);
}
static void nv_txrx_reset(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
pci_push(base);
udelay(NV_TXRX_RESET_DELAY);
writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
pci_push(base);
}
/*
* nv_get_stats: dev->get_stats function
* Get latest stats value from the nic.
* Called with read_lock(&dev_base_lock) held for read -
* only synchronized against unregister_netdevice.
*/
static struct net_device_stats *nv_get_stats(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
/* It seems that the nic always generates interrupts and doesn't
* accumulate errors internally. Thus the current values in np->stats
* are already up to date.
*/
return &np->stats;
}
/*
* nv_alloc_rx: fill rx ring entries.
* Return 1 if the allocations for the skbs failed and the
* rx engine is without Available descriptors
*/
static int nv_alloc_rx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
unsigned int refill_rx = np->refill_rx;
int nr;
while (np->cur_rx != refill_rx) {
struct sk_buff *skb;
nr = refill_rx % RX_RING;
if (np->rx_skbuff[nr] == NULL) {
skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
if (!skb)
break;
skb->dev = dev;
np->rx_skbuff[nr] = skb;
} else {
skb = np->rx_skbuff[nr];
}
np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len,
PCI_DMA_FROMDEVICE);
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
wmb();
np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
} else {
np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
wmb();
np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
}
dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
dev->name, refill_rx);
refill_rx++;
}
np->refill_rx = refill_rx;
if (np->cur_rx - refill_rx == RX_RING)
return 1;
return 0;
}
static void nv_do_rx_refill(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = get_nvpriv(dev);
disable_irq(dev->irq);
if (nv_alloc_rx(dev)) {
spin_lock(&np->lock);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock(&np->lock);
}
enable_irq(dev->irq);
}
static void nv_init_rx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int i;
np->cur_rx = RX_RING;
np->refill_rx = 0;
for (i = 0; i < RX_RING; i++)
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
np->rx_ring.orig[i].FlagLen = 0;
else
np->rx_ring.ex[i].FlagLen = 0;
}
static void nv_init_tx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int i;
np->next_tx = np->nic_tx = 0;
for (i = 0; i < TX_RING; i++)
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
np->tx_ring.orig[i].FlagLen = 0;
else
np->tx_ring.ex[i].FlagLen = 0;
}
static int nv_init_ring(struct net_device *dev)
{
nv_init_tx(dev);
nv_init_rx(dev);
return nv_alloc_rx(dev);
}
static void nv_drain_tx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int i;
for (i = 0; i < TX_RING; i++) {
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
np->tx_ring.orig[i].FlagLen = 0;
else
np->tx_ring.ex[i].FlagLen = 0;
if (np->tx_skbuff[i]) {
pci_unmap_single(np->pci_dev, np->tx_dma[i],
np->tx_skbuff[i]->len,
PCI_DMA_TODEVICE);
dev_kfree_skb(np->tx_skbuff[i]);
np->tx_skbuff[i] = NULL;
np->stats.tx_dropped++;
}
}
}
static void nv_drain_rx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int i;
for (i = 0; i < RX_RING; i++) {
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
np->rx_ring.orig[i].FlagLen = 0;
else
np->rx_ring.ex[i].FlagLen = 0;
wmb();
if (np->rx_skbuff[i]) {
pci_unmap_single(np->pci_dev, np->rx_dma[i],
np->rx_skbuff[i]->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(np->rx_skbuff[i]);
np->rx_skbuff[i] = NULL;
}
}
}
static void drain_ring(struct net_device *dev)
{
nv_drain_tx(dev);
nv_drain_rx(dev);
}
/*
* nv_start_xmit: dev->hard_start_xmit function
* Called with dev->xmit_lock held.
*/
static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int nr = np->next_tx % TX_RING;
u32 tx_checksum = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
np->tx_skbuff[nr] = skb;
np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data,skb->len,
PCI_DMA_TODEVICE);
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
else {
np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
}
spin_lock_irq(&np->lock);
wmb();
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags | tx_checksum);
else
np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags | tx_checksum);
dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission\n",
dev->name, np->next_tx);
{
int j;
for (j=0; j<64; j++) {
if ((j%16) == 0)
dprintk("\n%03x:", j);
dprintk(" %02x", ((unsigned char*)skb->data)[j]);
}
dprintk("\n");
}
np->next_tx++;
dev->trans_start = jiffies;
if (np->next_tx - np->nic_tx >= TX_LIMIT_STOP)
netif_stop_queue(dev);
spin_unlock_irq(&np->lock);
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
pci_push(get_hwbase(dev));
return 0;
}
/*
* nv_tx_done: check for completed packets, release the skbs.
*
* Caller must own np->lock.
