kernel-fxtec-pro1x/drivers/char/synclink_gt.c
Paul Fulghum ed8485fb34 synclink_gt fix missed serial input signal changes
Fix missed serial input signal changes caused by rereading the serial
status register during interrupt processing.  Now processing is performed
on original status register value.

Signed-off-by: Paul Fulghum <paulkf@microgate.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-06 10:41:06 -08:00

4925 lines
125 KiB
C

/*
* $Id: synclink_gt.c,v 4.50 2007/07/25 19:29:25 paulkf Exp $
*
* Device driver for Microgate SyncLink GT serial adapters.
*
* written by Paul Fulghum for Microgate Corporation
* paulkf@microgate.com
*
* Microgate and SyncLink are trademarks of Microgate Corporation
*
* This code is released under the GNU General Public License (GPL)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* DEBUG OUTPUT DEFINITIONS
*
* uncomment lines below to enable specific types of debug output
*
* DBGINFO information - most verbose output
* DBGERR serious errors
* DBGBH bottom half service routine debugging
* DBGISR interrupt service routine debugging
* DBGDATA output receive and transmit data
* DBGTBUF output transmit DMA buffers and registers
* DBGRBUF output receive DMA buffers and registers
*/
#define DBGINFO(fmt) if (debug_level >= DEBUG_LEVEL_INFO) printk fmt
#define DBGERR(fmt) if (debug_level >= DEBUG_LEVEL_ERROR) printk fmt
#define DBGBH(fmt) if (debug_level >= DEBUG_LEVEL_BH) printk fmt
#define DBGISR(fmt) if (debug_level >= DEBUG_LEVEL_ISR) printk fmt
#define DBGDATA(info, buf, size, label) if (debug_level >= DEBUG_LEVEL_DATA) trace_block((info), (buf), (size), (label))
//#define DBGTBUF(info) dump_tbufs(info)
//#define DBGRBUF(info) dump_rbufs(info)
#include <linux/module.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ioctl.h>
#include <linux/termios.h>
#include <linux/bitops.h>
#include <linux/workqueue.h>
#include <linux/hdlc.h>
#include <linux/synclink.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/types.h>
#include <asm/uaccess.h>
#if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_GT_MODULE))
#define SYNCLINK_GENERIC_HDLC 1
#else
#define SYNCLINK_GENERIC_HDLC 0
#endif
/*
* module identification
*/
static char *driver_name = "SyncLink GT";
static char *driver_version = "$Revision: 4.50 $";
static char *tty_driver_name = "synclink_gt";
static char *tty_dev_prefix = "ttySLG";
MODULE_LICENSE("GPL");
#define MGSL_MAGIC 0x5401
#define MAX_DEVICES 32
static struct pci_device_id pci_table[] = {
{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT2_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT4_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_MICROGATE, SYNCLINK_AC_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{0,}, /* terminate list */
};
MODULE_DEVICE_TABLE(pci, pci_table);
static int init_one(struct pci_dev *dev,const struct pci_device_id *ent);
static void remove_one(struct pci_dev *dev);
static struct pci_driver pci_driver = {
.name = "synclink_gt",
.id_table = pci_table,
.probe = init_one,
.remove = __devexit_p(remove_one),
};
static int pci_registered;
/*
* module configuration and status
*/
static struct slgt_info *slgt_device_list;
static int slgt_device_count;
static int ttymajor;
static int debug_level;
static int maxframe[MAX_DEVICES];
static int dosyncppp[MAX_DEVICES];
module_param(ttymajor, int, 0);
module_param(debug_level, int, 0);
module_param_array(maxframe, int, NULL, 0);
module_param_array(dosyncppp, int, NULL, 0);
MODULE_PARM_DESC(ttymajor, "TTY major device number override: 0=auto assigned");
MODULE_PARM_DESC(debug_level, "Debug syslog output: 0=disabled, 1 to 5=increasing detail");
MODULE_PARM_DESC(maxframe, "Maximum frame size used by device (4096 to 65535)");
MODULE_PARM_DESC(dosyncppp, "Enable synchronous net device, 0=disable 1=enable");
/*
* tty support and callbacks
*/
static struct tty_driver *serial_driver;
static int open(struct tty_struct *tty, struct file * filp);
static void close(struct tty_struct *tty, struct file * filp);
static void hangup(struct tty_struct *tty);
static void set_termios(struct tty_struct *tty, struct ktermios *old_termios);
static int write(struct tty_struct *tty, const unsigned char *buf, int count);
static void put_char(struct tty_struct *tty, unsigned char ch);
static void send_xchar(struct tty_struct *tty, char ch);
static void wait_until_sent(struct tty_struct *tty, int timeout);
static int write_room(struct tty_struct *tty);
static void flush_chars(struct tty_struct *tty);
static void flush_buffer(struct tty_struct *tty);
static void tx_hold(struct tty_struct *tty);
static void tx_release(struct tty_struct *tty);
static int ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
static int read_proc(char *page, char **start, off_t off, int count,int *eof, void *data);
static int chars_in_buffer(struct tty_struct *tty);
static void throttle(struct tty_struct * tty);
static void unthrottle(struct tty_struct * tty);
static void set_break(struct tty_struct *tty, int break_state);
/*
* generic HDLC support and callbacks
*/
#if SYNCLINK_GENERIC_HDLC
#define dev_to_port(D) (dev_to_hdlc(D)->priv)
static void hdlcdev_tx_done(struct slgt_info *info);
static void hdlcdev_rx(struct slgt_info *info, char *buf, int size);
static int hdlcdev_init(struct slgt_info *info);
static void hdlcdev_exit(struct slgt_info *info);
#endif
/*
* device specific structures, macros and functions
*/
#define SLGT_MAX_PORTS 4
#define SLGT_REG_SIZE 256
/*
* conditional wait facility
*/
struct cond_wait {
struct cond_wait *next;
wait_queue_head_t q;
wait_queue_t wait;
unsigned int data;
};
static void init_cond_wait(struct cond_wait *w, unsigned int data);
static void add_cond_wait(struct cond_wait **head, struct cond_wait *w);
static void remove_cond_wait(struct cond_wait **head, struct cond_wait *w);
static void flush_cond_wait(struct cond_wait **head);
/*
* DMA buffer descriptor and access macros
*/
struct slgt_desc
{
__le16 count;
__le16 status;
__le32 pbuf; /* physical address of data buffer */
__le32 next; /* physical address of next descriptor */
/* driver book keeping */
char *buf; /* virtual address of data buffer */
unsigned int pdesc; /* physical address of this descriptor */
dma_addr_t buf_dma_addr;
};
#define set_desc_buffer(a,b) (a).pbuf = cpu_to_le32((unsigned int)(b))
#define set_desc_next(a,b) (a).next = cpu_to_le32((unsigned int)(b))
#define set_desc_count(a,b)(a).count = cpu_to_le16((unsigned short)(b))
#define set_desc_eof(a,b) (a).status = cpu_to_le16((b) ? (le16_to_cpu((a).status) | BIT0) : (le16_to_cpu((a).status) & ~BIT0))
#define desc_count(a) (le16_to_cpu((a).count))
#define desc_status(a) (le16_to_cpu((a).status))
#define desc_complete(a) (le16_to_cpu((a).status) & BIT15)
#define desc_eof(a) (le16_to_cpu((a).status) & BIT2)
#define desc_crc_error(a) (le16_to_cpu((a).status) & BIT1)
#define desc_abort(a) (le16_to_cpu((a).status) & BIT0)
#define desc_residue(a) ((le16_to_cpu((a).status) & 0x38) >> 3)
struct _input_signal_events {
int ri_up;
int ri_down;
int dsr_up;
int dsr_down;
int dcd_up;
int dcd_down;
int cts_up;
int cts_down;
};
/*
* device instance data structure
*/
struct slgt_info {
void *if_ptr; /* General purpose pointer (used by SPPP) */
struct slgt_info *next_device; /* device list link */
int magic;
int flags;
char device_name[25];
struct pci_dev *pdev;
int port_count; /* count of ports on adapter */
int adapter_num; /* adapter instance number */
int port_num; /* port instance number */
/* array of pointers to port contexts on this adapter */
struct slgt_info *port_array[SLGT_MAX_PORTS];
int count; /* count of opens */
int line; /* tty line instance number */
unsigned short close_delay;
unsigned short closing_wait; /* time to wait before closing */
struct mgsl_icount icount;
struct tty_struct *tty;
int timeout;
int x_char; /* xon/xoff character */
int blocked_open; /* # of blocked opens */
unsigned int read_status_mask;
unsigned int ignore_status_mask;
wait_queue_head_t open_wait;
wait_queue_head_t close_wait;
wait_queue_head_t status_event_wait_q;
wait_queue_head_t event_wait_q;
struct timer_list tx_timer;
struct timer_list rx_timer;
unsigned int gpio_present;
struct cond_wait *gpio_wait_q;
spinlock_t lock; /* spinlock for synchronizing with ISR */
struct work_struct task;
u32 pending_bh;
int bh_requested;
int bh_running;
int isr_overflow;
int irq_requested; /* nonzero if IRQ requested */
int irq_occurred; /* for diagnostics use */
/* device configuration */
unsigned int bus_type;
unsigned int irq_level;
unsigned long irq_flags;
unsigned char __iomem * reg_addr; /* memory mapped registers address */
u32 phys_reg_addr;
int reg_addr_requested;
MGSL_PARAMS params; /* communications parameters */
u32 idle_mode;
u32 max_frame_size; /* as set by device config */
unsigned int raw_rx_size;
unsigned int if_mode;
/* device status */
int rx_enabled;
int rx_restart;
int tx_enabled;
int tx_active;
unsigned char signals; /* serial signal states */
int init_error; /* initialization error */
unsigned char *tx_buf;
int tx_count;
char flag_buf[MAX_ASYNC_BUFFER_SIZE];
char char_buf[MAX_ASYNC_BUFFER_SIZE];
BOOLEAN drop_rts_on_tx_done;
struct _input_signal_events input_signal_events;
int dcd_chkcount; /* check counts to prevent */
int cts_chkcount; /* too many IRQs if a signal */
int dsr_chkcount; /* is floating */
int ri_chkcount;
char *bufs; /* virtual address of DMA buffer lists */
dma_addr_t bufs_dma_addr; /* physical address of buffer descriptors */
unsigned int rbuf_count;
struct slgt_desc *rbufs;
unsigned int rbuf_current;
unsigned int rbuf_index;
unsigned int tbuf_count;
struct slgt_desc *tbufs;
unsigned int tbuf_current;
unsigned int tbuf_start;
unsigned char *tmp_rbuf;
unsigned int tmp_rbuf_count;
/* SPPP/Cisco HDLC device parts */
int netcount;
int dosyncppp;
spinlock_t netlock;
#if SYNCLINK_GENERIC_HDLC
struct net_device *netdev;
#endif
};
static MGSL_PARAMS default_params = {
.mode = MGSL_MODE_HDLC,
.loopback = 0,
.flags = HDLC_FLAG_UNDERRUN_ABORT15,
.encoding = HDLC_ENCODING_NRZI_SPACE,
.clock_speed = 0,
.addr_filter = 0xff,
.crc_type = HDLC_CRC_16_CCITT,
.preamble_length = HDLC_PREAMBLE_LENGTH_8BITS,
.preamble = HDLC_PREAMBLE_PATTERN_NONE,
.data_rate = 9600,
.data_bits = 8,
.stop_bits = 1,
.parity = ASYNC_PARITY_NONE
};
#define BH_RECEIVE 1
#define BH_TRANSMIT 2
#define BH_STATUS 4
#define IO_PIN_SHUTDOWN_LIMIT 100
#define DMABUFSIZE 256
#define DESC_LIST_SIZE 4096
#define MASK_PARITY BIT1
#define MASK_FRAMING BIT0
#define MASK_BREAK BIT14
#define MASK_OVERRUN BIT4
#define GSR 0x00 /* global status */
#define JCR 0x04 /* JTAG control */
#define IODR 0x08 /* GPIO direction */
#define IOER 0x0c /* GPIO interrupt enable */
#define IOVR 0x10 /* GPIO value */
#define IOSR 0x14 /* GPIO interrupt status */
#define TDR 0x80 /* tx data */
#define RDR 0x80 /* rx data */
#define TCR 0x82 /* tx control */
#define TIR 0x84 /* tx idle */
#define TPR 0x85 /* tx preamble */
#define RCR 0x86 /* rx control */
#define VCR 0x88 /* V.24 control */
#define CCR 0x89 /* clock control */
#define BDR 0x8a /* baud divisor */
#define SCR 0x8c /* serial control */
#define SSR 0x8e /* serial status */
#define RDCSR 0x90 /* rx DMA control/status */
#define TDCSR 0x94 /* tx DMA control/status */
#define RDDAR 0x98 /* rx DMA descriptor address */
#define TDDAR 0x9c /* tx DMA descriptor address */
#define RXIDLE BIT14
#define RXBREAK BIT14
#define IRQ_TXDATA BIT13
#define IRQ_TXIDLE BIT12
#define IRQ_TXUNDER BIT11 /* HDLC */
#define IRQ_RXDATA BIT10
#define IRQ_RXIDLE BIT9 /* HDLC */
#define IRQ_RXBREAK BIT9 /* async */
#define IRQ_RXOVER BIT8
#define IRQ_DSR BIT7
#define IRQ_CTS BIT6
#define IRQ_DCD BIT5
#define IRQ_RI BIT4
#define IRQ_ALL 0x3ff0
#define IRQ_MASTER BIT0
#define slgt_irq_on(info, mask) \
wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) | (mask)))
#define slgt_irq_off(info, mask) \
wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) & ~(mask)))
static __u8 rd_reg8(struct slgt_info *info, unsigned int addr);
static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value);
static __u16 rd_reg16(struct slgt_info *info, unsigned int addr);
static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value);
static __u32 rd_reg32(struct slgt_info *info, unsigned int addr);
static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value);
static void msc_set_vcr(struct slgt_info *info);
static int startup(struct slgt_info *info);
static int block_til_ready(struct tty_struct *tty, struct file * filp,struct slgt_info *info);
static void shutdown(struct slgt_info *info);
static void program_hw(struct slgt_info *info);
static void change_params(struct slgt_info *info);
static int register_test(struct slgt_info *info);
static int irq_test(struct slgt_info *info);
static int loopback_test(struct slgt_info *info);
static int adapter_test(struct slgt_info *info);
static void reset_adapter(struct slgt_info *info);
static void reset_port(struct slgt_info *info);
static void async_mode(struct slgt_info *info);
static void sync_mode(struct slgt_info *info);
static void rx_stop(struct slgt_info *info);
static void rx_start(struct slgt_info *info);
static void reset_rbufs(struct slgt_info *info);
static void free_rbufs(struct slgt_info *info, unsigned int first, unsigned int last);
static void rdma_reset(struct slgt_info *info);
static int rx_get_frame(struct slgt_info *info);
static int rx_get_buf(struct slgt_info *info);
static void tx_start(struct slgt_info *info);
static void tx_stop(struct slgt_info *info);
static void tx_set_idle(struct slgt_info *info);
static unsigned int free_tbuf_count(struct slgt_info *info);
static void reset_tbufs(struct slgt_info *info);
static void tdma_reset(struct slgt_info *info);
static void tdma_start(struct slgt_info *info);
static void tx_load(struct slgt_info *info, const char *buf, unsigned int count);
static void get_signals(struct slgt_info *info);
static void set_signals(struct slgt_info *info);
static void enable_loopback(struct slgt_info *info);
static void set_rate(struct slgt_info *info, u32 data_rate);
static int bh_action(struct slgt_info *info);
static void bh_handler(struct work_struct *work);
static void bh_transmit(struct slgt_info *info);
static void isr_serial(struct slgt_info *info);
static void isr_rdma(struct slgt_info *info);
static void isr_txeom(struct slgt_info *info, unsigned short status);
static void isr_tdma(struct slgt_info *info);
static irqreturn_t slgt_interrupt(int irq, void *dev_id);
static int alloc_dma_bufs(struct slgt_info *info);
static void free_dma_bufs(struct slgt_info *info);
static int alloc_desc(struct slgt_info *info);
static void free_desc(struct slgt_info *info);
static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count);
static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count);
static int alloc_tmp_rbuf(struct slgt_info *info);
static void free_tmp_rbuf(struct slgt_info *info);
static void tx_timeout(unsigned long context);
static void rx_timeout(unsigned long context);
/*
* ioctl handlers
*/
static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount);
static int get_params(struct slgt_info *info, MGSL_PARAMS __user *params);
static int set_params(struct slgt_info *info, MGSL_PARAMS __user *params);
static int get_txidle(struct slgt_info *info, int __user *idle_mode);
static int set_txidle(struct slgt_info *info, int idle_mode);
static int tx_enable(struct slgt_info *info, int enable);
static int tx_abort(struct slgt_info *info);
static int rx_enable(struct slgt_info *info, int enable);
static int modem_input_wait(struct slgt_info *info,int arg);
static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr);
static int tiocmget(struct tty_struct *tty, struct file *file);
static int tiocmset(struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear);
static void set_break(struct tty_struct *tty, int break_state);
static int get_interface(struct slgt_info *info, int __user *if_mode);
static int set_interface(struct slgt_info *info, int if_mode);
static int set_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
static int get_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
/*
* driver functions
*/
static void add_device(struct slgt_info *info);
static void device_init(int adapter_num, struct pci_dev *pdev);
static int claim_resources(struct slgt_info *info);
static void release_resources(struct slgt_info *info);
/*
* DEBUG OUTPUT CODE
*/
#ifndef DBGINFO
#define DBGINFO(fmt)
#endif
#ifndef DBGERR
#define DBGERR(fmt)
#endif
#ifndef DBGBH
#define DBGBH(fmt)
#endif
#ifndef DBGISR
#define DBGISR(fmt)
#endif
#ifdef DBGDATA
static void trace_block(struct slgt_info *info, const char *data, int count, const char *label)
{
int i;
int linecount;
printk("%s %s data:\n",info->device_name, label);
while(count) {
linecount = (count > 16) ? 16 : count;
for(i=0; i < linecount; i++)
printk("%02X ",(unsigned char)data[i]);
for(;i<17;i++)
printk(" ");
for(i=0;i<linecount;i++) {
if (data[i]>=040 && data[i]<=0176)
printk("%c",data[i]);
else
printk(".");
}
printk("\n");
data += linecount;
count -= linecount;
}
}
#else
#define DBGDATA(info, buf, size, label)
#endif
#ifdef DBGTBUF
static void dump_tbufs(struct slgt_info *info)
{
int i;
printk("tbuf_current=%d\n", info->tbuf_current);
for (i=0 ; i < info->tbuf_count ; i++) {
printk("%d: count=%04X status=%04X\n",
i, le16_to_cpu(info->tbufs[i].count), le16_to_cpu(info->tbufs[i].status));
}
}
#else
#define DBGTBUF(info)
#endif
#ifdef DBGRBUF
static void dump_rbufs(struct slgt_info *info)
{
int i;
printk("rbuf_current=%d\n", info->rbuf_current);
for (i=0 ; i < info->rbuf_count ; i++) {
printk("%d: count=%04X status=%04X\n",
i, le16_to_cpu(info->rbufs[i].count), le16_to_cpu(info->rbufs[i].status));
}
}
#else
#define DBGRBUF(info)
#endif
static inline int sanity_check(struct slgt_info *info, char *devname, const char *name)
{
#ifdef SANITY_CHECK
if (!info) {
printk("null struct slgt_info for (%s) in %s\n", devname, name);
return 1;
}
if (info->magic != MGSL_MAGIC) {
printk("bad magic number struct slgt_info (%s) in %s\n", devname, name);
return 1;
}
#else
if (!info)
return 1;
#endif
return 0;
}
/**
* line discipline callback wrappers
*
* The wrappers maintain line discipline references
* while calling into the line discipline.