*/
static void nv_tx_done(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u32 Flags;
int i;
while (np->nic_tx != np->next_tx) {
i = np->nic_tx % TX_RING;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
else
Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
dev->name, np->nic_tx, Flags);
if (Flags & NV_TX_VALID)
break;
if (np->desc_ver == DESC_VER_1) {
if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
NV_TX_UNDERFLOW|NV_TX_ERROR)) {
if (Flags & NV_TX_UNDERFLOW)
np->stats.tx_fifo_errors++;
if (Flags & NV_TX_CARRIERLOST)
np->stats.tx_carrier_errors++;
np->stats.tx_errors++;
} else {
np->stats.tx_packets++;
np->stats.tx_bytes += np->tx_skbuff[i]->len;
}
} else {
if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
if (Flags & NV_TX2_UNDERFLOW)
np->stats.tx_fifo_errors++;
if (Flags & NV_TX2_CARRIERLOST)
np->stats.tx_carrier_errors++;
np->stats.tx_errors++;
} else {
np->stats.tx_packets++;
np->stats.tx_bytes += np->tx_skbuff[i]->len;
}
}
pci_unmap_single(np->pci_dev, np->tx_dma[i],
np->tx_skbuff[i]->len,
PCI_DMA_TODEVICE);
dev_kfree_skb_irq(np->tx_skbuff[i]);
np->tx_skbuff[i] = NULL;
np->nic_tx++;
}
if (np->next_tx - np->nic_tx < TX_LIMIT_START)
netif_wake_queue(dev);
}
/*
* nv_tx_timeout: dev->tx_timeout function
* Called with dev->xmit_lock held.
*/
static void nv_tx_timeout(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
{
int i;
printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
dev->name, (unsigned long)np->ring_addr,
np->next_tx, np->nic_tx);
printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
for (i=0;i<0x400;i+= 32) {
printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
i,
readl(base + i + 0), readl(base + i + 4),
readl(base + i + 8), readl(base + i + 12),
readl(base + i + 16), readl(base + i + 20),
readl(base + i + 24), readl(base + i + 28));
}
printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
for (i=0;i<TX_RING;i+= 4) {
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
i,
le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
le32_to_cpu(np->tx_ring.orig[i].FlagLen),
le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
} else {
printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
i,
le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
le32_to_cpu(np->tx_ring.ex[i].FlagLen),
le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
}
}
}
spin_lock_irq(&np->lock);
/* 1) stop tx engine */
nv_stop_tx(dev);
/* 2) check that the packets were not sent already: */
nv_tx_done(dev);
/* 3) if there are dead entries: clear everything */
if (np->next_tx != np->nic_tx) {
printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
nv_drain_tx(dev);
np->next_tx = np->nic_tx = 0;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
else
writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
netif_wake_queue(dev);
}
/* 4) restart tx engine */
nv_start_tx(dev);
spin_unlock_irq(&np->lock);
}
/*
* Called when the nic notices a mismatch between the actual data len on the
* wire and the len indicated in the 802 header
*/
static int nv_getlen(struct net_device *dev, void *packet, int datalen)
{
int hdrlen; /* length of the 802 header */
int protolen; /* length as stored in the proto field */
/* 1) calculate len according to header */
if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
hdrlen = VLAN_HLEN;
} else {
protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
hdrlen = ETH_HLEN;
}
dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
dev->name, datalen, protolen, hdrlen);
if (protolen > ETH_DATA_LEN)
return datalen; /* Value in proto field not a len, no checks possible */
protolen += hdrlen;
/* consistency checks: */
if (datalen > ETH_ZLEN) {
if (datalen >= protolen) {
/* more data on wire than in 802 header, trim of
* additional data.
*/
dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
dev->name, protolen);
return protolen;
} else {
/* less data on wire than mentioned in header.
* Discard the packet.
*/
dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
dev->name);
return -1;
}
} else {
/* short packet. Accept only if 802 values are also short */
if (protolen > ETH_ZLEN) {
dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
dev->name);
return -1;
}
dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
dev->name, datalen);
return datalen;
}
}
static void nv_rx_process(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u32 Flags;
for (;;) {
struct sk_buff *skb;
int len;
int i;
if (np->cur_rx - np->refill_rx >= RX_RING)
break; /* we scanned the whole ring - do not continue */
i = np->cur_rx % RX_RING;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
} else {
Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
}
dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
dev->name, np->cur_rx, Flags);
if (Flags & NV_RX_AVAIL)
break; /* still owned by hardware, */
/*
* the packet is for us - immediately tear down the pci mapping.
* TODO: check if a prefetch of the first cacheline improves
* the performance.