*
* ldisc_receive_buf - pass receive data to line discipline
*/
static void ldisc_receive_buf(struct tty_struct *tty,
const __u8 *data, char *flags, int count)
{
struct tty_ldisc *ld;
if (!tty)
return;
ld = tty_ldisc_ref(tty);
if (ld) {
if (ld->receive_buf)
ld->receive_buf(tty, data, flags, count);
tty_ldisc_deref(ld);
}
}
/* tty callbacks */
static int open(struct tty_struct *tty, struct file *filp)
{
struct slgt_info *info;
int retval, line;
unsigned long flags;
line = tty->index;
if ((line < 0) || (line >= slgt_device_count)) {
DBGERR(("%s: open with invalid line #%d.\n", driver_name, line));
return -ENODEV;
}
info = slgt_device_list;
while(info && info->line != line)
info = info->next_device;
if (sanity_check(info, tty->name, "open"))
return -ENODEV;
if (info->init_error) {
DBGERR(("%s init error=%d\n", info->device_name, info->init_error));
return -ENODEV;
}
tty->driver_data = info;
info->tty = tty;
DBGINFO(("%s open, old ref count = %d\n", info->device_name, info->count));
/* If port is closing, signal caller to try again */
if (tty_hung_up_p(filp) || info->flags & ASYNC_CLOSING){
if (info->flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->close_wait);
retval = ((info->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
goto cleanup;
}
info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
spin_lock_irqsave(&info->netlock, flags);
if (info->netcount) {
retval = -EBUSY;
spin_unlock_irqrestore(&info->netlock, flags);
goto cleanup;
}
info->count++;
spin_unlock_irqrestore(&info->netlock, flags);
if (info->count == 1) {
/* 1st open on this device, init hardware */
retval = startup(info);
if (retval < 0)
goto cleanup;
}
retval = block_til_ready(tty, filp, info);
if (retval) {
DBGINFO(("%s block_til_ready rc=%d\n", info->device_name, retval));
goto cleanup;
}
retval = 0;
cleanup:
if (retval) {
if (tty->count == 1)
info->tty = NULL; /* tty layer will release tty struct */
if(info->count)
info->count--;
}
DBGINFO(("%s open rc=%d\n", info->device_name, retval));
return retval;
}
static void close(struct tty_struct *tty, struct file *filp)
{
struct slgt_info *info = tty->driver_data;
if (sanity_check(info, tty->name, "close"))
return;
DBGINFO(("%s close entry, count=%d\n", info->device_name, info->count));
if (!info->count)
return;
if (tty_hung_up_p(filp))
goto cleanup;
if ((tty->count == 1) && (info->count != 1)) {
/*
* tty->count is 1 and the tty structure will be freed.
* info->count should be one in this case.
* if it's not, correct it so that the port is shutdown.
*/
DBGERR(("%s close: bad refcount; tty->count=1, "
"info->count=%d\n", info->device_name, info->count));
info->count = 1;
}
info->count--;
/* if at least one open remaining, leave hardware active */
if (info->count)
goto cleanup;
info->flags |= ASYNC_CLOSING;
/* set tty->closing to notify line discipline to
* only process XON/XOFF characters. Only the N_TTY
* discipline appears to use this (ppp does not).
*/
tty->closing = 1;
/* wait for transmit data to clear all layers */
if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) {
DBGINFO(("%s call tty_wait_until_sent\n", info->device_name));
tty_wait_until_sent(tty, info->closing_wait);
}
if (info->flags & ASYNC_INITIALIZED)
wait_until_sent(tty, info->timeout);
if (tty->driver->flush_buffer)
tty->driver->flush_buffer(tty);
tty_ldisc_flush(tty);
shutdown(info);
tty->closing = 0;
info->tty = NULL;
if (info->blocked_open) {
if (info->close_delay) {
msleep_interruptible(jiffies_to_msecs(info->close_delay));
}
wake_up_interruptible(&info->open_wait);
}
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
wake_up_interruptible(&info->close_wait);
cleanup:
DBGINFO(("%s close exit, count=%d\n", tty->driver->name, info->count));
}
static void hangup(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
if (sanity_check(info, tty->name, "hangup"))
return;
DBGINFO(("%s hangup\n", info->device_name));
flush_buffer(tty);
shutdown(info);
info->count = 0;
info->flags &= ~ASYNC_NORMAL_ACTIVE;
info->tty = NULL;
wake_up_interruptible(&info->open_wait);
}
static void set_termios(struct tty_struct *tty, struct ktermios *old_termios)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
DBGINFO(("%s set_termios\n", tty->driver->name));
change_params(info);
/* Handle transition to B0 status */
if (old_termios->c_cflag & CBAUD &&
!(tty->termios->c_cflag & CBAUD)) {
info->signals &= ~(SerialSignal_RTS + SerialSignal_DTR);
spin_lock_irqsave(&info->lock,flags);
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/* Handle transition away from B0 status */
if (!(old_termios->c_cflag & CBAUD) &&
tty->termios->c_cflag & CBAUD) {
info->signals |= SerialSignal_DTR;
if (!(tty->termios->c_cflag & CRTSCTS) ||
!test_bit(TTY_THROTTLED, &tty->flags)) {
info->signals |= SerialSignal_RTS;
}
spin_lock_irqsave(&info->lock,flags);
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/* Handle turning off CRTSCTS */
if (old_termios->c_cflag & CRTSCTS &&
!(tty->termios->c_cflag & CRTSCTS)) {
tty->hw_stopped = 0;
tx_release(tty);
}
}
static int write(struct tty_struct *tty,
const unsigned char *buf, int count)
{
int ret = 0;
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "write"))
goto cleanup;
DBGINFO(("%s write count=%d\n", info->device_name, count));
if (!info->tx_buf)
goto cleanup;
if (count > info->max_frame_size) {
ret = -EIO;
goto cleanup;
}
if (!count)
goto cleanup;
if (info->params.mode == MGSL_MODE_RAW ||
info->params.mode == MGSL_MODE_MONOSYNC ||
info->params.mode == MGSL_MODE_BISYNC) {
unsigned int bufs_needed = (count/DMABUFSIZE);
unsigned int bufs_free = free_tbuf_count(info);
if (count % DMABUFSIZE)
++bufs_needed;
if (bufs_needed > bufs_free)
goto cleanup;
} else {
if (info->tx_active)
goto cleanup;
if (info->tx_count) {
/* send accumulated data from send_char() calls */
/* as frame and wait before accepting more data. */
tx_load(info, info->tx_buf, info->tx_count);
goto start;
}
}
ret = info->tx_count = count;
tx_load(info, buf, count);
goto start;
start:
if (info->tx_count && !tty->stopped && !tty->hw_stopped) {
spin_lock_irqsave(&info->lock,flags);
if (!info->tx_active)
tx_start(info);
else
tdma_start(info);
spin_unlock_irqrestore(&info->lock,flags);
}
cleanup:
DBGINFO(("%s write rc=%d\n", info->device_name, ret));
return ret;
}
static void put_char(struct tty_struct *tty, unsigned char ch)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "put_char"))
return;
DBGINFO(("%s put_char(%d)\n", info->device_name, ch));
if (!info->tx_buf)
return;
spin_lock_irqsave(&info->lock,flags);
if (!info->tx_active && (info->tx_count < info->max_frame_size))
info->tx_buf[info->tx_count++] = ch;
spin_unlock_irqrestore(&info->lock,flags);
}
static void send_xchar(struct tty_struct *tty, char ch)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "send_xchar"))
return;
DBGINFO(("%s send_xchar(%d)\n", info->device_name, ch));
info->x_char = ch;
if (ch) {
spin_lock_irqsave(&info->lock,flags);
if (!info->tx_enabled)
tx_start(info);
spin_unlock_irqrestore(&info->lock,flags);
}
}
static void wait_until_sent(struct tty_struct *tty, int timeout)
{
struct slgt_info *info = tty->driver_data;
unsigned long orig_jiffies, char_time;
if (!info )
return;
if (sanity_check(info, tty->name, "wait_until_sent"))
return;
DBGINFO(("%s wait_until_sent entry\n", info->device_name));
if (!(info->flags & ASYNC_INITIALIZED))
goto exit;
orig_jiffies = jiffies;
/* Set check interval to 1/5 of estimated time to
* send a character, and make it at least 1. The check
* interval should also be less than the timeout.
* Note: use tight timings here to satisfy the NIST-PCTS.