*/
pci_unmap_single(np->pci_dev, np->rx_dma[i],
np->rx_skbuff[i]->len,
PCI_DMA_FROMDEVICE);
{
int j;
dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
for (j=0; j<64; j++) {
if ((j%16) == 0)
dprintk("\n%03x:", j);
dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
}
dprintk("\n");
}
/* look at what we actually got: */
if (np->desc_ver == DESC_VER_1) {
if (!(Flags & NV_RX_DESCRIPTORVALID))
goto next_pkt;
if (Flags & NV_RX_MISSEDFRAME) {
np->stats.rx_missed_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX_CRCERR) {
np->stats.rx_crc_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX_OVERFLOW) {
np->stats.rx_over_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX_ERROR4) {
len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
if (len < 0) {
np->stats.rx_errors++;
goto next_pkt;
}
}
/* framing errors are soft errors. */
if (Flags & NV_RX_FRAMINGERR) {
if (Flags & NV_RX_SUBSTRACT1) {
len--;
}
}
} else {
if (!(Flags & NV_RX2_DESCRIPTORVALID))
goto next_pkt;
if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX2_CRCERR) {
np->stats.rx_crc_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX2_OVERFLOW) {
np->stats.rx_over_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX2_ERROR4) {
len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
if (len < 0) {
np->stats.rx_errors++;
goto next_pkt;
}
}
/* framing errors are soft errors */
if (Flags & NV_RX2_FRAMINGERR) {
if (Flags & NV_RX2_SUBSTRACT1) {
len--;
}
}
Flags &= NV_RX2_CHECKSUMMASK;
if (Flags == NV_RX2_CHECKSUMOK1 ||
Flags == NV_RX2_CHECKSUMOK2 ||
Flags == NV_RX2_CHECKSUMOK3) {
dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
} else {
dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
}
}
/* got a valid packet - forward it to the network core */
skb = np->rx_skbuff[i];
np->rx_skbuff[i] = NULL;
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
dev->name, np->cur_rx, len, skb->protocol);
netif_rx(skb);
dev->last_rx = jiffies;
np->stats.rx_packets++;
np->stats.rx_bytes += len;
next_pkt:
np->cur_rx++;
}
}
static void set_bufsize(struct net_device *dev)
{
struct fe_priv *np = netdev_priv(dev);
if (dev->mtu <= ETH_DATA_LEN)
np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
else
np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
}
/*
* nv_change_mtu: dev->change_mtu function
* Called with dev_base_lock held for read.
*/
static int nv_change_mtu(struct net_device *dev, int new_mtu)
{
struct fe_priv *np = get_nvpriv(dev);
int old_mtu;
if (new_mtu < 64 || new_mtu > np->pkt_limit)
return -EINVAL;
old_mtu = dev->mtu;
dev->mtu = new_mtu;
/* return early if the buffer sizes will not change */
if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
return 0;
if (old_mtu == new_mtu)
return 0;
/* synchronized against open : rtnl_lock() held by caller */
if (netif_running(dev)) {
u8 __iomem *base = get_hwbase(dev);
/*
* It seems that the nic preloads valid ring entries into an
* internal buffer. The procedure for flushing everything is
* guessed, there is probably a simpler approach.
* Changing the MTU is a rare event, it shouldn't matter.
*/
disable_irq(dev->irq);
spin_lock_bh(&dev->xmit_lock);
spin_lock(&np->lock);
/* stop engines */
nv_stop_rx(dev);
nv_stop_tx(dev);
nv_txrx_reset(dev);
/* drain rx queue */
nv_drain_rx(dev);
nv_drain_tx(dev);
/* reinit driver view of the rx queue */
nv_init_rx(dev);
nv_init_tx(dev);
/* alloc new rx buffers */
set_bufsize(dev);
if (nv_alloc_rx(dev)) {
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
}
/* reinit nic view of the rx queue */
writel(np->rx_buf_sz, base + NvRegOffloadConfig);
writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
else
writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
pci_push(base);
writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
pci_push(base);
/* restart rx engine */
nv_start_rx(dev);
nv_start_tx(dev);
spin_unlock(&np->lock);
spin_unlock_bh(&dev->xmit_lock);
enable_irq(dev->irq);
}
return 0;
}
static void nv_copy_mac_to_hw(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
u32 mac[2];
mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
(dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
writel(mac[0], base + NvRegMacAddrA);
writel(mac[1], base + NvRegMacAddrB);
}
/*
* nv_set_mac_address: dev->set_mac_address function
* Called with rtnl_lock() held.
*/
static int nv_set_mac_address(struct net_device *dev, void *addr)
{
struct fe_priv *np = get_nvpriv(dev);
struct sockaddr *macaddr = (struct sockaddr*)addr;
if(!is_valid_ether_addr(macaddr->sa_data))
return -EADDRNOTAVAIL;
/* synchronized against open : rtnl_lock() held by caller */
memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
if (netif_running(dev)) {
spin_lock_bh(&dev->xmit_lock);
spin_lock_irq(&np->lock);
/* stop rx engine */
nv_stop_rx(dev);
/* set mac address */
nv_copy_mac_to_hw(dev);
/* restart rx engine */
nv_start_rx(dev);
spin_unlock_irq(&np->lock);
spin_unlock_bh(&dev->xmit_lock);
} else {
nv_copy_mac_to_hw(dev);
}
return 0;
}
/*
* nv_set_multicast: dev->set_multicast function
* Called with dev->xmit_lock held.