*/
if (info->params.data_rate) {
char_time = info->timeout/(32 * 5);
if (!char_time)
char_time++;
} else
char_time = 1;
if (timeout)
char_time = min_t(unsigned long, char_time, timeout);
while (info->tx_active) {
msleep_interruptible(jiffies_to_msecs(char_time));
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
}
exit:
DBGINFO(("%s wait_until_sent exit\n", info->device_name));
}
static int write_room(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
int ret;
if (sanity_check(info, tty->name, "write_room"))
return 0;
ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE;
DBGINFO(("%s write_room=%d\n", info->device_name, ret));
return ret;
}
static void flush_chars(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "flush_chars"))
return;
DBGINFO(("%s flush_chars entry tx_count=%d\n", info->device_name, info->tx_count));
if (info->tx_count <= 0 || tty->stopped ||
tty->hw_stopped || !info->tx_buf)
return;
DBGINFO(("%s flush_chars start transmit\n", info->device_name));
spin_lock_irqsave(&info->lock,flags);
if (!info->tx_active && info->tx_count) {
tx_load(info, info->tx_buf,info->tx_count);
tx_start(info);
}
spin_unlock_irqrestore(&info->lock,flags);
}
static void flush_buffer(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "flush_buffer"))
return;
DBGINFO(("%s flush_buffer\n", info->device_name));
spin_lock_irqsave(&info->lock,flags);
if (!info->tx_active)
info->tx_count = 0;
spin_unlock_irqrestore(&info->lock,flags);
tty_wakeup(tty);
}
/*
* throttle (stop) transmitter
*/
static void tx_hold(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "tx_hold"))
return;
DBGINFO(("%s tx_hold\n", info->device_name));
spin_lock_irqsave(&info->lock,flags);
if (info->tx_enabled && info->params.mode == MGSL_MODE_ASYNC)
tx_stop(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/*
* release (start) transmitter
*/
static void tx_release(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "tx_release"))
return;
DBGINFO(("%s tx_release\n", info->device_name));
spin_lock_irqsave(&info->lock,flags);
if (!info->tx_active && info->tx_count) {
tx_load(info, info->tx_buf, info->tx_count);
tx_start(info);
}
spin_unlock_irqrestore(&info->lock,flags);
}
/*
* Service an IOCTL request
*
* Arguments
*
* tty pointer to tty instance data
* file pointer to associated file object for device
* cmd IOCTL command code
* arg command argument/context
*
* Return 0 if success, otherwise error code
*/
static int ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct slgt_info *info = tty->driver_data;
struct mgsl_icount cnow; /* kernel counter temps */
struct serial_icounter_struct __user *p_cuser; /* user space */
unsigned long flags;
void __user *argp = (void __user *)arg;
if (sanity_check(info, tty->name, "ioctl"))
return -ENODEV;
DBGINFO(("%s ioctl() cmd=%08X\n", info->device_name, cmd));
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
switch (cmd) {
case MGSL_IOCGPARAMS:
return get_params(info, argp);
case MGSL_IOCSPARAMS:
return set_params(info, argp);
case MGSL_IOCGTXIDLE:
return get_txidle(info, argp);
case MGSL_IOCSTXIDLE:
return set_txidle(info, (int)arg);
case MGSL_IOCTXENABLE:
return tx_enable(info, (int)arg);
case MGSL_IOCRXENABLE:
return rx_enable(info, (int)arg);
case MGSL_IOCTXABORT:
return tx_abort(info);
case MGSL_IOCGSTATS:
return get_stats(info, argp);
case MGSL_IOCWAITEVENT:
return wait_mgsl_event(info, argp);
case TIOCMIWAIT:
return modem_input_wait(info,(int)arg);
case MGSL_IOCGIF:
return get_interface(info, argp);
case MGSL_IOCSIF:
return set_interface(info,(int)arg);
case MGSL_IOCSGPIO:
return set_gpio(info, argp);
case MGSL_IOCGGPIO:
return get_gpio(info, argp);
case MGSL_IOCWAITGPIO:
return wait_gpio(info, argp);
case TIOCGICOUNT:
spin_lock_irqsave(&info->lock,flags);
cnow = info->icount;
spin_unlock_irqrestore(&info->lock,flags);
p_cuser = argp;
if (put_user(cnow.cts, &p_cuser->cts) ||
put_user(cnow.dsr, &p_cuser->dsr) ||
put_user(cnow.rng, &p_cuser->rng) ||
put_user(cnow.dcd, &p_cuser->dcd) ||
put_user(cnow.rx, &p_cuser->rx) ||
put_user(cnow.tx, &p_cuser->tx) ||
put_user(cnow.frame, &p_cuser->frame) ||
put_user(cnow.overrun, &p_cuser->overrun) ||
put_user(cnow.parity, &p_cuser->parity) ||
put_user(cnow.brk, &p_cuser->brk) ||
put_user(cnow.buf_overrun, &p_cuser->buf_overrun))
return -EFAULT;
return 0;
default:
return -ENOIOCTLCMD;
}
return 0;
}
/*
* support for 32 bit ioctl calls on 64 bit systems
*/
#ifdef CONFIG_COMPAT
static long get_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *user_params)
{
struct MGSL_PARAMS32 tmp_params;
DBGINFO(("%s get_params32\n", info->device_name));
tmp_params.mode = (compat_ulong_t)info->params.mode;
tmp_params.loopback = info->params.loopback;
tmp_params.flags = info->params.flags;
tmp_params.encoding = info->params.encoding;
tmp_params.clock_speed = (compat_ulong_t)info->params.clock_speed;
tmp_params.addr_filter = info->params.addr_filter;
tmp_params.crc_type = info->params.crc_type;
tmp_params.preamble_length = info->params.preamble_length;
tmp_params.preamble = info->params.preamble;
tmp_params.data_rate = (compat_ulong_t)info->params.data_rate;
tmp_params.data_bits = info->params.data_bits;
tmp_params.stop_bits = info->params.stop_bits;
tmp_params.parity = info->params.parity;
if (copy_to_user(user_params, &tmp_params, sizeof(struct MGSL_PARAMS32)))
return -EFAULT;
return 0;
}
static long set_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *new_params)
{
struct MGSL_PARAMS32 tmp_params;
DBGINFO(("%s set_params32\n", info->device_name));
if (copy_from_user(&tmp_params, new_params, sizeof(struct MGSL_PARAMS32)))
return -EFAULT;
spin_lock(&info->lock);
info->params.mode = tmp_params.mode;
info->params.loopback = tmp_params.loopback;
info->params.flags = tmp_params.flags;
info->params.encoding = tmp_params.encoding;
info->params.clock_speed = tmp_params.clock_speed;
info->params.addr_filter = tmp_params.addr_filter;
info->params.crc_type = tmp_params.crc_type;
info->params.preamble_length = tmp_params.preamble_length;
info->params.preamble = tmp_params.preamble;
info->params.data_rate = tmp_params.data_rate;
info->params.data_bits = tmp_params.data_bits;
info->params.stop_bits = tmp_params.stop_bits;
info->params.parity = tmp_params.parity;
spin_unlock(&info->lock);
change_params(info);
return 0;
}
static long slgt_compat_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct slgt_info *info = tty->driver_data;
int rc = -ENOIOCTLCMD;
if (sanity_check(info, tty->name, "compat_ioctl"))
return -ENODEV;
DBGINFO(("%s compat_ioctl() cmd=%08X\n", info->device_name, cmd));
switch (cmd) {
case MGSL_IOCSPARAMS32:
rc = set_params32(info, compat_ptr(arg));
break;
case MGSL_IOCGPARAMS32:
rc = get_params32(info, compat_ptr(arg));
break;
case MGSL_IOCGPARAMS:
case MGSL_IOCSPARAMS:
case MGSL_IOCGTXIDLE:
case MGSL_IOCGSTATS:
case MGSL_IOCWAITEVENT:
case MGSL_IOCGIF:
case MGSL_IOCSGPIO:
case MGSL_IOCGGPIO:
case MGSL_IOCWAITGPIO:
case TIOCGICOUNT:
rc = ioctl(tty, file, cmd, (unsigned long)(compat_ptr(arg)));
break;
case MGSL_IOCSTXIDLE:
case MGSL_IOCTXENABLE:
case MGSL_IOCRXENABLE:
case MGSL_IOCTXABORT:
case TIOCMIWAIT:
case MGSL_IOCSIF:
rc = ioctl(tty, file, cmd, arg);
break;
}
DBGINFO(("%s compat_ioctl() cmd=%08X rc=%d\n", info->device_name, cmd, rc));
return rc;
}
#else
#define slgt_compat_ioctl NULL
#endif /* ifdef CONFIG_COMPAT */
/*
* proc fs support
*/
static inline int line_info(char *buf, struct slgt_info *info)
{
char stat_buf[30];
int ret;
unsigned long flags;
ret = sprintf(buf, "%s: IO=%08X IRQ=%d MaxFrameSize=%u\n",
info->device_name, info->phys_reg_addr,
info->irq_level, info->max_frame_size);
/* output current serial signal states */
spin_lock_irqsave(&info->lock,flags);
get_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
stat_buf[0] = 0;
stat_buf[1] = 0;
if (info->signals & SerialSignal_RTS)
strcat(stat_buf, "|RTS");
if (info->signals & SerialSignal_CTS)
strcat(stat_buf, "|CTS");
if (info->signals & SerialSignal_DTR)
strcat(stat_buf, "|DTR");
if (info->signals & SerialSignal_DSR)
strcat(stat_buf, "|DSR");
if (info->signals & SerialSignal_DCD)
strcat(stat_buf, "|CD");
if (info->signals & SerialSignal_RI)
strcat(stat_buf, "|RI");
if (info->params.mode != MGSL_MODE_ASYNC) {
ret += sprintf(buf+ret, "\tHDLC txok:%d rxok:%d",
info->icount.txok, info->icount.rxok);
if (info->icount.txunder)
ret += sprintf(buf+ret, " txunder:%d", info->icount.txunder);
if (info->icount.txabort)
ret += sprintf(buf+ret, " txabort:%d", info->icount.txabort);
if (info->icount.rxshort)
ret += sprintf(buf+ret, " rxshort:%d", info->icount.rxshort);
if (info->icount.rxlong)
ret += sprintf(buf+ret, " rxlong:%d", info->icount.rxlong);
if (info->icount.rxover)
ret += sprintf(buf+ret, " rxover:%d", info->icount.rxover);
if (info->icount.rxcrc)
ret += sprintf(buf+ret, " rxcrc:%d", info->icount.rxcrc);
} else {
ret += sprintf(buf+ret, "\tASYNC tx:%d rx:%d",
info->icount.tx, info->icount.rx);
if (info->icount.frame)
ret += sprintf(buf+ret, " fe:%d", info->icount.frame);
if (info->icount.parity)
ret += sprintf(buf+ret, " pe:%d", info->icount.parity);
if (info->icount.brk)
ret += sprintf(buf+ret, " brk:%d", info->icount.brk);
if (info->icount.overrun)
ret += sprintf(buf+ret, " oe:%d", info->icount.overrun);
}
/* Append serial signal status to end */
ret += sprintf(buf+ret, " %s\n", stat_buf+1);
ret += sprintf(buf+ret, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n",
info->tx_active,info->bh_requested,info->bh_running,
info->pending_bh);
return ret;
}
/* Called to print information about devices
*/
static int read_proc(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int len = 0, l;
off_t begin = 0;
struct slgt_info *info;
len += sprintf(page, "synclink_gt driver:%s\n", driver_version);
info = slgt_device_list;
while( info ) {
l = line_info(page + len, info);
len += l;
if (len+begin > off+count)
goto done;
if (len+begin < off) {
begin += len;
len = 0;
}
info = info->next_device;
}
*eof = 1;
done:
if (off >= len+begin)
return 0;
*start = page + (off-begin);
return ((count < begin+len-off) ? count : begin+len-off);
}
/*
* return count of bytes in transmit buffer
*/
static int chars_in_buffer(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
if (sanity_check(info, tty->name, "chars_in_buffer"))
return 0;
DBGINFO(("%s chars_in_buffer()=%d\n", info->device_name, info->tx_count));
return info->tx_count;
}
/*
* signal remote device to throttle send data (our receive data)
*/
static void throttle(struct tty_struct * tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "throttle"))
return;
DBGINFO(("%s throttle\n", info->device_name));
if (I_IXOFF(tty))
send_xchar(tty, STOP_CHAR(tty));
if (tty->termios->c_cflag & CRTSCTS) {
spin_lock_irqsave(&info->lock,flags);
info->signals &= ~SerialSignal_RTS;
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
}
/*
* signal remote device to stop throttling send data (our receive data)
*/
static void unthrottle(struct tty_struct * tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "unthrottle"))
return;
DBGINFO(("%s unthrottle\n", info->device_name));
if (I_IXOFF(tty)) {
if (info->x_char)
info->x_char = 0;
else
send_xchar(tty, START_CHAR(tty));
}
if (tty->termios->c_cflag & CRTSCTS) {
spin_lock_irqsave(&info->lock,flags);
info->signals |= SerialSignal_RTS;
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
}
/*
* set or clear transmit break condition
* break_state -1=set break condition, 0=clear
*/
static void set_break(struct tty_struct *tty, int break_state)
{
struct slgt_info *info = tty->driver_data;
unsigned short value;
unsigned long flags;
if (sanity_check(info, tty->name, "set_break"))
return;
DBGINFO(("%s set_break(%d)\n", info->device_name, break_state));
spin_lock_irqsave(&info->lock,flags);
value = rd_reg16(info, TCR);
if (break_state == -1)
value |= BIT6;
else
value &= ~BIT6;
wr_reg16(info, TCR, value);
spin_unlock_irqrestore(&info->lock,flags);
}
#if SYNCLINK_GENERIC_HDLC
/**
* called by generic HDLC layer when protocol selected (PPP, frame relay, etc.)
* set encoding and frame check sequence (FCS) options
*
* dev pointer to network device structure
* encoding serial encoding setting
* parity FCS setting
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
struct slgt_info *info = dev_to_port(dev);
unsigned char new_encoding;
unsigned short new_crctype;
/* return error if TTY interface open */
if (info->count)
return -EBUSY;
DBGINFO(("%s hdlcdev_attach\n", info->device_name));
switch (encoding)
{
case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break;
case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break;
case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break;
case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break;
case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break;
default: return -EINVAL;
}
switch (parity)
{
case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break;
case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break;
case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break;
default: return -EINVAL;
}
info->params.encoding = new_encoding;
info->params.crc_type = new_crctype;
/* if network interface up, reprogram hardware */
if (info->netcount)
program_hw(info);
return 0;
}
/**
* called by generic HDLC layer to send frame
*
* skb socket buffer containing HDLC frame
* dev pointer to network device structure
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
DBGINFO(("%s hdlc_xmit\n", dev->name));
/* stop sending until this frame completes */
netif_stop_queue(dev);
/* copy data to device buffers */
info->tx_count = skb->len;
tx_load(info, skb->data, skb->len);
/* update network statistics */
stats->tx_packets++;
stats->tx_bytes += skb->len;
/* done with socket buffer, so free it */
dev_kfree_skb(skb);
/* save start time for transmit timeout detection */
dev->trans_start = jiffies;
/* start hardware transmitter if necessary */
spin_lock_irqsave(&info->lock,flags);
if (!info->tx_active)
tx_start(info);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
/**
* called by network layer when interface enabled
* claim resources and initialize hardware
*
* dev pointer to network device structure
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_open(struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
int rc;
unsigned long flags;
if (!try_module_get(THIS_MODULE))
return -EBUSY;
DBGINFO(("%s hdlcdev_open\n", dev->name));
/* generic HDLC layer open processing */
if ((rc = hdlc_open(dev)))
return rc;
/* arbitrate between network and tty opens */
spin_lock_irqsave(&info->netlock, flags);
if (info->count != 0 || info->netcount != 0) {
DBGINFO(("%s hdlc_open busy\n", dev->name));
spin_unlock_irqrestore(&info->netlock, flags);
return -EBUSY;
}
info->netcount=1;
spin_unlock_irqrestore(&info->netlock, flags);
/* claim resources and init adapter */
if ((rc = startup(info)) != 0) {
spin_lock_irqsave(&info->netlock, flags);
info->netcount=0;
spin_unlock_irqrestore(&info->netlock, flags);
return rc;
}
/* assert DTR and RTS, apply hardware settings */
info->signals |= SerialSignal_RTS + SerialSignal_DTR;
program_hw(info);
/* enable network layer transmit */
dev->trans_start = jiffies;
netif_start_queue(dev);
/* inform generic HDLC layer of current DCD status */
spin_lock_irqsave(&info->lock, flags);
get_signals(info);
spin_unlock_irqrestore(&info->lock, flags);
if (info->signals & SerialSignal_DCD)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
return 0;
}
/**
* called by network layer when interface is disabled
* shutdown hardware and release resources
*
* dev pointer to network device structure
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_close(struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
unsigned long flags;
DBGINFO(("%s hdlcdev_close\n", dev->name));
netif_stop_queue(dev);
/* shutdown adapter and release resources */
shutdown(info);
hdlc_close(dev);
spin_lock_irqsave(&info->netlock, flags);
info->netcount=0;
spin_unlock_irqrestore(&info->netlock, flags);
module_put(THIS_MODULE);
return 0;
}
/**
* called by network layer to process IOCTL call to network device
*
* dev pointer to network device structure
* ifr pointer to network interface request structure
* cmd IOCTL command code
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
const size_t size = sizeof(sync_serial_settings);
sync_serial_settings new_line;
sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
struct slgt_info *info = dev_to_port(dev);
unsigned int flags;
DBGINFO(("%s hdlcdev_ioctl\n", dev->name));
/* return error if TTY interface open */
if (info->count)
return -EBUSY;
if (cmd != SIOCWANDEV)
return hdlc_ioctl(dev, ifr, cmd);
switch(ifr->ifr_settings.type) {
case IF_GET_IFACE: /* return current sync_serial_settings */
ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN);
switch (flags){
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break;
case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break;
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break;
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break;
default: new_line.clock_type = CLOCK_DEFAULT;
}
new_line.clock_rate = info->params.clock_speed;
new_line.loopback = info->params.loopback ? 1:0;
if (copy_to_user(line, &new_line, size))
return -EFAULT;
return 0;
case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */
if(!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&new_line, line, size))
return -EFAULT;
switch (new_line.clock_type)
{
case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break;
case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break;
case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break;
case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break;
case CLOCK_DEFAULT: flags = info->params.flags &
(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break;
default: return -EINVAL;
}
if (new_line.loopback != 0 && new_line.loopback != 1)
return -EINVAL;
info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN);
info->params.flags |= flags;
info->params.loopback = new_line.loopback;
if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG))
info->params.clock_speed = new_line.clock_rate;
else
info->params.clock_speed = 0;
/* if network interface up, reprogram hardware */
if (info->netcount)
program_hw(info);
return 0;
default:
return hdlc_ioctl(dev, ifr, cmd);
}
}
/**
* called by network layer when transmit timeout is detected
*
* dev pointer to network device structure
*/
static void hdlcdev_tx_timeout(struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name));
stats->tx_errors++;
stats->tx_aborted_errors++;
spin_lock_irqsave(&info->lock,flags);
tx_stop(info);
spin_unlock_irqrestore(&info->lock,flags);
netif_wake_queue(dev);
}
/**
* called by device driver when transmit completes
* reenable network layer transmit if stopped
*
* info pointer to device instance information
*/
static void hdlcdev_tx_done(struct slgt_info *info)
{
if (netif_queue_stopped(info->netdev))
netif_wake_queue(info->netdev);
}
/**
* called by device driver when frame received
* pass frame to network layer
*
* info pointer to device instance information
* buf pointer to buffer contianing frame data
* size count of data bytes in buf
*/
static void hdlcdev_rx(struct slgt_info *info, char *buf, int size)
{
struct sk_buff *skb = dev_alloc_skb(size);
struct net_device *dev = info->netdev;
struct net_device_stats *stats = hdlc_stats(dev);
DBGINFO(("%s hdlcdev_rx\n", dev->name));
if (skb == NULL) {
DBGERR(("%s: can't alloc skb, drop packet\n", dev->name));
stats->rx_dropped++;
return;
}
memcpy(skb_put(skb, size),buf,size);
skb->protocol = hdlc_type_trans(skb, info->netdev);
stats->rx_packets++;
stats->rx_bytes += size;
netif_rx(skb);
info->netdev->last_rx = jiffies;
}
/**
* called by device driver when adding device instance
* do generic HDLC initialization
*
* info pointer to device instance information
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_init(struct slgt_info *info)
{
int rc;
struct net_device *dev;
hdlc_device *hdlc;
/* allocate and initialize network and HDLC layer objects */
if (!(dev = alloc_hdlcdev(info))) {
printk(KERN_ERR "%s hdlc device alloc failure\n", info->device_name);
return -ENOMEM;
}
/* for network layer reporting purposes only */
dev->mem_start = info->phys_reg_addr;
dev->mem_end = info->phys_reg_addr + SLGT_REG_SIZE - 1;
dev->irq = info->irq_level;
/* network layer callbacks and settings */
dev->do_ioctl = hdlcdev_ioctl;
dev->open = hdlcdev_open;
dev->stop = hdlcdev_close;
dev->tx_timeout = hdlcdev_tx_timeout;
dev->watchdog_timeo = 10*HZ;
dev->tx_queue_len = 50;
/* generic HDLC layer callbacks and settings */
hdlc = dev_to_hdlc(dev);
hdlc->attach = hdlcdev_attach;
hdlc->xmit = hdlcdev_xmit;
/* register objects with HDLC layer */
if ((rc = register_hdlc_device(dev))) {
printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__);
free_netdev(dev);
return rc;
}
info->netdev = dev;
return 0;
}
/**
* called by device driver when removing device instance
* do generic HDLC cleanup
*
* info pointer to device instance information
*/
static void hdlcdev_exit(struct slgt_info *info)
{
unregister_hdlc_device(info->netdev);
free_netdev(info->netdev);
info->netdev = NULL;
}
#endif /* ifdef CONFIG_HDLC */
/*
* get async data from rx DMA buffers
*/
static void rx_async(struct slgt_info *info)
{
struct tty_struct *tty = info->tty;
struct mgsl_icount *icount = &info->icount;
unsigned int start, end;
unsigned char *p;
unsigned char status;
struct slgt_desc *bufs = info->rbufs;
int i, count;
int chars = 0;
int stat;
unsigned char ch;
start = end = info->rbuf_current;
while(desc_complete(bufs[end])) {
count = desc_count(bufs[end]) - info->rbuf_index;
p = bufs[end].buf + info->rbuf_index;
DBGISR(("%s rx_async count=%d\n", info->device_name, count));
DBGDATA(info, p, count, "rx");
for(i=0 ; i < count; i+=2, p+=2) {
ch = *p;
icount->rx++;
stat = 0;
if ((status = *(p+1) & (BIT1 + BIT0))) {
if (status & BIT1)
icount->parity++;
else if (status & BIT0)
icount->frame++;
/* discard char if tty control flags say so */
if (status & info->ignore_status_mask)
continue;
if (status & BIT1)
stat = TTY_PARITY;
else if (status & BIT0)
stat = TTY_FRAME;
}
if (tty) {
tty_insert_flip_char(tty, ch, stat);
chars++;
}
}
if (i < count) {
/* receive buffer not completed */
info->rbuf_index += i;
mod_timer(&info->rx_timer, jiffies + 1);
break;
}
info->rbuf_index = 0;
free_rbufs(info, end, end);
if (++end == info->rbuf_count)
end = 0;
/* if entire list searched then no frame available */
if (end == start)
break;
}
if (tty && chars)
tty_flip_buffer_push(tty);
}
/*
* return next bottom half action to perform
*/
static int bh_action(struct slgt_info *info)
{
unsigned long flags;
int rc;
spin_lock_irqsave(&info->lock,flags);
if (info->pending_bh & BH_RECEIVE) {
info->pending_bh &= ~BH_RECEIVE;
rc = BH_RECEIVE;
} else if (info->pending_bh & BH_TRANSMIT) {
info->pending_bh &= ~BH_TRANSMIT;
rc = BH_TRANSMIT;
} else if (info->pending_bh & BH_STATUS) {
info->pending_bh &= ~BH_STATUS;
rc = BH_STATUS;
} else {
/* Mark BH routine as complete */
info->bh_running = 0;
info->bh_requested = 0;
rc = 0;
}
spin_unlock_irqrestore(&info->lock,flags);
return rc;
}
/*
* perform bottom half processing
*/
static void bh_handler(struct work_struct *work)
{
struct slgt_info *info = container_of(work, struct slgt_info, task);
int action;
if (!info)
return;
info->bh_running = 1;
while((action = bh_action(info))) {
switch (action) {
case BH_RECEIVE:
DBGBH(("%s bh receive\n", info->device_name));
switch(info->params.mode) {
case MGSL_MODE_ASYNC:
rx_async(info);
break;
case MGSL_MODE_HDLC:
while(rx_get_frame(info));
break;
case MGSL_MODE_RAW:
case MGSL_MODE_MONOSYNC:
case MGSL_MODE_BISYNC:
while(rx_get_buf(info));
break;
}
/* restart receiver if rx DMA buffers exhausted */
if (info->rx_restart)
rx_start(info);
break;
case BH_TRANSMIT:
bh_transmit(info);
break;
case BH_STATUS:
DBGBH(("%s bh status\n", info->device_name));
info->ri_chkcount = 0;
info->dsr_chkcount = 0;
info->dcd_chkcount = 0;
info->cts_chkcount = 0;
break;
default:
DBGBH(("%s unknown action\n", info->device_name));
break;
}
}
DBGBH(("%s bh_handler exit\n", info->device_name));
}
static void bh_transmit(struct slgt_info *info)
{
struct tty_struct *tty = info->tty;
DBGBH(("%s bh_transmit\n", info->device_name));
if (tty)
tty_wakeup(tty);
}
static void dsr_change(struct slgt_info *info, unsigned short status)
{
if (status & BIT3) {
info->signals |= SerialSignal_DSR;
info->input_signal_events.dsr_up++;
} else {
info->signals &= ~SerialSignal_DSR;
info->input_signal_events.dsr_down++;
}
DBGISR(("dsr_change %s signals=%04X\n", info->device_name, info->signals));
if ((info->dsr_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
slgt_irq_off(info, IRQ_DSR);
return;
}
info->icount.dsr++;
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
info->pending_bh |= BH_STATUS;
}
static void cts_change(struct slgt_info *info, unsigned short status)
{
if (status & BIT2) {
info->signals |= SerialSignal_CTS;
info->input_signal_events.cts_up++;
} else {
info->signals &= ~SerialSignal_CTS;
info->input_signal_events.cts_down++;
}
DBGISR(("cts_change %s signals=%04X\n", info->device_name, info->signals));
if ((info->cts_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
slgt_irq_off(info, IRQ_CTS);
return;
}
info->icount.cts++;
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
info->pending_bh |= BH_STATUS;
if (info->flags & ASYNC_CTS_FLOW) {
if (info->tty) {
if (info->tty->hw_stopped) {
if (info->signals & SerialSignal_CTS) {
info->tty->hw_stopped = 0;
info->pending_bh |= BH_TRANSMIT;
return;
}
} else {
if (!(info->signals & SerialSignal_CTS))
info->tty->hw_stopped = 1;
}
}
}
}
static void dcd_change(struct slgt_info *info, unsigned short status)
{
if (status & BIT1) {
info->signals |= SerialSignal_DCD;
info->input_signal_events.dcd_up++;
} else {
info->signals &= ~SerialSignal_DCD;
info->input_signal_events.dcd_down++;
}
DBGISR(("dcd_change %s signals=%04X\n", info->device_name, info->signals));
if ((info->dcd_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
slgt_irq_off(info, IRQ_DCD);
return;
}
info->icount.dcd++;
#if SYNCLINK_GENERIC_HDLC
if (info->netcount) {
if (info->signals & SerialSignal_DCD)
netif_carrier_on(info->netdev);
else
netif_carrier_off(info->netdev);
}
#endif
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
info->pending_bh |= BH_STATUS;
if (info->flags & ASYNC_CHECK_CD) {
if (info->signals & SerialSignal_DCD)
wake_up_interruptible(&info->open_wait);
else {
if (info->tty)
tty_hangup(info->tty);
}
}
}
static void ri_change(struct slgt_info *info, unsigned short status)
{
if (status & BIT0) {
info->signals |= SerialSignal_RI;
info->input_signal_events.ri_up++;
} else {
info->signals &= ~SerialSignal_RI;
info->input_signal_events.ri_down++;
}
DBGISR(("ri_change %s signals=%04X\n", info->device_name, info->signals));
if ((info->ri_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
slgt_irq_off(info, IRQ_RI);
return;
}
info->icount.rng++;
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
info->pending_bh |= BH_STATUS;
}
static void isr_serial(struct slgt_info *info)
{
unsigned short status = rd_reg16(info, SSR);
DBGISR(("%s isr_serial status=%04X\n", info->device_name, status));
wr_reg16(info, SSR, status); /* clear pending */
info->irq_occurred = 1;
if (info->params.mode == MGSL_MODE_ASYNC) {
if (status & IRQ_TXIDLE) {
if (info->tx_count)
isr_txeom(info, status);
}
if ((status & IRQ_RXBREAK) && (status & RXBREAK)) {
info->icount.brk++;
/* process break detection if tty control allows */
if (info->tty) {
if (!(status & info->ignore_status_mask)) {
if (info->read_status_mask & MASK_BREAK) {
tty_insert_flip_char(info->tty, 0, TTY_BREAK);
if (info->flags & ASYNC_SAK)
do_SAK(info->tty);
}
}
}
}
} else {
if (status & (IRQ_TXIDLE + IRQ_TXUNDER))
isr_txeom(info, status);
if (status & IRQ_RXIDLE) {
if (status & RXIDLE)
info->icount.rxidle++;
else
info->icount.exithunt++;
wake_up_interruptible(&info->event_wait_q);
}
if (status & IRQ_RXOVER)
rx_start(info);
}
if (status & IRQ_DSR)
dsr_change(info, status);
if (status & IRQ_CTS)
cts_change(info, status);
if (status & IRQ_DCD)
dcd_change(info, status);
if (status & IRQ_RI)
ri_change(info, status);
}
static void isr_rdma(struct slgt_info *info)
{
unsigned int status = rd_reg32(info, RDCSR);
DBGISR(("%s isr_rdma status=%08x\n", info->device_name, status));
/* RDCSR (rx DMA control/status)
*
* 31..07 reserved
* 06 save status byte to DMA buffer
* 05 error
* 04 eol (end of list)
* 03 eob (end of buffer)
* 02 IRQ enable
* 01 reset
* 00 enable
*/
wr_reg32(info, RDCSR, status); /* clear pending */
if (status & (BIT5 + BIT4)) {
DBGISR(("%s isr_rdma rx_restart=1\n", info->device_name));
info->rx_restart = 1;
}
info->pending_bh |= BH_RECEIVE;
}
static void isr_tdma(struct slgt_info *info)
{
unsigned int status = rd_reg32(info, TDCSR);
DBGISR(("%s isr_tdma status=%08x\n", info->device_name, status));
/* TDCSR (tx DMA control/status)
*
* 31..06 reserved
* 05 error
* 04 eol (end of list)
* 03 eob (end of buffer)
* 02 IRQ enable
* 01 reset
* 00 enable
*/
wr_reg32(info, TDCSR, status); /* clear pending */
if (status & (BIT5 + BIT4 + BIT3)) {
// another transmit buffer has completed
// run bottom half to get more send data from user
info->pending_bh |= BH_TRANSMIT;
}
}
static void isr_txeom(struct slgt_info *info, unsigned short status)
{
DBGISR(("%s txeom status=%04x\n", info->device_name, status));
slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER);
tdma_reset(info);
reset_tbufs(info);
if (status & IRQ_TXUNDER) {
unsigned short val = rd_reg16(info, TCR);
wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */
wr_reg16(info, TCR, val); /* clear reset bit */
}
if (info->tx_active) {
if (info->params.mode != MGSL_MODE_ASYNC) {
if (status & IRQ_TXUNDER)
info->icount.txunder++;
else if (status & IRQ_TXIDLE)
info->icount.txok++;
}
info->tx_active = 0;
info->tx_count = 0;
del_timer(&info->tx_timer);
if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done) {
info->signals &= ~SerialSignal_RTS;
info->drop_rts_on_tx_done = 0;
set_signals(info);
}
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_tx_done(info);
else
#endif
{
if (info->tty && (info->tty->stopped || info->tty->hw_stopped)) {
tx_stop(info);
return;
}
info->pending_bh |= BH_TRANSMIT;
}
}
}
static void isr_gpio(struct slgt_info *info, unsigned int changed, unsigned int state)
{
struct cond_wait *w, *prev;
/* wake processes waiting for specific transitions */
for (w = info->gpio_wait_q, prev = NULL ; w != NULL ; w = w->next) {
if (w->data & changed) {
w->data = state;
wake_up_interruptible(&w->q);
if (prev != NULL)
prev->next = w->next;
else
info->gpio_wait_q = w->next;
} else
prev = w;
}
}
/* interrupt service routine
*
* irq interrupt number
* dev_id device ID supplied during interrupt registration
*/
static irqreturn_t slgt_interrupt(int irq, void *dev_id)
{
struct slgt_info *info;
unsigned int gsr;
unsigned int i;
DBGISR(("slgt_interrupt irq=%d entry\n", irq));
info = dev_id;
if (!info)
return IRQ_NONE;
spin_lock(&info->lock);
while((gsr = rd_reg32(info, GSR) & 0xffffff00)) {
DBGISR(("%s gsr=%08x\n", info->device_name, gsr));
info->irq_occurred = 1;
for(i=0; i < info->port_count ; i++) {
if (info->port_array[i] == NULL)
continue;
if (gsr & (BIT8 << i))
isr_serial(info->port_array[i]);
if (gsr & (BIT16 << (i*2)))
isr_rdma(info->port_array[i]);
if (gsr & (BIT17 << (i*2)))
isr_tdma(info->port_array[i]);
}
}
if (info->gpio_present) {
unsigned int state;
unsigned int changed;
while ((changed = rd_reg32(info, IOSR)) != 0) {
DBGISR(("%s iosr=%08x\n", info->device_name, changed));
/* read latched state of GPIO signals */
state = rd_reg32(info, IOVR);
/* clear pending GPIO interrupt bits */
wr_reg32(info, IOSR, changed);
for (i=0 ; i < info->port_count ; i++) {
if (info->port_array[i] != NULL)
isr_gpio(info->port_array[i], changed, state);
}
}
}
for(i=0; i < info->port_count ; i++) {
struct slgt_info *port = info->port_array[i];
if (port && (port->count || port->netcount) &&
port->pending_bh && !port->bh_running &&
!port->bh_requested) {
DBGISR(("%s bh queued\n", port->device_name));
schedule_work(&port->task);
port->bh_requested = 1;
}
}
spin_unlock(&info->lock);
DBGISR(("slgt_interrupt irq=%d exit\n", irq));
return IRQ_HANDLED;
}
static int startup(struct slgt_info *info)
{
DBGINFO(("%s startup\n", info->device_name));
if (info->flags & ASYNC_INITIALIZED)
return 0;
if (!info->tx_buf) {
info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL);
if (!info->tx_buf) {
DBGERR(("%s can't allocate tx buffer\n", info->device_name));
return -ENOMEM;
}
}
info->pending_bh = 0;
memset(&info->icount, 0, sizeof(info->icount));
/* program hardware for current parameters */
change_params(info);
if (info->tty)
clear_bit(TTY_IO_ERROR, &info->tty->flags);
info->flags |= ASYNC_INITIALIZED;
return 0;
}
/*
* called by close() and hangup() to shutdown hardware
*/
static void shutdown(struct slgt_info *info)
{
unsigned long flags;
if (!(info->flags & ASYNC_INITIALIZED))
return;
DBGINFO(("%s shutdown\n", info->device_name));
/* clear status wait queue because status changes */
/* can't happen after shutting down the hardware */
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
del_timer_sync(&info->tx_timer);
del_timer_sync(&info->rx_timer);
kfree(info->tx_buf);
info->tx_buf = NULL;
spin_lock_irqsave(&info->lock,flags);
tx_stop(info);
rx_stop(info);
slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
if (!info->tty || info->tty->termios->c_cflag & HUPCL) {
info->signals &= ~(SerialSignal_DTR + SerialSignal_RTS);
set_signals(info);
}
flush_cond_wait(&info->gpio_wait_q);
spin_unlock_irqrestore(&info->lock,flags);
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
info->flags &= ~ASYNC_INITIALIZED;
}
static void program_hw(struct slgt_info *info)
{
unsigned long flags;
spin_lock_irqsave(&info->lock,flags);
rx_stop(info);
tx_stop(info);
if (info->params.mode != MGSL_MODE_ASYNC ||
info->netcount)
sync_mode(info);
else
async_mode(info);
set_signals(info);
info->dcd_chkcount = 0;
info->cts_chkcount = 0;
info->ri_chkcount = 0;
info->dsr_chkcount = 0;
slgt_irq_on(info, IRQ_DCD | IRQ_CTS | IRQ_DSR);
get_signals(info);
if (info->netcount ||
(info->tty && info->tty->termios->c_cflag & CREAD))
rx_start(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/*
* reconfigure adapter based on new parameters
*/
static void change_params(struct slgt_info *info)
{
unsigned cflag;
int bits_per_char;
if (!info->tty || !info->tty->termios)
return;
DBGINFO(("%s change_params\n", info->device_name));
cflag = info->tty->termios->c_cflag;
/* if B0 rate (hangup) specified then negate DTR and RTS */
/* otherwise assert DTR and RTS */
if (cflag & CBAUD)
info->signals |= SerialSignal_RTS + SerialSignal_DTR;
else
info->signals &= ~(SerialSignal_RTS + SerialSignal_DTR);
/* byte size and parity */
switch (cflag & CSIZE) {
case CS5: info->params.data_bits = 5; break;
case CS6: info->params.data_bits = 6; break;
case CS7: info->params.data_bits = 7; break;
case CS8: info->params.data_bits = 8; break;
default: info->params.data_bits = 7; break;
}
info->params.stop_bits = (cflag & CSTOPB) ? 2 : 1;
if (cflag & PARENB)
info->params.parity = (cflag & PARODD) ? ASYNC_PARITY_ODD : ASYNC_PARITY_EVEN;
else
info->params.parity = ASYNC_PARITY_NONE;
/* calculate number of jiffies to transmit a full
* FIFO (32 bytes) at specified data rate
*/
bits_per_char = info->params.data_bits +
info->params.stop_bits + 1;
info->params.data_rate = tty_get_baud_rate(info->tty);
if (info->params.data_rate) {
info->timeout = (32*HZ*bits_per_char) /
info->params.data_rate;
}
info->timeout += HZ/50; /* Add .02 seconds of slop */
if (cflag & CRTSCTS)
info->flags |= ASYNC_CTS_FLOW;
else
info->flags &= ~ASYNC_CTS_FLOW;
if (cflag & CLOCAL)
info->flags &= ~ASYNC_CHECK_CD;
else
info->flags |= ASYNC_CHECK_CD;
/* process tty input control flags */
info->read_status_mask = IRQ_RXOVER;
if (I_INPCK(info->tty))
info->read_status_mask |= MASK_PARITY | MASK_FRAMING;
if (I_BRKINT(info->tty) || I_PARMRK(info->tty))
info->read_status_mask |= MASK_BREAK;
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= MASK_PARITY | MASK_FRAMING;
if (I_IGNBRK(info->tty)) {
info->ignore_status_mask |= MASK_BREAK;
/* If ignoring parity and break indicators, ignore
* overruns too. (For real raw support).