*/
static void nv_set_multicast(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 addr[2];
u32 mask[2];
u32 pff;
memset(addr, 0, sizeof(addr));
memset(mask, 0, sizeof(mask));
if (dev->flags & IFF_PROMISC) {
printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
pff = NVREG_PFF_PROMISC;
} else {
pff = NVREG_PFF_MYADDR;
if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
u32 alwaysOff[2];
u32 alwaysOn[2];
alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
if (dev->flags & IFF_ALLMULTI) {
alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
} else {
struct dev_mc_list *walk;
walk = dev->mc_list;
while (walk != NULL) {
u32 a, b;
a = le32_to_cpu(*(u32 *) walk->dmi_addr);
b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
alwaysOn[0] &= a;
alwaysOff[0] &= ~a;
alwaysOn[1] &= b;
alwaysOff[1] &= ~b;
walk = walk->next;
}
}
addr[0] = alwaysOn[0];
addr[1] = alwaysOn[1];
mask[0] = alwaysOn[0] | alwaysOff[0];
mask[1] = alwaysOn[1] | alwaysOff[1];
}
}
addr[0] |= NVREG_MCASTADDRA_FORCE;
pff |= NVREG_PFF_ALWAYS;
spin_lock_irq(&np->lock);
nv_stop_rx(dev);
writel(addr[0], base + NvRegMulticastAddrA);
writel(addr[1], base + NvRegMulticastAddrB);
writel(mask[0], base + NvRegMulticastMaskA);
writel(mask[1], base + NvRegMulticastMaskB);
writel(pff, base + NvRegPacketFilterFlags);
dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
dev->name);
nv_start_rx(dev);
spin_unlock_irq(&np->lock);
}
static int nv_update_linkspeed(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
int adv, lpa;
int newls = np->linkspeed;
int newdup = np->duplex;
int mii_status;
int retval = 0;
u32 control_1000, status_1000, phyreg;
/* BMSR_LSTATUS is latched, read it twice:
* we want the current value.
*/
mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
if (!(mii_status & BMSR_LSTATUS)) {
dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
dev->name);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
retval = 0;
goto set_speed;
}
if (np->autoneg == 0) {
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
dev->name, np->fixed_mode);
if (np->fixed_mode & LPA_100FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 1;
} else if (np->fixed_mode & LPA_100HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 0;
} else if (np->fixed_mode & LPA_10FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 1;
} else {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
}
retval = 1;
goto set_speed;
}
/* check auto negotiation is complete */
if (!(mii_status & BMSR_ANEGCOMPLETE)) {
/* still in autonegotiation - configure nic for 10 MBit HD and wait. */
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
retval = 0;
dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
goto set_speed;
}
retval = 1;
if (np->gigabit == PHY_GIGABIT) {
control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
if ((control_1000 & ADVERTISE_1000FULL) &&
(status_1000 & LPA_1000FULL)) {
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
dev->name);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
newdup = 1;
goto set_speed;
}
}
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
dev->name, adv, lpa);
/* FIXME: handle parallel detection properly */
lpa = lpa & adv;
if (lpa & LPA_100FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 1;
} else if (lpa & LPA_100HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 0;
} else if (lpa & LPA_10FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 1;
} else if (lpa & LPA_10HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
} else {
dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
}
set_speed:
if (np->duplex == newdup && np->linkspeed == newls)
return retval;
dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
dev->name, np->linkspeed, np->duplex, newls, newdup);
np->duplex = newdup;
np->linkspeed = newls;
if (np->gigabit == PHY_GIGABIT) {
phyreg = readl(base + NvRegRandomSeed);
phyreg &= ~(0x3FF00);
if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
phyreg |= NVREG_RNDSEED_FORCE3;
else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
phyreg |= NVREG_RNDSEED_FORCE2;
else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
phyreg |= NVREG_RNDSEED_FORCE;
writel(phyreg, base + NvRegRandomSeed);
}
phyreg = readl(base + NvRegPhyInterface);
phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
if (np->duplex == 0)
phyreg |= PHY_HALF;
if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
phyreg |= PHY_100;
else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
phyreg |= PHY_1000;
writel(phyreg, base + NvRegPhyInterface);
writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
base + NvRegMisc1);
pci_push(base);
writel(np->linkspeed, base + NvRegLinkSpeed);
pci_push(base);
return retval;
}
static void nv_linkchange(struct net_device *dev)
{
if (nv_update_linkspeed(dev)) {
if (netif_carrier_ok(dev)) {
nv_stop_rx(dev);
} else {
netif_carrier_on(dev);
printk(KERN_INFO "%s: link up.\n", dev->name);
}
nv_start_rx(dev);
} else {
if (netif_carrier_ok(dev)) {
netif_carrier_off(dev);
printk(KERN_INFO "%s: link down.\n", dev->name);
nv_stop_rx(dev);
}
}
}
static void nv_link_irq(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
u32 miistat;
miistat = readl(base + NvRegMIIStatus);
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
if (miistat & (NVREG_MIISTAT_LINKCHANGE))
nv_linkchange(dev);
dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
}