*/
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= MASK_OVERRUN;
}
program_hw(info);
}
static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount)
{
DBGINFO(("%s get_stats\n", info->device_name));
if (!user_icount) {
memset(&info->icount, 0, sizeof(info->icount));
} else {
if (copy_to_user(user_icount, &info->icount, sizeof(struct mgsl_icount)))
return -EFAULT;
}
return 0;
}
static int get_params(struct slgt_info *info, MGSL_PARAMS __user *user_params)
{
DBGINFO(("%s get_params\n", info->device_name));
if (copy_to_user(user_params, &info->params, sizeof(MGSL_PARAMS)))
return -EFAULT;
return 0;
}
static int set_params(struct slgt_info *info, MGSL_PARAMS __user *new_params)
{
unsigned long flags;
MGSL_PARAMS tmp_params;
DBGINFO(("%s set_params\n", info->device_name));
if (copy_from_user(&tmp_params, new_params, sizeof(MGSL_PARAMS)))
return -EFAULT;
spin_lock_irqsave(&info->lock, flags);
memcpy(&info->params, &tmp_params, sizeof(MGSL_PARAMS));
spin_unlock_irqrestore(&info->lock, flags);
change_params(info);
return 0;
}
static int get_txidle(struct slgt_info *info, int __user *idle_mode)
{
DBGINFO(("%s get_txidle=%d\n", info->device_name, info->idle_mode));
if (put_user(info->idle_mode, idle_mode))
return -EFAULT;
return 0;
}
static int set_txidle(struct slgt_info *info, int idle_mode)
{
unsigned long flags;
DBGINFO(("%s set_txidle(%d)\n", info->device_name, idle_mode));
spin_lock_irqsave(&info->lock,flags);
info->idle_mode = idle_mode;
if (info->params.mode != MGSL_MODE_ASYNC)
tx_set_idle(info);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
static int tx_enable(struct slgt_info *info, int enable)
{
unsigned long flags;
DBGINFO(("%s tx_enable(%d)\n", info->device_name, enable));
spin_lock_irqsave(&info->lock,flags);
if (enable) {
if (!info->tx_enabled)
tx_start(info);
} else {
if (info->tx_enabled)
tx_stop(info);
}
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
/*
* abort transmit HDLC frame
*/
static int tx_abort(struct slgt_info *info)
{
unsigned long flags;
DBGINFO(("%s tx_abort\n", info->device_name));
spin_lock_irqsave(&info->lock,flags);
tdma_reset(info);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
static int rx_enable(struct slgt_info *info, int enable)
{
unsigned long flags;
DBGINFO(("%s rx_enable(%d)\n", info->device_name, enable));
spin_lock_irqsave(&info->lock,flags);
if (enable) {
if (!info->rx_enabled)
rx_start(info);
else if (enable == 2) {
/* force hunt mode (write 1 to RCR[3]) */
wr_reg16(info, RCR, rd_reg16(info, RCR) | BIT3);
}
} else {
if (info->rx_enabled)
rx_stop(info);
}
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
/*
* wait for specified event to occur
*/
static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr)
{
unsigned long flags;
int s;
int rc=0;
struct mgsl_icount cprev, cnow;
int events;
int mask;
struct _input_signal_events oldsigs, newsigs;
DECLARE_WAITQUEUE(wait, current);
if (get_user(mask, mask_ptr))
return -EFAULT;
DBGINFO(("%s wait_mgsl_event(%d)\n", info->device_name, mask));
spin_lock_irqsave(&info->lock,flags);
/* return immediately if state matches requested events */
get_signals(info);
s = info->signals;
events = mask &
( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) +
((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) +
((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) +
((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) );
if (events) {
spin_unlock_irqrestore(&info->lock,flags);
goto exit;
}
/* save current irq counts */
cprev = info->icount;
oldsigs = info->input_signal_events;
/* enable hunt and idle irqs if needed */
if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) {
unsigned short val = rd_reg16(info, SCR);
if (!(val & IRQ_RXIDLE))
wr_reg16(info, SCR, (unsigned short)(val | IRQ_RXIDLE));
}
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&info->event_wait_q, &wait);
spin_unlock_irqrestore(&info->lock,flags);
for(;;) {
schedule();
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
/* get current irq counts */
spin_lock_irqsave(&info->lock,flags);
cnow = info->icount;
newsigs = info->input_signal_events;
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->lock,flags);
/* if no change, wait aborted for some reason */
if (newsigs.dsr_up == oldsigs.dsr_up &&
newsigs.dsr_down == oldsigs.dsr_down &&
newsigs.dcd_up == oldsigs.dcd_up &&
newsigs.dcd_down == oldsigs.dcd_down &&
newsigs.cts_up == oldsigs.cts_up &&
newsigs.cts_down == oldsigs.cts_down &&
newsigs.ri_up == oldsigs.ri_up &&
newsigs.ri_down == oldsigs.ri_down &&
cnow.exithunt == cprev.exithunt &&
cnow.rxidle == cprev.rxidle) {
rc = -EIO;
break;
}
events = mask &
( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) +
(newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) +
(newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) +
(newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) +
(newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) +
(newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) +
(newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) +
(newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) +
(cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) +
(cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) );
if (events)
break;
cprev = cnow;
oldsigs = newsigs;
}
remove_wait_queue(&info->event_wait_q, &wait);
set_current_state(TASK_RUNNING);
if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) {
spin_lock_irqsave(&info->lock,flags);
if (!waitqueue_active(&info->event_wait_q)) {
/* disable enable exit hunt mode/idle rcvd IRQs */
wr_reg16(info, SCR,
(unsigned short)(rd_reg16(info, SCR) & ~IRQ_RXIDLE));
}
spin_unlock_irqrestore(&info->lock,flags);
}
exit:
if (rc == 0)
rc = put_user(events, mask_ptr);
return rc;
}
static int get_interface(struct slgt_info *info, int __user *if_mode)
{
DBGINFO(("%s get_interface=%x\n", info->device_name, info->if_mode));
if (put_user(info->if_mode, if_mode))
return -EFAULT;
return 0;
}
static int set_interface(struct slgt_info *info, int if_mode)
{
unsigned long flags;
unsigned short val;
DBGINFO(("%s set_interface=%x)\n", info->device_name, if_mode));
spin_lock_irqsave(&info->lock,flags);
info->if_mode = if_mode;
msc_set_vcr(info);
/* TCR (tx control) 07 1=RTS driver control */
val = rd_reg16(info, TCR);
if (info->if_mode & MGSL_INTERFACE_RTS_EN)
val |= BIT7;
else
val &= ~BIT7;
wr_reg16(info, TCR, val);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
/*
* set general purpose IO pin state and direction
*
* user_gpio fields:
* state each bit indicates a pin state
* smask set bit indicates pin state to set
* dir each bit indicates a pin direction (0=input, 1=output)
* dmask set bit indicates pin direction to set
*/
static int set_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
{
unsigned long flags;
struct gpio_desc gpio;
__u32 data;
if (!info->gpio_present)
return -EINVAL;
if (copy_from_user(&gpio, user_gpio, sizeof(gpio)))
return -EFAULT;
DBGINFO(("%s set_gpio state=%08x smask=%08x dir=%08x dmask=%08x\n",
info->device_name, gpio.state, gpio.smask,
gpio.dir, gpio.dmask));
spin_lock_irqsave(&info->lock,flags);
if (gpio.dmask) {
data = rd_reg32(info, IODR);
data |= gpio.dmask & gpio.dir;
data &= ~(gpio.dmask & ~gpio.dir);
wr_reg32(info, IODR, data);
}
if (gpio.smask) {
data = rd_reg32(info, IOVR);
data |= gpio.smask & gpio.state;
data &= ~(gpio.smask & ~gpio.state);
wr_reg32(info, IOVR, data);
}
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
/*
* get general purpose IO pin state and direction
*/
static int get_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
{
struct gpio_desc gpio;
if (!info->gpio_present)
return -EINVAL;
gpio.state = rd_reg32(info, IOVR);
gpio.smask = 0xffffffff;
gpio.dir = rd_reg32(info, IODR);
gpio.dmask = 0xffffffff;
if (copy_to_user(user_gpio, &gpio, sizeof(gpio)))
return -EFAULT;
DBGINFO(("%s get_gpio state=%08x dir=%08x\n",
info->device_name, gpio.state, gpio.dir));
return 0;
}
/*
* conditional wait facility
*/
static void init_cond_wait(struct cond_wait *w, unsigned int data)
{
init_waitqueue_head(&w->q);
init_waitqueue_entry(&w->wait, current);
w->data = data;
}
static void add_cond_wait(struct cond_wait **head, struct cond_wait *w)
{
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&w->q, &w->wait);
w->next = *head;
*head = w;
}
static void remove_cond_wait(struct cond_wait **head, struct cond_wait *cw)
{
struct cond_wait *w, *prev;
remove_wait_queue(&cw->q, &cw->wait);
set_current_state(TASK_RUNNING);
for (w = *head, prev = NULL ; w != NULL ; prev = w, w = w->next) {
if (w == cw) {
if (prev != NULL)
prev->next = w->next;
else
*head = w->next;
break;
}
}
}
static void flush_cond_wait(struct cond_wait **head)
{
while (*head != NULL) {
wake_up_interruptible(&(*head)->q);
*head = (*head)->next;
}
}
/*
* wait for general purpose I/O pin(s) to enter specified state
*
* user_gpio fields:
* state - bit indicates target pin state
* smask - set bit indicates watched pin
*
* The wait ends when at least one watched pin enters the specified
* state. When 0 (no error) is returned, user_gpio->state is set to the
* state of all GPIO pins when the wait ends.
*
* Note: Each pin may be a dedicated input, dedicated output, or
* configurable input/output. The number and configuration of pins
* varies with the specific adapter model. Only input pins (dedicated
* or configured) can be monitored with this function.
*/
static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
{
unsigned long flags;
int rc = 0;
struct gpio_desc gpio;
struct cond_wait wait;
u32 state;
if (!info->gpio_present)
return -EINVAL;
if (copy_from_user(&gpio, user_gpio, sizeof(gpio)))
return -EFAULT;
DBGINFO(("%s wait_gpio() state=%08x smask=%08x\n",
info->device_name, gpio.state, gpio.smask));
/* ignore output pins identified by set IODR bit */
if ((gpio.smask &= ~rd_reg32(info, IODR)) == 0)
return -EINVAL;
init_cond_wait(&wait, gpio.smask);
spin_lock_irqsave(&info->lock, flags);
/* enable interrupts for watched pins */
wr_reg32(info, IOER, rd_reg32(info, IOER) | gpio.smask);
/* get current pin states */
state = rd_reg32(info, IOVR);
if (gpio.smask & ~(state ^ gpio.state)) {
/* already in target state */
gpio.state = state;
} else {
/* wait for target state */
add_cond_wait(&info->gpio_wait_q, &wait);
spin_unlock_irqrestore(&info->lock, flags);
schedule();
if (signal_pending(current))
rc = -ERESTARTSYS;
else
gpio.state = wait.data;
spin_lock_irqsave(&info->lock, flags);
remove_cond_wait(&info->gpio_wait_q, &wait);
}
/* disable all GPIO interrupts if no waiting processes */
if (info->gpio_wait_q == NULL)
wr_reg32(info, IOER, 0);
spin_unlock_irqrestore(&info->lock,flags);
if ((rc == 0) && copy_to_user(user_gpio, &gpio, sizeof(gpio)))
rc = -EFAULT;
return rc;
}
static int modem_input_wait(struct slgt_info *info,int arg)
{
unsigned long flags;
int rc;
struct mgsl_icount cprev, cnow;
DECLARE_WAITQUEUE(wait, current);
/* save current irq counts */
spin_lock_irqsave(&info->lock,flags);
cprev = info->icount;
add_wait_queue(&info->status_event_wait_q, &wait);
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->lock,flags);
for(;;) {
schedule();
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
/* get new irq counts */
spin_lock_irqsave(&info->lock,flags);
cnow = info->icount;
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->lock,flags);
/* if no change, wait aborted for some reason */
if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) {
rc = -EIO;
break;
}
/* check for change in caller specified modem input */
if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) ||
(arg & TIOCM_DSR && cnow.dsr != cprev.dsr) ||
(arg & TIOCM_CD && cnow.dcd != cprev.dcd) ||
(arg & TIOCM_CTS && cnow.cts != cprev.cts)) {
rc = 0;
break;
}
cprev = cnow;
}
remove_wait_queue(&info->status_event_wait_q, &wait);
set_current_state(TASK_RUNNING);
return rc;
}
/*
* return state of serial control and status signals
*/
static int tiocmget(struct tty_struct *tty, struct file *file)
{
struct slgt_info *info = tty->driver_data;
unsigned int result;
unsigned long flags;
spin_lock_irqsave(&info->lock,flags);
get_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
result = ((info->signals & SerialSignal_RTS) ? TIOCM_RTS:0) +
((info->signals & SerialSignal_DTR) ? TIOCM_DTR:0) +
((info->signals & SerialSignal_DCD) ? TIOCM_CAR:0) +
((info->signals & SerialSignal_RI) ? TIOCM_RNG:0) +
((info->signals & SerialSignal_DSR) ? TIOCM_DSR:0) +
((info->signals & SerialSignal_CTS) ? TIOCM_CTS:0);
DBGINFO(("%s tiocmget value=%08X\n", info->device_name, result));
return result;
}
/*
* set modem control signals (DTR/RTS)
*
* cmd signal command: TIOCMBIS = set bit TIOCMBIC = clear bit
* TIOCMSET = set/clear signal values
* value bit mask for command
*/
static int tiocmset(struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
DBGINFO(("%s tiocmset(%x,%x)\n", info->device_name, set, clear));
if (set & TIOCM_RTS)
info->signals |= SerialSignal_RTS;
if (set & TIOCM_DTR)
info->signals |= SerialSignal_DTR;
if (clear & TIOCM_RTS)
info->signals &= ~SerialSignal_RTS;
if (clear & TIOCM_DTR)
info->signals &= ~SerialSignal_DTR;
spin_lock_irqsave(&info->lock,flags);
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
/*
* block current process until the device is ready to open
*/
static int block_til_ready(struct tty_struct *tty, struct file *filp,
struct slgt_info *info)
{
DECLARE_WAITQUEUE(wait, current);
int retval;
int do_clocal = 0, extra_count = 0;
unsigned long flags;
DBGINFO(("%s block_til_ready\n", tty->driver->name));
if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){
/* nonblock mode is set or port is not enabled */
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
if (tty->termios->c_cflag & CLOCAL)
do_clocal = 1;
/* Wait for carrier detect and the line to become
* free (i.e., not in use by the callout). While we are in
* this loop, info->count is dropped by one, so that
* close() knows when to free things. We restore it upon
* exit, either normal or abnormal.