static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
int i;
dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
for (i=0; ; i++) {
events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
pci_push(base);
dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
if (!(events & np->irqmask))
break;
if (events & (NVREG_IRQ_TX1|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_ERROR|NVREG_IRQ_TX_ERR)) {
spin_lock(&np->lock);
nv_tx_done(dev);
spin_unlock(&np->lock);
}
if (events & (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF)) {
nv_rx_process(dev);
if (nv_alloc_rx(dev)) {
spin_lock(&np->lock);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock(&np->lock);
}
}
if (events & NVREG_IRQ_LINK) {
spin_lock(&np->lock);
nv_link_irq(dev);
spin_unlock(&np->lock);
}
if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
spin_lock(&np->lock);
nv_linkchange(dev);
spin_unlock(&np->lock);
np->link_timeout = jiffies + LINK_TIMEOUT;
}
if (events & (NVREG_IRQ_TX_ERR)) {
dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
dev->name, events);
}
if (events & (NVREG_IRQ_UNKNOWN)) {
printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
dev->name, events);
}
if (i > max_interrupt_work) {
spin_lock(&np->lock);
/* disable interrupts on the nic */
writel(0, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown)
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
spin_unlock(&np->lock);
break;
}
}
dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
return IRQ_RETVAL(i);
}
static void nv_do_nic_poll(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
disable_irq(dev->irq);
/* FIXME: Do we need synchronize_irq(dev->irq) here? */
/*
* reenable interrupts on the nic, we have to do this before calling
* nv_nic_irq because that may decide to do otherwise
*/
writel(np->irqmask, base + NvRegIrqMask);
pci_push(base);
nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
enable_irq(dev->irq);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void nv_poll_controller(struct net_device *dev)
{
nv_do_nic_poll((unsigned long) dev);
}
#endif
static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct fe_priv *np = get_nvpriv(dev);
strcpy(info->driver, "forcedeth");
strcpy(info->version, FORCEDETH_VERSION);
strcpy(info->bus_info, pci_name(np->pci_dev));
}
static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
{
struct fe_priv *np = get_nvpriv(dev);
wolinfo->supported = WAKE_MAGIC;
spin_lock_irq(&np->lock);
if (np->wolenabled)
wolinfo->wolopts = WAKE_MAGIC;
spin_unlock_irq(&np->lock);
}
static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
spin_lock_irq(&np->lock);
if (wolinfo->wolopts == 0) {
writel(0, base + NvRegWakeUpFlags);
np->wolenabled = 0;
}
if (wolinfo->wolopts & WAKE_MAGIC) {
writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
np->wolenabled = 1;
}
spin_unlock_irq(&np->lock);
return 0;
}
static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct fe_priv *np = netdev_priv(dev);
int adv;
spin_lock_irq(&np->lock);
ecmd->port = PORT_MII;
if (!netif_running(dev)) {
/* We do not track link speed / duplex setting if the
* interface is disabled. Force a link check */
nv_update_linkspeed(dev);
}
switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
case NVREG_LINKSPEED_10:
ecmd->speed = SPEED_10;
break;
case NVREG_LINKSPEED_100:
ecmd->speed = SPEED_100;
break;
case NVREG_LINKSPEED_1000:
ecmd->speed = SPEED_1000;
break;
}
ecmd->duplex = DUPLEX_HALF;
if (np->duplex)
ecmd->duplex = DUPLEX_FULL;
ecmd->autoneg = np->autoneg;
ecmd->advertising = ADVERTISED_MII;
if (np->autoneg) {
ecmd->advertising |= ADVERTISED_Autoneg;
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
} else {
adv = np->fixed_mode;
}
if (adv & ADVERTISE_10HALF)
ecmd->advertising |= ADVERTISED_10baseT_Half;
if (adv & ADVERTISE_10FULL)
ecmd->advertising |= ADVERTISED_10baseT_Full;
if (adv & ADVERTISE_100HALF)
ecmd->advertising |= ADVERTISED_100baseT_Half;
if (adv & ADVERTISE_100FULL)
ecmd->advertising |= ADVERTISED_100baseT_Full;
if (np->autoneg && np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
if (adv & ADVERTISE_1000FULL)
ecmd->advertising |= ADVERTISED_1000baseT_Full;
}
ecmd->supported = (SUPPORTED_Autoneg |
SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
SUPPORTED_MII);
if (np->gigabit == PHY_GIGABIT)
ecmd->supported |= SUPPORTED_1000baseT_Full;
ecmd->phy_address = np->phyaddr;
ecmd->transceiver = XCVR_EXTERNAL;
/* ignore maxtxpkt, maxrxpkt for now */
spin_unlock_irq(&np->lock);
return 0;
}
static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct fe_priv *np = netdev_priv(dev);
if (ecmd->port != PORT_MII)
return -EINVAL;
if (ecmd->transceiver != XCVR_EXTERNAL)
return -EINVAL;
if (ecmd->phy_address != np->phyaddr) {
/* TODO: support switching between multiple phys. Should be
* trivial, but not enabled due to lack of test hardware. */
return -EINVAL;
}
if (ecmd->autoneg == AUTONEG_ENABLE) {
u32 mask;
mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
if (np->gigabit == PHY_GIGABIT)
mask |= ADVERTISED_1000baseT_Full;
if ((ecmd->advertising & mask) == 0)
return -EINVAL;
} else if (ecmd->autoneg == AUTONEG_DISABLE) {
/* Note: autonegotiation disable, speed 1000 intentionally
* forbidden - noone should need that. */
if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
return -EINVAL;
if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
return -EINVAL;
} else {
return -EINVAL;
}
spin_lock_irq(&np->lock);
if (ecmd->autoneg == AUTONEG_ENABLE) {
int adv, bmcr;
np->autoneg = 1;
/* advertise only what has been requested */
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (ecmd->advertising & ADVERTISED_10baseT_Half)
adv |= ADVERTISE_10HALF;
if (ecmd->advertising & ADVERTISED_10baseT_Full)
adv |= ADVERTISE_10FULL;
if (ecmd->advertising & ADVERTISED_100baseT_Half)
adv |= ADVERTISE_100HALF;
if (ecmd->advertising & ADVERTISED_100baseT_Full)
adv |= ADVERTISE_100FULL;
mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
if (np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
adv &= ~ADVERTISE_1000FULL;
if (ecmd->advertising & ADVERTISED_1000baseT_Full)
adv |= ADVERTISE_1000FULL;
mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
}
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
} else {
int adv, bmcr;
np->autoneg = 0;
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
adv |= ADVERTISE_10HALF;
if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
adv |= ADVERTISE_10FULL;
if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
adv |= ADVERTISE_100HALF;
if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
adv |= ADVERTISE_100FULL;
mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
np->fixed_mode = adv;
if (np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
adv &= ~ADVERTISE_1000FULL;
mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
}
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
bmcr |= BMCR_FULLDPLX;
if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
bmcr |= BMCR_SPEED100;
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
if (netif_running(dev)) {
/* Wait a bit and then reconfigure the nic. */
udelay(10);
nv_linkchange(dev);
}
}
spin_unlock_irq(&np->lock);
return 0;
}
#define FORCEDETH_REGS_VER 1
#define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */
static int nv_get_regs_len(struct net_device *dev)
{
return FORCEDETH_REGS_SIZE;
}
static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 *rbuf = buf;
int i;
regs->version = FORCEDETH_REGS_VER;
spin_lock_irq(&np->lock);
for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
rbuf[i] = readl(base + i*sizeof(u32));
spin_unlock_irq(&np->lock);
}
static int nv_nway_reset(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int ret;
spin_lock_irq(&np->lock);
if (np->autoneg) {
int bmcr;
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
ret = 0;
} else {
ret = -EINVAL;
}
spin_unlock_irq(&np->lock);
return ret;
}
static struct ethtool_ops ops = {
.get_drvinfo = nv_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_wol = nv_get_wol,
.set_wol = nv_set_wol,
.get_settings = nv_get_settings,
.set_settings = nv_set_settings,
.get_regs_len = nv_get_regs_len,
.get_regs = nv_get_regs,
.nway_reset = nv_nway_reset,
.get_perm_addr = ethtool_op_get_perm_addr,
};
static int nv_open(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
int ret, oom, i;
dprintk(KERN_DEBUG "nv_open: begin\n");
/* 1) erase previous misconfiguration */
/* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
writel(0, base + NvRegMulticastAddrB);
writel(0, base + NvRegMulticastMaskA);
writel(0, base + NvRegMulticastMaskB);
writel(0, base + NvRegPacketFilterFlags);
writel(0, base + NvRegTransmitterControl);
writel(0, base + NvRegReceiverControl);
writel(0, base + NvRegAdapterControl);
/* 2) initialize descriptor rings */
set_bufsize(dev);
oom = nv_init_ring(dev);
writel(0, base + NvRegLinkSpeed);
writel(0, base + NvRegUnknownTransmitterReg);
nv_txrx_reset(dev);
writel(0, base + NvRegUnknownSetupReg6);
np->in_shutdown = 0;
/* 3) set mac address */
nv_copy_mac_to_hw(dev);
/* 4) give hw rings */
writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
else
writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
/* 5) continue setup */
writel(np->linkspeed, base + NvRegLinkSpeed);
writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
writel(np->txrxctl_bits, base + NvRegTxRxControl);
pci_push(base);
writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
writel(0, base + NvRegUnknownSetupReg4);
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
/* 6) continue setup */
writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
writel(np->rx_buf_sz, base + NvRegOffloadConfig);
writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
get_random_bytes(&i, sizeof(i));
writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
writel(NVREG_POLL_DEFAULT, base + NvRegPollingInterval);
writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
base + NvRegAdapterControl);
writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
i = readl(base + NvRegPowerState);
if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
pci_push(base);
udelay(10);
writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
writel(0, base + NvRegIrqMask);
pci_push(base);
writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
pci_push(base);
ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
if (ret)
goto out_drain;
/* ask for interrupts */
writel(np->irqmask, base + NvRegIrqMask);
spin_lock_irq(&np->lock);
writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
writel(0, base + NvRegMulticastAddrB);
writel(0, base + NvRegMulticastMaskA);
writel(0, base + NvRegMulticastMaskB);
writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
/* One manual link speed update: Interrupts are enabled, future link
* speed changes cause interrupts and are handled by nv_link_irq().