*/
retval = 0;
add_wait_queue(&info->open_wait, &wait);
spin_lock_irqsave(&info->lock, flags);
if (!tty_hung_up_p(filp)) {
extra_count = 1;
info->count--;
}
spin_unlock_irqrestore(&info->lock, flags);
info->blocked_open++;
while (1) {
if ((tty->termios->c_cflag & CBAUD)) {
spin_lock_irqsave(&info->lock,flags);
info->signals |= SerialSignal_RTS + SerialSignal_DTR;
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
set_current_state(TASK_INTERRUPTIBLE);
if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)){
retval = (info->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS;
break;
}
spin_lock_irqsave(&info->lock,flags);
get_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
if (!(info->flags & ASYNC_CLOSING) &&
(do_clocal || (info->signals & SerialSignal_DCD)) ) {
break;
}
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
DBGINFO(("%s block_til_ready wait\n", tty->driver->name));
schedule();
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&info->open_wait, &wait);
if (extra_count)
info->count++;
info->blocked_open--;
if (!retval)
info->flags |= ASYNC_NORMAL_ACTIVE;
DBGINFO(("%s block_til_ready ready, rc=%d\n", tty->driver->name, retval));
return retval;
}
static int alloc_tmp_rbuf(struct slgt_info *info)
{
info->tmp_rbuf = kmalloc(info->max_frame_size + 5, GFP_KERNEL);
if (info->tmp_rbuf == NULL)
return -ENOMEM;
return 0;
}
static void free_tmp_rbuf(struct slgt_info *info)
{
kfree(info->tmp_rbuf);
info->tmp_rbuf = NULL;
}
/*
* allocate DMA descriptor lists.
*/
static int alloc_desc(struct slgt_info *info)
{
unsigned int i;
unsigned int pbufs;
/* allocate memory to hold descriptor lists */
info->bufs = pci_alloc_consistent(info->pdev, DESC_LIST_SIZE, &info->bufs_dma_addr);
if (info->bufs == NULL)
return -ENOMEM;
memset(info->bufs, 0, DESC_LIST_SIZE);
info->rbufs = (struct slgt_desc*)info->bufs;
info->tbufs = ((struct slgt_desc*)info->bufs) + info->rbuf_count;
pbufs = (unsigned int)info->bufs_dma_addr;
/*
* Build circular lists of descriptors
*/
for (i=0; i < info->rbuf_count; i++) {
/* physical address of this descriptor */
info->rbufs[i].pdesc = pbufs + (i * sizeof(struct slgt_desc));
/* physical address of next descriptor */
if (i == info->rbuf_count - 1)
info->rbufs[i].next = cpu_to_le32(pbufs);
else
info->rbufs[i].next = cpu_to_le32(pbufs + ((i+1) * sizeof(struct slgt_desc)));
set_desc_count(info->rbufs[i], DMABUFSIZE);
}
for (i=0; i < info->tbuf_count; i++) {
/* physical address of this descriptor */
info->tbufs[i].pdesc = pbufs + ((info->rbuf_count + i) * sizeof(struct slgt_desc));
/* physical address of next descriptor */
if (i == info->tbuf_count - 1)
info->tbufs[i].next = cpu_to_le32(pbufs + info->rbuf_count * sizeof(struct slgt_desc));
else
info->tbufs[i].next = cpu_to_le32(pbufs + ((info->rbuf_count + i + 1) * sizeof(struct slgt_desc)));
}
return 0;
}
static void free_desc(struct slgt_info *info)
{
if (info->bufs != NULL) {
pci_free_consistent(info->pdev, DESC_LIST_SIZE, info->bufs, info->bufs_dma_addr);
info->bufs = NULL;
info->rbufs = NULL;
info->tbufs = NULL;
}
}
static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count)
{
int i;
for (i=0; i < count; i++) {
if ((bufs[i].buf = pci_alloc_consistent(info->pdev, DMABUFSIZE, &bufs[i].buf_dma_addr)) == NULL)
return -ENOMEM;
bufs[i].pbuf = cpu_to_le32((unsigned int)bufs[i].buf_dma_addr);
}
return 0;
}
static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count)
{
int i;
for (i=0; i < count; i++) {
if (bufs[i].buf == NULL)
continue;
pci_free_consistent(info->pdev, DMABUFSIZE, bufs[i].buf, bufs[i].buf_dma_addr);
bufs[i].buf = NULL;
}
}
static int alloc_dma_bufs(struct slgt_info *info)
{
info->rbuf_count = 32;
info->tbuf_count = 32;
if (alloc_desc(info) < 0 ||
alloc_bufs(info, info->rbufs, info->rbuf_count) < 0 ||
alloc_bufs(info, info->tbufs, info->tbuf_count) < 0 ||
alloc_tmp_rbuf(info) < 0) {
DBGERR(("%s DMA buffer alloc fail\n", info->device_name));
return -ENOMEM;
}
reset_rbufs(info);
return 0;
}
static void free_dma_bufs(struct slgt_info *info)
{
if (info->bufs) {
free_bufs(info, info->rbufs, info->rbuf_count);
free_bufs(info, info->tbufs, info->tbuf_count);
free_desc(info);
}
free_tmp_rbuf(info);
}
static int claim_resources(struct slgt_info *info)
{
if (request_mem_region(info->phys_reg_addr, SLGT_REG_SIZE, "synclink_gt") == NULL) {
DBGERR(("%s reg addr conflict, addr=%08X\n",
info->device_name, info->phys_reg_addr));
info->init_error = DiagStatus_AddressConflict;
goto errout;
}
else
info->reg_addr_requested = 1;
info->reg_addr = ioremap(info->phys_reg_addr, SLGT_REG_SIZE);
if (!info->reg_addr) {
DBGERR(("%s cant map device registers, addr=%08X\n",
info->device_name, info->phys_reg_addr));
info->init_error = DiagStatus_CantAssignPciResources;
goto errout;
}
return 0;
errout:
release_resources(info);
return -ENODEV;
}
static void release_resources(struct slgt_info *info)
{
if (info->irq_requested) {
free_irq(info->irq_level, info);
info->irq_requested = 0;
}
if (info->reg_addr_requested) {
release_mem_region(info->phys_reg_addr, SLGT_REG_SIZE);
info->reg_addr_requested = 0;
}
if (info->reg_addr) {
iounmap(info->reg_addr);
info->reg_addr = NULL;
}
}
/* Add the specified device instance data structure to the
* global linked list of devices and increment the device count.
*/
static void add_device(struct slgt_info *info)
{
char *devstr;
info->next_device = NULL;
info->line = slgt_device_count;
sprintf(info->device_name, "%s%d", tty_dev_prefix, info->line);
if (info->line < MAX_DEVICES) {
if (maxframe[info->line])
info->max_frame_size = maxframe[info->line];
info->dosyncppp = dosyncppp[info->line];
}
slgt_device_count++;
if (!slgt_device_list)
slgt_device_list = info;
else {
struct slgt_info *current_dev = slgt_device_list;
while(current_dev->next_device)
current_dev = current_dev->next_device;
current_dev->next_device = info;
}
if (info->max_frame_size < 4096)
info->max_frame_size = 4096;
else if (info->max_frame_size > 65535)
info->max_frame_size = 65535;
switch(info->pdev->device) {
case SYNCLINK_GT_DEVICE_ID:
devstr = "GT";
break;
case SYNCLINK_GT2_DEVICE_ID:
devstr = "GT2";
break;
case SYNCLINK_GT4_DEVICE_ID:
devstr = "GT4";
break;
case SYNCLINK_AC_DEVICE_ID:
devstr = "AC";
info->params.mode = MGSL_MODE_ASYNC;
break;
default:
devstr = "(unknown model)";
}
printk("SyncLink %s %s IO=%08x IRQ=%d MaxFrameSize=%u\n",
devstr, info->device_name, info->phys_reg_addr,
info->irq_level, info->max_frame_size);
#if SYNCLINK_GENERIC_HDLC
hdlcdev_init(info);
#endif
}
/*
* allocate device instance structure, return NULL on failure
*/
static struct slgt_info *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev)
{
struct slgt_info *info;
info = kzalloc(sizeof(struct slgt_info), GFP_KERNEL);
if (!info) {
DBGERR(("%s device alloc failed adapter=%d port=%d\n",
driver_name, adapter_num, port_num));
} else {
info->magic = MGSL_MAGIC;
INIT_WORK(&info->task, bh_handler);
info->max_frame_size = 4096;
info->raw_rx_size = DMABUFSIZE;
info->close_delay = 5*HZ/10;
info->closing_wait = 30*HZ;
init_waitqueue_head(&info->open_wait);
init_waitqueue_head(&info->close_wait);
init_waitqueue_head(&info->status_event_wait_q);
init_waitqueue_head(&info->event_wait_q);
spin_lock_init(&info->netlock);
memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS));
info->idle_mode = HDLC_TXIDLE_FLAGS;
info->adapter_num = adapter_num;
info->port_num = port_num;
setup_timer(&info->tx_timer, tx_timeout, (unsigned long)info);
setup_timer(&info->rx_timer, rx_timeout, (unsigned long)info);
/* Copy configuration info to device instance data */
info->pdev = pdev;
info->irq_level = pdev->irq;
info->phys_reg_addr = pci_resource_start(pdev,0);
info->bus_type = MGSL_BUS_TYPE_PCI;
info->irq_flags = IRQF_SHARED;
info->init_error = -1; /* assume error, set to 0 on successful init */
}
return info;
}
static void device_init(int adapter_num, struct pci_dev *pdev)
{
struct slgt_info *port_array[SLGT_MAX_PORTS];
int i;
int port_count = 1;
if (pdev->device == SYNCLINK_GT2_DEVICE_ID)
port_count = 2;
else if (pdev->device == SYNCLINK_GT4_DEVICE_ID)
port_count = 4;
/* allocate device instances for all ports */
for (i=0; i < port_count; ++i) {
port_array[i] = alloc_dev(adapter_num, i, pdev);
if (port_array[i] == NULL) {
for (--i; i >= 0; --i)
kfree(port_array[i]);
return;
}
}
/* give copy of port_array to all ports and add to device list */
for (i=0; i < port_count; ++i) {
memcpy(port_array[i]->port_array, port_array, sizeof(port_array));
add_device(port_array[i]);
port_array[i]->port_count = port_count;
spin_lock_init(&port_array[i]->lock);
}
/* Allocate and claim adapter resources */
if (!claim_resources(port_array[0])) {
alloc_dma_bufs(port_array[0]);
/* copy resource information from first port to others */
for (i = 1; i < port_count; ++i) {
port_array[i]->lock = port_array[0]->lock;
port_array[i]->irq_level = port_array[0]->irq_level;
port_array[i]->reg_addr = port_array[0]->reg_addr;
alloc_dma_bufs(port_array[i]);
}
if (request_irq(port_array[0]->irq_level,
slgt_interrupt,
port_array[0]->irq_flags,
port_array[0]->device_name,
port_array[0]) < 0) {
DBGERR(("%s request_irq failed IRQ=%d\n",
port_array[0]->device_name,
port_array[0]->irq_level));
} else {
port_array[0]->irq_requested = 1;
adapter_test(port_array[0]);
for (i=1 ; i < port_count ; i++) {
port_array[i]->init_error = port_array[0]->init_error;
port_array[i]->gpio_present = port_array[0]->gpio_present;
}
}
}
for (i=0; i < port_count; ++i)
tty_register_device(serial_driver, port_array[i]->line, &(port_array[i]->pdev->dev));
}
static int __devinit init_one(struct pci_dev *dev,
const struct pci_device_id *ent)
{
if (pci_enable_device(dev)) {
printk("error enabling pci device %p\n", dev);
return -EIO;
}
pci_set_master(dev);
device_init(slgt_device_count, dev);
return 0;
}
static void __devexit remove_one(struct pci_dev *dev)
{
}
static const struct tty_operations ops = {
.open = open,
.close = close,
.write = write,
.put_char = put_char,
.flush_chars = flush_chars,
.write_room = write_room,
.chars_in_buffer = chars_in_buffer,
.flush_buffer = flush_buffer,
.ioctl = ioctl,
.compat_ioctl = slgt_compat_ioctl,
.throttle = throttle,
.unthrottle = unthrottle,
.send_xchar = send_xchar,
.break_ctl = set_break,
.wait_until_sent = wait_until_sent,
.read_proc = read_proc,
.set_termios = set_termios,
.stop = tx_hold,
.start = tx_release,
.hangup = hangup,
.tiocmget = tiocmget,
.tiocmset = tiocmset,
};
static void slgt_cleanup(void)
{
int rc;
struct slgt_info *info;
struct slgt_info *tmp;
printk("unload %s %s\n", driver_name, driver_version);
if (serial_driver) {
for (info=slgt_device_list ; info != NULL ; info=info->next_device)
tty_unregister_device(serial_driver, info->line);
if ((rc = tty_unregister_driver(serial_driver)))
DBGERR(("tty_unregister_driver error=%d\n", rc));
put_tty_driver(serial_driver);
}
/* reset devices */
info = slgt_device_list;
while(info) {
reset_port(info);
info = info->next_device;
}
/* release devices */
info = slgt_device_list;
while(info) {
#if SYNCLINK_GENERIC_HDLC
hdlcdev_exit(info);
#endif
free_dma_bufs(info);
free_tmp_rbuf(info);
if (info->port_num == 0)
release_resources(info);
tmp = info;
info = info->next_device;
kfree(tmp);
}
if (pci_registered)
pci_unregister_driver(&pci_driver);
}
/*
* Driver initialization entry point.
*/
static int __init slgt_init(void)
{
int rc;
printk("%s %s\n", driver_name, driver_version);
serial_driver = alloc_tty_driver(MAX_DEVICES);
if (!serial_driver) {
printk("%s can't allocate tty driver\n", driver_name);
return -ENOMEM;
}
/* Initialize the tty_driver structure */
serial_driver->owner = THIS_MODULE;
serial_driver->driver_name = tty_driver_name;
serial_driver->name = tty_dev_prefix;
serial_driver->major = ttymajor;
serial_driver->minor_start = 64;
serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
serial_driver->subtype = SERIAL_TYPE_NORMAL;
serial_driver->init_termios = tty_std_termios;
serial_driver->init_termios.c_cflag =
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
serial_driver->init_termios.c_ispeed = 9600;
serial_driver->init_termios.c_ospeed = 9600;
serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
tty_set_operations(serial_driver, &ops);
if ((rc = tty_register_driver(serial_driver)) < 0) {
DBGERR(("%s can't register serial driver\n", driver_name));
put_tty_driver(serial_driver);
serial_driver = NULL;
goto error;
}
printk("%s %s, tty major#%d\n",
driver_name, driver_version,
serial_driver->major);
slgt_device_count = 0;
if ((rc = pci_register_driver(&pci_driver)) < 0) {
printk("%s pci_register_driver error=%d\n", driver_name, rc);
goto error;
}
pci_registered = 1;
if (!slgt_device_list)
printk("%s no devices found\n",driver_name);
return 0;
error:
slgt_cleanup();
return rc;
}
static void __exit slgt_exit(void)
{
slgt_cleanup();
}
module_init(slgt_init);
module_exit(slgt_exit);
/*
* register access routines
*/
#define CALC_REGADDR() \
unsigned long reg_addr = ((unsigned long)info->reg_addr) + addr; \
if (addr >= 0x80) \
reg_addr += (info->port_num) * 32;
static __u8 rd_reg8(struct slgt_info *info, unsigned int addr)
{
CALC_REGADDR();
return readb((void __iomem *)reg_addr);
}
static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value)
{
CALC_REGADDR();
writeb(value, (void __iomem *)reg_addr);
}
static __u16 rd_reg16(struct slgt_info *info, unsigned int addr)
{
CALC_REGADDR();
return readw((void __iomem *)reg_addr);
}
static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value)
{
CALC_REGADDR();
writew(value, (void __iomem *)reg_addr);
}
static __u32 rd_reg32(struct slgt_info *info, unsigned int addr)
{
CALC_REGADDR();
return readl((void __iomem *)reg_addr);
}
static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value)
{
CALC_REGADDR();
writel(value, (void __iomem *)reg_addr);
}
static void rdma_reset(struct slgt_info *info)
{
unsigned int i;
/* set reset bit */
wr_reg32(info, RDCSR, BIT1);
/* wait for enable bit cleared */
for(i=0 ; i < 1000 ; i++)
if (!(rd_reg32(info, RDCSR) & BIT0))
break;
}
static void tdma_reset(struct slgt_info *info)
{
unsigned int i;
/* set reset bit */
wr_reg32(info, TDCSR, BIT1);
/* wait for enable bit cleared */
for(i=0 ; i < 1000 ; i++)
if (!(rd_reg32(info, TDCSR) & BIT0))
break;
}
/*
* enable internal loopback
* TxCLK and RxCLK are generated from BRG
* and TxD is looped back to RxD internally.
*/
static void enable_loopback(struct slgt_info *info)
{
/* SCR (serial control) BIT2=looopback enable */
wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT2));
if (info->params.mode != MGSL_MODE_ASYNC) {
/* CCR (clock control)
* 07..05 tx clock source (010 = BRG)
* 04..02 rx clock source (010 = BRG)
* 01 auxclk enable (0 = disable)
* 00 BRG enable (1 = enable)
*
* 0100 1001
*/
wr_reg8(info, CCR, 0x49);
/* set speed if available, otherwise use default */
if (info->params.clock_speed)
set_rate(info, info->params.clock_speed);
else
set_rate(info, 3686400);
}
}
/*
* set baud rate generator to specified rate
*/
static void set_rate(struct slgt_info *info, u32 rate)
{
unsigned int div;
static unsigned int osc = 14745600;
/* div = osc/rate - 1
*
* Round div up if osc/rate is not integer to
* force to next slowest rate.
*/
if (rate) {
div = osc/rate;
if (!(osc % rate) && div)
div--;
wr_reg16(info, BDR, (unsigned short)div);
}
}
static void rx_stop(struct slgt_info *info)
{
unsigned short val;
/* disable and reset receiver */
val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */
wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */
wr_reg16(info, RCR, val); /* clear reset bit */
slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA + IRQ_RXIDLE);
/* clear pending rx interrupts */
wr_reg16(info, SSR, IRQ_RXIDLE + IRQ_RXOVER);
rdma_reset(info);
info->rx_enabled = 0;
info->rx_restart = 0;
}
static void rx_start(struct slgt_info *info)
{
unsigned short val;
slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA);
/* clear pending rx overrun IRQ */
wr_reg16(info, SSR, IRQ_RXOVER);
/* reset and disable receiver */
val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */
wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */
wr_reg16(info, RCR, val); /* clear reset bit */
rdma_reset(info);
reset_rbufs(info);
/* set 1st descriptor address */
wr_reg32(info, RDDAR, info->rbufs[0].pdesc);
if (info->params.mode != MGSL_MODE_ASYNC) {
/* enable rx DMA and DMA interrupt */
wr_reg32(info, RDCSR, (BIT2 + BIT0));
} else {
/* enable saving of rx status, rx DMA and DMA interrupt */
wr_reg32(info, RDCSR, (BIT6 + BIT2 + BIT0));
}
slgt_irq_on(info, IRQ_RXOVER);
/* enable receiver */
wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | BIT1));
info->rx_restart = 0;
info->rx_enabled = 1;
}
static void tx_start(struct slgt_info *info)
{
if (!info->tx_enabled) {
wr_reg16(info, TCR,
(unsigned short)((rd_reg16(info, TCR) | BIT1) & ~BIT2));
info->tx_enabled = TRUE;
}
if (info->tx_count) {
info->drop_rts_on_tx_done = 0;
if (info->params.mode != MGSL_MODE_ASYNC) {
if (info->params.flags & HDLC_FLAG_AUTO_RTS) {
get_signals(info);
if (!(info->signals & SerialSignal_RTS)) {
info->signals |= SerialSignal_RTS;
set_signals(info);
info->drop_rts_on_tx_done = 1;
}
}
slgt_irq_off(info, IRQ_TXDATA);
slgt_irq_on(info, IRQ_TXUNDER + IRQ_TXIDLE);
/* clear tx idle and underrun status bits */
wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER));
if (info->params.mode == MGSL_MODE_HDLC)
mod_timer(&info->tx_timer, jiffies +
msecs_to_jiffies(5000));
} else {
slgt_irq_off(info, IRQ_TXDATA);
slgt_irq_on(info, IRQ_TXIDLE);
/* clear tx idle status bit */
wr_reg16(info, SSR, IRQ_TXIDLE);
}
tdma_start(info);
info->tx_active = 1;
}
}
/*
* start transmit DMA if inactive and there are unsent buffers
*/
static void tdma_start(struct slgt_info *info)
{
unsigned int i;
if (rd_reg32(info, TDCSR) & BIT0)
return;
/* transmit DMA inactive, check for unsent buffers */
i = info->tbuf_start;
while (!desc_count(info->tbufs[i])) {
if (++i == info->tbuf_count)
i = 0;
if (i == info->tbuf_current)
return;
}
info->tbuf_start = i;
/* there are unsent buffers, start transmit DMA */
/* reset needed if previous error condition */
tdma_reset(info);
/* set 1st descriptor address */
wr_reg32(info, TDDAR, info->tbufs[info->tbuf_start].pdesc);
switch(info->params.mode) {
case MGSL_MODE_RAW:
case MGSL_MODE_MONOSYNC:
case MGSL_MODE_BISYNC:
wr_reg32(info, TDCSR, BIT2 + BIT0); /* IRQ + DMA enable */
break;
default:
wr_reg32(info, TDCSR, BIT0); /* DMA enable */
}
}
static void tx_stop(struct slgt_info *info)
{
unsigned short val;
del_timer(&info->tx_timer);
tdma_reset(info);
/* reset and disable transmitter */
val = rd_reg16(info, TCR) & ~BIT1; /* clear enable bit */
wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */
slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER);
/* clear tx idle and underrun status bit */
wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER));
reset_tbufs(info);
info->tx_enabled = 0;
info->tx_active = 0;
}
static void reset_port(struct slgt_info *info)
{
if (!info->reg_addr)
return;
tx_stop(info);
rx_stop(info);
info->signals &= ~(SerialSignal_DTR + SerialSignal_RTS);
set_signals(info);
slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
}
static void reset_adapter(struct slgt_info *info)
{
int i;
for (i=0; i < info->port_count; ++i) {
if (info->port_array[i])
reset_port(info->port_array[i]);
}
}
static void async_mode(struct slgt_info *info)
{
unsigned short val;
slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
tx_stop(info);
rx_stop(info);
/* TCR (tx control)
*
* 15..13 mode, 010=async
* 12..10 encoding, 000=NRZ
* 09 parity enable
* 08 1=odd parity, 0=even parity
* 07 1=RTS driver control
* 06 1=break enable
* 05..04 character length
* 00=5 bits
* 01=6 bits
* 10=7 bits
* 11=8 bits
* 03 0=1 stop bit, 1=2 stop bits
* 02 reset
* 01 enable
* 00 auto-CTS enable
*/
val = 0x4000;
if (info->if_mode & MGSL_INTERFACE_RTS_EN)
val |= BIT7;
if (info->params.parity != ASYNC_PARITY_NONE) {
val |= BIT9;
if (info->params.parity == ASYNC_PARITY_ODD)
val |= BIT8;
}
switch (info->params.data_bits)
{
case 6: val |= BIT4; break;
case 7: val |= BIT5; break;
case 8: val |= BIT5 + BIT4; break;
}
if (info->params.stop_bits != 1)
val |= BIT3;
if (info->params.flags & HDLC_FLAG_AUTO_CTS)
val |= BIT0;
wr_reg16(info, TCR, val);
/* RCR (rx control)
*
* 15..13 mode, 010=async
* 12..10 encoding, 000=NRZ
* 09 parity enable
* 08 1=odd parity, 0=even parity
* 07..06 reserved, must be 0
* 05..04 character length
* 00=5 bits
* 01=6 bits
* 10=7 bits
* 11=8 bits
* 03 reserved, must be zero
* 02 reset
* 01 enable
* 00 auto-DCD enable
*/
val = 0x4000;
if (info->params.parity != ASYNC_PARITY_NONE) {
val |= BIT9;
if (info->params.parity == ASYNC_PARITY_ODD)
val |= BIT8;
}
switch (info->params.data_bits)
{
case 6: val |= BIT4; break;
case 7: val |= BIT5; break;
case 8: val |= BIT5 + BIT4; break;
}
if (info->params.flags & HDLC_FLAG_AUTO_DCD)
val |= BIT0;
wr_reg16(info, RCR, val);
/* CCR (clock control)
*
* 07..05 011 = tx clock source is BRG/16
* 04..02 010 = rx clock source is BRG
* 01 0 = auxclk disabled
* 00 1 = BRG enabled
*
* 0110 1001
*/
wr_reg8(info, CCR, 0x69);
msc_set_vcr(info);
/* SCR (serial control)
*
* 15 1=tx req on FIFO half empty
* 14 1=rx req on FIFO half full
* 13 tx data IRQ enable
* 12 tx idle IRQ enable
* 11 rx break on IRQ enable
* 10 rx data IRQ enable
* 09 rx break off IRQ enable
* 08 overrun IRQ enable
* 07 DSR IRQ enable
* 06 CTS IRQ enable
* 05 DCD IRQ enable
* 04 RI IRQ enable
* 03 reserved, must be zero
* 02 1=txd->rxd internal loopback enable
* 01 reserved, must be zero
* 00 1=master IRQ enable
*/
val = BIT15 + BIT14 + BIT0;
wr_reg16(info, SCR, val);
slgt_irq_on(info, IRQ_RXBREAK | IRQ_RXOVER);
set_rate(info, info->params.data_rate * 16);
if (info->params.loopback)
enable_loopback(info);
}
static void sync_mode(struct slgt_info *info)
{
unsigned short val;
slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
tx_stop(info);
rx_stop(info);
/* TCR (tx control)
*
* 15..13 mode, 000=HDLC 001=raw 010=async 011=monosync 100=bisync
* 12..10 encoding
* 09 CRC enable
* 08 CRC32
* 07 1=RTS driver control
* 06 preamble enable
* 05..04 preamble length
* 03 share open/close flag
* 02 reset
* 01 enable
* 00 auto-CTS enable
*/
val = 0;
switch(info->params.mode) {
case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break;
case MGSL_MODE_BISYNC: val |= BIT15; break;
case MGSL_MODE_RAW: val |= BIT13; break;
}
if (info->if_mode & MGSL_INTERFACE_RTS_EN)
val |= BIT7;
switch(info->params.encoding)
{
case HDLC_ENCODING_NRZB: val |= BIT10; break;
case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break;
case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break;
case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break;
case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break;
case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break;
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break;
}
switch (info->params.crc_type & HDLC_CRC_MASK)
{
case HDLC_CRC_16_CCITT: val |= BIT9; break;
case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break;
}
if (info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE)
val |= BIT6;
switch (info->params.preamble_length)
{
case HDLC_PREAMBLE_LENGTH_16BITS: val |= BIT5; break;
case HDLC_PREAMBLE_LENGTH_32BITS: val |= BIT4; break;
case HDLC_PREAMBLE_LENGTH_64BITS: val |= BIT5 + BIT4; break;
}
if (info->params.flags & HDLC_FLAG_AUTO_CTS)
val |= BIT0;
wr_reg16(info, TCR, val);
/* TPR (transmit preamble) */
switch (info->params.preamble)
{
case HDLC_PREAMBLE_PATTERN_FLAGS: val = 0x7e; break;
case HDLC_PREAMBLE_PATTERN_ONES: val = 0xff; break;
case HDLC_PREAMBLE_PATTERN_ZEROS: val = 0x00; break;
case HDLC_PREAMBLE_PATTERN_10: val = 0x55; break;
case HDLC_PREAMBLE_PATTERN_01: val = 0xaa; break;
default: val = 0x7e; break;
}
wr_reg8(info, TPR, (unsigned char)val);
/* RCR (rx control)
*
* 15..13 mode, 000=HDLC 001=raw 010=async 011=monosync 100=bisync
* 12..10 encoding
* 09 CRC enable
* 08 CRC32
* 07..03 reserved, must be 0
* 02 reset
* 01 enable
* 00 auto-DCD enable
*/
val = 0;
switch(info->params.mode) {
case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break;
case MGSL_MODE_BISYNC: val |= BIT15; break;
case MGSL_MODE_RAW: val |= BIT13; break;
}
switch(info->params.encoding)
{
case HDLC_ENCODING_NRZB: val |= BIT10; break;
case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break;
case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break;
case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break;
case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break;
case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break;
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break;
}
switch (info->params.crc_type & HDLC_CRC_MASK)
{
case HDLC_CRC_16_CCITT: val |= BIT9; break;
case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break;
}
if (info->params.flags & HDLC_FLAG_AUTO_DCD)
val |= BIT0;
wr_reg16(info, RCR, val);
/* CCR (clock control)
*
* 07..05 tx clock source
* 04..02 rx clock source
* 01 auxclk enable
* 00 BRG enable
*/
val = 0;
if (info->params.flags & HDLC_FLAG_TXC_BRG)
{
// when RxC source is DPLL, BRG generates 16X DPLL
// reference clock, so take TxC from BRG/16 to get
// transmit clock at actual data rate
if (info->params.flags & HDLC_FLAG_RXC_DPLL)
val |= BIT6 + BIT5; /* 011, txclk = BRG/16 */
else
val |= BIT6; /* 010, txclk = BRG */
}
else if (info->params.flags & HDLC_FLAG_TXC_DPLL)
val |= BIT7; /* 100, txclk = DPLL Input */
else if (info->params.flags & HDLC_FLAG_TXC_RXCPIN)
val |= BIT5; /* 001, txclk = RXC Input */
if (info->params.flags & HDLC_FLAG_RXC_BRG)
val |= BIT3; /* 010, rxclk = BRG */
else if (info->params.flags & HDLC_FLAG_RXC_DPLL)
val |= BIT4; /* 100, rxclk = DPLL */
else if (info->params.flags & HDLC_FLAG_RXC_TXCPIN)
val |= BIT2; /* 001, rxclk = TXC Input */
if (info->params.clock_speed)
val |= BIT1 + BIT0;
wr_reg8(info, CCR, (unsigned char)val);
if (info->params.flags & (HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL))
{
// program DPLL mode
switch(info->params.encoding)
{
case HDLC_ENCODING_BIPHASE_MARK:
case HDLC_ENCODING_BIPHASE_SPACE:
val = BIT7; break;
case HDLC_ENCODING_BIPHASE_LEVEL:
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL:
val = BIT7 + BIT6; break;
default: val = BIT6; // NRZ encodings
}
wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | val));
// DPLL requires a 16X reference clock from BRG
set_rate(info, info->params.clock_speed * 16);
}
else
set_rate(info, info->params.clock_speed);
tx_set_idle(info);
msc_set_vcr(info);
/* SCR (serial control)
*
* 15 1=tx req on FIFO half empty
* 14 1=rx req on FIFO half full
* 13 tx data IRQ enable
* 12 tx idle IRQ enable
* 11 underrun IRQ enable
* 10 rx data IRQ enable
* 09 rx idle IRQ enable
* 08 overrun IRQ enable
* 07 DSR IRQ enable
* 06 CTS IRQ enable
* 05 DCD IRQ enable
* 04 RI IRQ enable
* 03 reserved, must be zero
* 02 1=txd->rxd internal loopback enable
* 01 reserved, must be zero
* 00 1=master IRQ enable
*/
wr_reg16(info, SCR, BIT15 + BIT14 + BIT0);
if (info->params.loopback)
enable_loopback(info);
}
/*
* set transmit idle mode
*/
static void tx_set_idle(struct slgt_info *info)
{
unsigned char val;
unsigned short tcr;