*/
{
u32 miistat;
miistat = readl(base + NvRegMIIStatus);
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
}
/* set linkspeed to invalid value, thus force nv_update_linkspeed
* to init hw */
np->linkspeed = 0;
ret = nv_update_linkspeed(dev);
nv_start_rx(dev);
nv_start_tx(dev);
netif_start_queue(dev);
if (ret) {
netif_carrier_on(dev);
} else {
printk("%s: no link during initialization.\n", dev->name);
netif_carrier_off(dev);
}
if (oom)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock_irq(&np->lock);
return 0;
out_drain:
drain_ring(dev);
return ret;
}
static int nv_close(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base;
spin_lock_irq(&np->lock);
np->in_shutdown = 1;
spin_unlock_irq(&np->lock);
synchronize_irq(dev->irq);
del_timer_sync(&np->oom_kick);
del_timer_sync(&np->nic_poll);
netif_stop_queue(dev);
spin_lock_irq(&np->lock);
nv_stop_tx(dev);
nv_stop_rx(dev);
nv_txrx_reset(dev);
/* disable interrupts on the nic or we will lock up */
base = get_hwbase(dev);
writel(0, base + NvRegIrqMask);
pci_push(base);
dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
spin_unlock_irq(&np->lock);
free_irq(dev->irq, dev);
drain_ring(dev);
if (np->wolenabled)
nv_start_rx(dev);
/* special op: write back the misordered MAC address - otherwise
* the next nv_probe would see a wrong address.
*/
writel(np->orig_mac[0], base + NvRegMacAddrA);
writel(np->orig_mac[1], base + NvRegMacAddrB);
/* FIXME: power down nic */
return 0;
}
static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
{
struct net_device *dev;
struct fe_priv *np;
unsigned long addr;
u8 __iomem *base;
int err, i;
dev = alloc_etherdev(sizeof(struct fe_priv));
err = -ENOMEM;
if (!dev)
goto out;
np = get_nvpriv(dev);
np->pci_dev = pci_dev;
spin_lock_init(&np->lock);
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pci_dev->dev);
init_timer(&np->oom_kick);
np->oom_kick.data = (unsigned long) dev;
np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
init_timer(&np->nic_poll);
np->nic_poll.data = (unsigned long) dev;
np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
err = pci_enable_device(pci_dev);
if (err) {
printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
err, pci_name(pci_dev));
goto out_free;
}
pci_set_master(pci_dev);
err = pci_request_regions(pci_dev, DRV_NAME);
if (err < 0)
goto out_disable;
err = -EINVAL;
addr = 0;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
pci_resource_len(pci_dev, i),
pci_resource_flags(pci_dev, i));
if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
addr = pci_resource_start(pci_dev, i);
break;
}
}
if (i == DEVICE_COUNT_RESOURCE) {
printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
pci_name(pci_dev));
goto out_relreg;
}
/* handle different descriptor versions */
if (id->driver_data & DEV_HAS_HIGH_DMA) {
/* packet format 3: supports 40-bit addressing */
np->desc_ver = DESC_VER_3;
if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
pci_name(pci_dev));
}
np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
} else if (id->driver_data & DEV_HAS_LARGEDESC) {
/* packet format 2: supports jumbo frames */
np->desc_ver = DESC_VER_2;
np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
} else {
/* original packet format */
np->desc_ver = DESC_VER_1;
np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
}
np->pkt_limit = NV_PKTLIMIT_1;
if (id->driver_data & DEV_HAS_LARGEDESC)
np->pkt_limit = NV_PKTLIMIT_2;
if (id->driver_data & DEV_HAS_CHECKSUM) {
np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
dev->features |= NETIF_F_HW_CSUM;
}
err = -ENOMEM;
np->base = ioremap(addr, NV_PCI_REGSZ);
if (!np->base)
goto out_relreg;
dev->base_addr = (unsigned long)np->base;
dev->irq = pci_dev->irq;
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
np->rx_ring.orig = pci_alloc_consistent(pci_dev,
sizeof(struct ring_desc) * (RX_RING + TX_RING),
&np->ring_addr);
if (!np->rx_ring.orig)
goto out_unmap;
np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
} else {
np->rx_ring.ex = pci_alloc_consistent(pci_dev,
sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
&np->ring_addr);
if (!np->rx_ring.ex)
goto out_unmap;
np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
}
dev->open = nv_open;
dev->stop = nv_close;
dev->hard_start_xmit = nv_start_xmit;
dev->get_stats = nv_get_stats;
dev->change_mtu = nv_change_mtu;
dev->set_mac_address = nv_set_mac_address;
dev->set_multicast_list = nv_set_multicast;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = nv_poll_controller;
#endif
SET_ETHTOOL_OPS(dev, &ops);