/* if preamble enabled (tcr[6] == 1) then tx idle size = 8 bits
* else tcr[5:4] = tx idle size: 00 = 8 bits, 01 = 16 bits
*/
tcr = rd_reg16(info, TCR);
if (info->idle_mode & HDLC_TXIDLE_CUSTOM_16) {
/* disable preamble, set idle size to 16 bits */
tcr = (tcr & ~(BIT6 + BIT5)) | BIT4;
/* MSB of 16 bit idle specified in tx preamble register (TPR) */
wr_reg8(info, TPR, (unsigned char)((info->idle_mode >> 8) & 0xff));
} else if (!(tcr & BIT6)) {
/* preamble is disabled, set idle size to 8 bits */
tcr &= ~(BIT5 + BIT4);
}
wr_reg16(info, TCR, tcr);
if (info->idle_mode & (HDLC_TXIDLE_CUSTOM_8 | HDLC_TXIDLE_CUSTOM_16)) {
/* LSB of custom tx idle specified in tx idle register */
val = (unsigned char)(info->idle_mode & 0xff);
} else {
/* standard 8 bit idle patterns */
switch(info->idle_mode)
{
case HDLC_TXIDLE_FLAGS: val = 0x7e; break;
case HDLC_TXIDLE_ALT_ZEROS_ONES:
case HDLC_TXIDLE_ALT_MARK_SPACE: val = 0xaa; break;
case HDLC_TXIDLE_ZEROS:
case HDLC_TXIDLE_SPACE: val = 0x00; break;
default: val = 0xff;
}
}
wr_reg8(info, TIR, val);
}
/*
* get state of V24 status (input) signals
*/
static void get_signals(struct slgt_info *info)
{
unsigned short status = rd_reg16(info, SSR);
/* clear all serial signals except DTR and RTS */
info->signals &= SerialSignal_DTR + SerialSignal_RTS;
if (status & BIT3)
info->signals |= SerialSignal_DSR;
if (status & BIT2)
info->signals |= SerialSignal_CTS;
if (status & BIT1)
info->signals |= SerialSignal_DCD;
if (status & BIT0)
info->signals |= SerialSignal_RI;
}
/*
* set V.24 Control Register based on current configuration
*/
static void msc_set_vcr(struct slgt_info *info)
{
unsigned char val = 0;
/* VCR (V.24 control)
*
* 07..04 serial IF select
* 03 DTR
* 02 RTS
* 01 LL
* 00 RL
*/
switch(info->if_mode & MGSL_INTERFACE_MASK)
{
case MGSL_INTERFACE_RS232:
val |= BIT5; /* 0010 */
break;
case MGSL_INTERFACE_V35:
val |= BIT7 + BIT6 + BIT5; /* 1110 */
break;
case MGSL_INTERFACE_RS422:
val |= BIT6; /* 0100 */
break;
}
if (info->signals & SerialSignal_DTR)
val |= BIT3;
if (info->signals & SerialSignal_RTS)
val |= BIT2;
if (info->if_mode & MGSL_INTERFACE_LL)
val |= BIT1;
if (info->if_mode & MGSL_INTERFACE_RL)
val |= BIT0;
wr_reg8(info, VCR, val);
}
/*
* set state of V24 control (output) signals
*/
static void set_signals(struct slgt_info *info)
{
unsigned char val = rd_reg8(info, VCR);
if (info->signals & SerialSignal_DTR)
val |= BIT3;
else
val &= ~BIT3;
if (info->signals & SerialSignal_RTS)
val |= BIT2;
else
val &= ~BIT2;
wr_reg8(info, VCR, val);
}
/*
* free range of receive DMA buffers (i to last)
*/
static void free_rbufs(struct slgt_info *info, unsigned int i, unsigned int last)
{
int done = 0;
while(!done) {
/* reset current buffer for reuse */
info->rbufs[i].status = 0;
switch(info->params.mode) {
case MGSL_MODE_RAW:
case MGSL_MODE_MONOSYNC:
case MGSL_MODE_BISYNC:
set_desc_count(info->rbufs[i], info->raw_rx_size);
break;
default:
set_desc_count(info->rbufs[i], DMABUFSIZE);
}
if (i == last)
done = 1;
if (++i == info->rbuf_count)
i = 0;
}
info->rbuf_current = i;
}
/*
* mark all receive DMA buffers as free
*/
static void reset_rbufs(struct slgt_info *info)
{
free_rbufs(info, 0, info->rbuf_count - 1);
}
/*
* pass receive HDLC frame to upper layer
*
* return 1 if frame available, otherwise 0
*/
static int rx_get_frame(struct slgt_info *info)
{
unsigned int start, end;
unsigned short status;
unsigned int framesize = 0;
int rc = 0;
unsigned long flags;
struct tty_struct *tty = info->tty;
unsigned char addr_field = 0xff;
unsigned int crc_size = 0;
switch (info->params.crc_type & HDLC_CRC_MASK) {
case HDLC_CRC_16_CCITT: crc_size = 2; break;
case HDLC_CRC_32_CCITT: crc_size = 4; break;
}
check_again:
framesize = 0;
addr_field = 0xff;
start = end = info->rbuf_current;
for (;;) {
if (!desc_complete(info->rbufs[end]))
goto cleanup;
if (framesize == 0 && info->params.addr_filter != 0xff)
addr_field = info->rbufs[end].buf[0];
framesize += desc_count(info->rbufs[end]);
if (desc_eof(info->rbufs[end]))
break;
if (++end == info->rbuf_count)
end = 0;
if (end == info->rbuf_current) {
if (info->rx_enabled){
spin_lock_irqsave(&info->lock,flags);
rx_start(info);
spin_unlock_irqrestore(&info->lock,flags);
}
goto cleanup;
}
}
/* status
*
* 15 buffer complete
* 14..06 reserved
* 05..04 residue
* 02 eof (end of frame)
* 01 CRC error
* 00 abort
*/
status = desc_status(info->rbufs[end]);
/* ignore CRC bit if not using CRC (bit is undefined) */
if ((info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_NONE)
status &= ~BIT1;
if (framesize == 0 ||
(addr_field != 0xff && addr_field != info->params.addr_filter)) {
free_rbufs(info, start, end);
goto check_again;
}
if (framesize < (2 + crc_size) || status & BIT0) {
info->icount.rxshort++;
framesize = 0;
} else if (status & BIT1) {
info->icount.rxcrc++;
if (!(info->params.crc_type & HDLC_CRC_RETURN_EX))
framesize = 0;
}
#if SYNCLINK_GENERIC_HDLC
if (framesize == 0) {
struct net_device_stats *stats = hdlc_stats(info->netdev);
stats->rx_errors++;
stats->rx_frame_errors++;
}
#endif
DBGBH(("%s rx frame status=%04X size=%d\n",
info->device_name, status, framesize));
DBGDATA(info, info->rbufs[start].buf, min_t(int, framesize, DMABUFSIZE), "rx");
if (framesize) {
if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) {
framesize -= crc_size;
crc_size = 0;
}
if (framesize > info->max_frame_size + crc_size)
info->icount.rxlong++;
else {
/* copy dma buffer(s) to contiguous temp buffer */
int copy_count = framesize;
int i = start;
unsigned char *p = info->tmp_rbuf;
info->tmp_rbuf_count = framesize;
info->icount.rxok++;
while(copy_count) {
int partial_count = min(copy_count, DMABUFSIZE);
memcpy(p, info->rbufs[i].buf, partial_count);
p += partial_count;
copy_count -= partial_count;
if (++i == info->rbuf_count)
i = 0;
}
if (info->params.crc_type & HDLC_CRC_RETURN_EX) {
*p = (status & BIT1) ? RX_CRC_ERROR : RX_OK;
framesize++;
}
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_rx(info,info->tmp_rbuf, framesize);
else
#endif
ldisc_receive_buf(tty, info->tmp_rbuf, info->flag_buf, framesize);
}
}
free_rbufs(info, start, end);
rc = 1;
cleanup:
return rc;
}
/*
* pass receive buffer (RAW synchronous mode) to tty layer
* return 1 if buffer available, otherwise 0
*/
static int rx_get_buf(struct slgt_info *info)
{
unsigned int i = info->rbuf_current;
unsigned int count;
if (!desc_complete(info->rbufs[i]))
return 0;
count = desc_count(info->rbufs[i]);
switch(info->params.mode) {
case MGSL_MODE_MONOSYNC:
case MGSL_MODE_BISYNC:
/* ignore residue in byte synchronous modes */
if (desc_residue(info->rbufs[i]))
count--;
break;
}
DBGDATA(info, info->rbufs[i].buf, count, "rx");
DBGINFO(("rx_get_buf size=%d\n", count));
if (count)
ldisc_receive_buf(info->tty, info->rbufs[i].buf,
info->flag_buf, count);
free_rbufs(info, i, i);
return 1;
}
static void reset_tbufs(struct slgt_info *info)
{
unsigned int i;
info->tbuf_current = 0;
for (i=0 ; i < info->tbuf_count ; i++) {
info->tbufs[i].status = 0;
info->tbufs[i].count = 0;
}
}
/*
* return number of free transmit DMA buffers
*/
static unsigned int free_tbuf_count(struct slgt_info *info)
{
unsigned int count = 0;
unsigned int i = info->tbuf_current;
do
{
if (desc_count(info->tbufs[i]))
break; /* buffer in use */
++count;
if (++i == info->tbuf_count)
i=0;
} while (i != info->tbuf_current);
/* if tx DMA active, last zero count buffer is in use */
if (count && (rd_reg32(info, TDCSR) & BIT0))
--count;
return count;
}
/*
* load transmit DMA buffer(s) with data
*/
static void tx_load(struct slgt_info *info, const char *buf, unsigned int size)
{
unsigned short count;
unsigned int i;
struct slgt_desc *d;
if (size == 0)
return;
DBGDATA(info, buf, size, "tx");
info->tbuf_start = i = info->tbuf_current;
while (size) {
d = &info->tbufs[i];
if (++i == info->tbuf_count)
i = 0;
count = (unsigned short)((size > DMABUFSIZE) ? DMABUFSIZE : size);
memcpy(d->buf, buf, count);
size -= count;
buf += count;
/*
* set EOF bit for last buffer of HDLC frame or
* for every buffer in raw mode
*/
if ((!size && info->params.mode == MGSL_MODE_HDLC) ||
info->params.mode == MGSL_MODE_RAW)
set_desc_eof(*d, 1);
else
set_desc_eof(*d, 0);
set_desc_count(*d, count);
}
info->tbuf_current = i;
}
static int register_test(struct slgt_info *info)
{
static unsigned short patterns[] =
{0x0000, 0xffff, 0xaaaa, 0x5555, 0x6969, 0x9696};
static unsigned int count = sizeof(patterns)/sizeof(patterns[0]);
unsigned int i;
int rc = 0;
for (i=0 ; i < count ; i++) {
wr_reg16(info, TIR, patterns[i]);
wr_reg16(info, BDR, patterns[(i+1)%count]);
if ((rd_reg16(info, TIR) != patterns[i]) ||
(rd_reg16(info, BDR) != patterns[(i+1)%count])) {
rc = -ENODEV;
break;
}
}
info->gpio_present = (rd_reg32(info, JCR) & BIT5) ? 1 : 0;
info->init_error = rc ? 0 : DiagStatus_AddressFailure;
return rc;
}
static int irq_test(struct slgt_info *info)
{
unsigned long timeout;
unsigned long flags;
struct tty_struct *oldtty = info->tty;
u32 speed = info->params.data_rate;
info->params.data_rate = 921600;
info->tty = NULL;
spin_lock_irqsave(&info->lock, flags);
async_mode(info);
slgt_irq_on(info, IRQ_TXIDLE);
/* enable transmitter */
wr_reg16(info, TCR,
(unsigned short)(rd_reg16(info, TCR) | BIT1));
/* write one byte and wait for tx idle */
wr_reg16(info, TDR, 0);
/* assume failure */
info->init_error = DiagStatus_IrqFailure;
info->irq_occurred = FALSE;
spin_unlock_irqrestore(&info->lock, flags);
timeout=100;
while(timeout-- && !info->irq_occurred)
msleep_interruptible(10);
spin_lock_irqsave(&info->lock,flags);
reset_port(info);
spin_unlock_irqrestore(&info->lock,flags);
info->params.data_rate = speed;
info->tty = oldtty;
info->init_error = info->irq_occurred ? 0 : DiagStatus_IrqFailure;
return info->irq_occurred ? 0 : -ENODEV;
}
static int loopback_test_rx(struct slgt_info *info)
{
unsigned char *src, *dest;
int count;
if (desc_complete(info->rbufs[0])) {
count = desc_count(info->rbufs[0]);
src = info->rbufs[0].buf;
dest = info->tmp_rbuf;
for( ; count ; count-=2, src+=2) {
/* src=data byte (src+1)=status byte */
if (!(*(src+1) & (BIT9 + BIT8))) {
*dest = *src;
dest++;
info->tmp_rbuf_count++;
}
}
DBGDATA(info, info->tmp_rbuf, info->tmp_rbuf_count, "rx");
return 1;
}
return 0;
}
static int loopback_test(struct slgt_info *info)
{
#define TESTFRAMESIZE 20
unsigned long timeout;
u16 count = TESTFRAMESIZE;
unsigned char buf[TESTFRAMESIZE];
int rc = -ENODEV;
unsigned long flags;
struct tty_struct *oldtty = info->tty;
MGSL_PARAMS params;
memcpy(&params, &info->params, sizeof(params));
info->params.mode = MGSL_MODE_ASYNC;
info->params.data_rate = 921600;
info->params.loopback = 1;
info->tty = NULL;
/* build and send transmit frame */
for (count = 0; count < TESTFRAMESIZE; ++count)
buf[count] = (unsigned char)count;
info->tmp_rbuf_count = 0;
memset(info->tmp_rbuf, 0, TESTFRAMESIZE);
/* program hardware for HDLC and enabled receiver */
spin_lock_irqsave(&info->lock,flags);
async_mode(info);
rx_start(info);
info->tx_count = count;
tx_load(info, buf, count);
tx_start(info);
spin_unlock_irqrestore(&info->lock, flags);
/* wait for receive complete */
for (timeout = 100; timeout; --timeout) {
msleep_interruptible(10);
if (loopback_test_rx(info)) {
rc = 0;
break;
}
}
/* verify received frame length and contents */
if (!rc && (info->tmp_rbuf_count != count ||
memcmp(buf, info->tmp_rbuf, count))) {
rc = -ENODEV;
}
spin_lock_irqsave(&info->lock,flags);
reset_adapter(info);
spin_unlock_irqrestore(&info->lock,flags);
memcpy(&info->params, &params, sizeof(info->params));
info->tty = oldtty;
info->init_error = rc ? DiagStatus_DmaFailure : 0;
return rc;
}
static int adapter_test(struct slgt_info *info)
{
DBGINFO(("testing %s\n", info->device_name));
if (register_test(info) < 0) {
printk("register test failure %s addr=%08X\n",
info->device_name, info->phys_reg_addr);
} else if (irq_test(info) < 0) {
printk("IRQ test failure %s IRQ=%d\n",
info->device_name, info->irq_level);
} else if (loopback_test(info) < 0) {
printk("loopback test failure %s\n", info->device_name);
}
return info->init_error;
}
/*
* transmit timeout handler
*/
static void tx_timeout(unsigned long context)
{
struct slgt_info *info = (struct slgt_info*)context;
unsigned long flags;
DBGINFO(("%s tx_timeout\n", info->device_name));
if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) {
info->icount.txtimeout++;
}
spin_lock_irqsave(&info->lock,flags);
info->tx_active = 0;
info->tx_count = 0;
spin_unlock_irqrestore(&info->lock,flags);
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_tx_done(info);
else
#endif
bh_transmit(info);
}
/*
* receive buffer polling timer
*/
static void rx_timeout(unsigned long context)
{
struct slgt_info *info = (struct slgt_info*)context;
unsigned long flags;
DBGINFO(("%s rx_timeout\n", info->device_name));
spin_lock_irqsave(&info->lock, flags);
info->pending_bh |= BH_RECEIVE;
spin_unlock_irqrestore(&info->lock, flags);
bh_handler(&info->task);
}