dev->tx_timeout = nv_tx_timeout;
dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
pci_set_drvdata(pci_dev, dev);
/* read the mac address */
base = get_hwbase(dev);
np->orig_mac[0] = readl(base + NvRegMacAddrA);
np->orig_mac[1] = readl(base + NvRegMacAddrB);
dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
if (!is_valid_ether_addr(dev->perm_addr)) {
/*
* Bad mac address. At least one bios sets the mac address
* to 01:23:45:67:89:ab
*/
printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
pci_name(pci_dev),
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
dev->dev_addr[0] = 0x00;
dev->dev_addr[1] = 0x00;
dev->dev_addr[2] = 0x6c;
get_random_bytes(&dev->dev_addr[3], 3);
}
dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
/* disable WOL */
writel(0, base + NvRegWakeUpFlags);
np->wolenabled = 0;
if (np->desc_ver == DESC_VER_1) {
np->tx_flags = NV_TX_LASTPACKET|NV_TX_VALID;
} else {
np->tx_flags = NV_TX2_LASTPACKET|NV_TX2_VALID;
}
np->irqmask = NVREG_IRQMASK_WANTED;
if (id->driver_data & DEV_NEED_TIMERIRQ)
np->irqmask |= NVREG_IRQ_TIMER;
if (id->driver_data & DEV_NEED_LINKTIMER) {
dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
np->need_linktimer = 1;
np->link_timeout = jiffies + LINK_TIMEOUT;
} else {
dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
np->need_linktimer = 0;
}
/* find a suitable phy */
for (i = 1; i < 32; i++) {
int id1, id2;
spin_lock_irq(&np->lock);
id1 = mii_rw(dev, i, MII_PHYSID1, MII_READ);
spin_unlock_irq(&np->lock);
if (id1 < 0 || id1 == 0xffff)
continue;
spin_lock_irq(&np->lock);
id2 = mii_rw(dev, i, MII_PHYSID2, MII_READ);
spin_unlock_irq(&np->lock);
if (id2 < 0 || id2 == 0xffff)
continue;
id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
pci_name(pci_dev), id1, id2, i);
np->phyaddr = i;
np->phy_oui = id1 | id2;
break;
}
if (i == 32) {
/* PHY in isolate mode? No phy attached and user wants to
* test loopback? Very odd, but can be correct.
*/
printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
pci_name(pci_dev));
}
if (i != 32) {
/* reset it */
phy_init(dev);
}
/* set default link speed settings */
np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
np->duplex = 0;
np->autoneg = 1;
err = register_netdev(dev);
if (err) {
printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
goto out_freering;
}
printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
pci_name(pci_dev));
return 0;
out_freering:
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
np->rx_ring.orig, np->ring_addr);
else
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
np->rx_ring.ex, np->ring_addr);
pci_set_drvdata(pci_dev, NULL);
out_unmap:
iounmap(get_hwbase(dev));
out_relreg:
pci_release_regions(pci_dev);
out_disable:
pci_disable_device(pci_dev);
out_free:
free_netdev(dev);
out:
return err;
}
static void __devexit nv_remove(struct pci_dev *pci_dev)
{
struct net_device *dev = pci_get_drvdata(pci_dev);
struct fe_priv *np = get_nvpriv(dev);
unregister_netdev(dev);
/* free all structures */
if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
else
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
iounmap(get_hwbase(dev));
pci_release_regions(pci_dev);
pci_disable_device(pci_dev);
free_netdev(dev);
pci_set_drvdata(pci_dev, NULL);
}
static struct pci_device_id pci_tbl[] = {
{ /* nForce Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce2 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
},
{ /* nForce3 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
},
{ /* CK804 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
},
{ /* CK804 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
},
{ /* MCP04 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
},
{ /* MCP04 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
},
{ /* MCP51 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
},
{ /* MCP51 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
},
{ /* MCP55 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
},
{ /* MCP55 Ethernet Controller */
PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
},
{0,},
};
static struct pci_driver driver = {
.name = "forcedeth",
.id_table = pci_tbl,
.probe = nv_probe,
.remove = __devexit_p(nv_remove),
};
static int __init init_nic(void)
{
printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
return pci_module_init(&driver);
}
static void __exit exit_nic(void)
{
pci_unregister_driver(&driver);
}
module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, pci_tbl);
module_init(init_nic);
module_exit(exit_nic);