kernel-fxtec-pro1x/arch/sh/kernel/traps.c
Pavel Emelianov bcdcd8e725 Report that kernel is tainted if there was an OOPS
If the kernel OOPSed or BUGed then it probably should be considered as
tainted.  Thus, all subsequent OOPSes and SysRq dumps will report the
tainted kernel.  This saves a lot of time explaining oddities in the
calltraces.

Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Added parisc patch from Matthew Wilson  -Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-17 10:23:02 -07:00

940 lines
21 KiB
C

/*
* 'traps.c' handles hardware traps and faults after we have saved some
* state in 'entry.S'.
*
* SuperH version: Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2000 Philipp Rumpf
* Copyright (C) 2000 David Howells
* Copyright (C) 2002 - 2007 Paul Mundt
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/kernel.h>
#include <linux/ptrace.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/debug_locks.h>
#include <linux/kdebug.h>
#include <linux/kexec.h>
#include <linux/limits.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#ifdef CONFIG_SH_KGDB
#include <asm/kgdb.h>
#define CHK_REMOTE_DEBUG(regs) \
{ \
if (kgdb_debug_hook && !user_mode(regs))\
(*kgdb_debug_hook)(regs); \
}
#else
#define CHK_REMOTE_DEBUG(regs)
#endif
#ifdef CONFIG_CPU_SH2
# define TRAP_RESERVED_INST 4
# define TRAP_ILLEGAL_SLOT_INST 6
# define TRAP_ADDRESS_ERROR 9
# ifdef CONFIG_CPU_SH2A
# define TRAP_DIVZERO_ERROR 17
# define TRAP_DIVOVF_ERROR 18
# endif
#else
#define TRAP_RESERVED_INST 12
#define TRAP_ILLEGAL_SLOT_INST 13
#endif
static void dump_mem(const char *str, unsigned long bottom, unsigned long top)
{
unsigned long p;
int i;
printk("%s(0x%08lx to 0x%08lx)\n", str, bottom, top);
for (p = bottom & ~31; p < top; ) {
printk("%04lx: ", p & 0xffff);
for (i = 0; i < 8; i++, p += 4) {
unsigned int val;
if (p < bottom || p >= top)
printk(" ");
else {
if (__get_user(val, (unsigned int __user *)p)) {
printk("\n");
return;
}
printk("%08x ", val);
}
}
printk("\n");
}
}
static DEFINE_SPINLOCK(die_lock);
void die(const char * str, struct pt_regs * regs, long err)
{
static int die_counter;
oops_enter();
console_verbose();
spin_lock_irq(&die_lock);
bust_spinlocks(1);
printk("%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
CHK_REMOTE_DEBUG(regs);
print_modules();
show_regs(regs);
printk("Process: %s (pid: %d, stack limit = %p)\n",
current->comm, current->pid, task_stack_page(current) + 1);
if (!user_mode(regs) || in_interrupt())
dump_mem("Stack: ", regs->regs[15], THREAD_SIZE +
(unsigned long)task_stack_page(current));
bust_spinlocks(0);
add_taint(TAINT_DIE);
spin_unlock_irq(&die_lock);
if (kexec_should_crash(current))
crash_kexec(regs);
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops)
panic("Fatal exception");
oops_exit();
do_exit(SIGSEGV);
}
static inline void die_if_kernel(const char *str, struct pt_regs *regs,
long err)
{
if (!user_mode(regs))
die(str, regs, err);
}
/*
* try and fix up kernelspace address errors
* - userspace errors just cause EFAULT to be returned, resulting in SEGV
* - kernel/userspace interfaces cause a jump to an appropriate handler
* - other kernel errors are bad
* - return 0 if fixed-up, -EFAULT if non-fatal (to the kernel) fault
*/
static int die_if_no_fixup(const char * str, struct pt_regs * regs, long err)
{
if (!user_mode(regs)) {
const struct exception_table_entry *fixup;
fixup = search_exception_tables(regs->pc);
if (fixup) {
regs->pc = fixup->fixup;
return 0;
}
die(str, regs, err);
}
return -EFAULT;
}
/*
* handle an instruction that does an unaligned memory access by emulating the
* desired behaviour
* - note that PC _may not_ point to the faulting instruction
* (if that instruction is in a branch delay slot)
* - return 0 if emulation okay, -EFAULT on existential error
*/
static int handle_unaligned_ins(u16 instruction, struct pt_regs *regs)
{
int ret, index, count;
unsigned long *rm, *rn;
unsigned char *src, *dst;
index = (instruction>>8)&15; /* 0x0F00 */
rn = &regs->regs[index];
index = (instruction>>4)&15; /* 0x00F0 */
rm = &regs->regs[index];
count = 1<<(instruction&3);
ret = -EFAULT;
switch (instruction>>12) {
case 0: /* mov.[bwl] to/from memory via r0+rn */
if (instruction & 8) {
/* from memory */
src = (unsigned char*) *rm;
src += regs->regs[0];
dst = (unsigned char*) rn;
*(unsigned long*)dst = 0;
#ifdef __LITTLE_ENDIAN__
if (copy_from_user(dst, src, count))
goto fetch_fault;
if ((count == 2) && dst[1] & 0x80) {
dst[2] = 0xff;
dst[3] = 0xff;
}
#else
dst += 4-count;
if (__copy_user(dst, src, count))
goto fetch_fault;
if ((count == 2) && dst[2] & 0x80) {
dst[0] = 0xff;
dst[1] = 0xff;
}
#endif
} else {
/* to memory */
src = (unsigned char*) rm;
#if !defined(__LITTLE_ENDIAN__)
src += 4-count;
#endif
dst = (unsigned char*) *rn;
dst += regs->regs[0];
if (copy_to_user(dst, src, count))
goto fetch_fault;
}
ret = 0;
break;
case 1: /* mov.l Rm,@(disp,Rn) */
src = (unsigned char*) rm;
dst = (unsigned char*) *rn;
dst += (instruction&0x000F)<<2;
if (copy_to_user(dst,src,4))
goto fetch_fault;
ret = 0;
break;
case 2: /* mov.[bwl] to memory, possibly with pre-decrement */
if (instruction & 4)
*rn -= count;
src = (unsigned char*) rm;
dst = (unsigned char*) *rn;
#if !defined(__LITTLE_ENDIAN__)
src += 4-count;
#endif
if (copy_to_user(dst, src, count))
goto fetch_fault;
ret = 0;
break;
case 5: /* mov.l @(disp,Rm),Rn */
src = (unsigned char*) *rm;
src += (instruction&0x000F)<<2;
dst = (unsigned char*) rn;
*(unsigned long*)dst = 0;
if (copy_from_user(dst,src,4))
goto fetch_fault;
ret = 0;
break;
case 6: /* mov.[bwl] from memory, possibly with post-increment */
src = (unsigned char*) *rm;
if (instruction & 4)
*rm += count;
dst = (unsigned char*) rn;
*(unsigned long*)dst = 0;
#ifdef __LITTLE_ENDIAN__
if (copy_from_user(dst, src, count))
goto fetch_fault;
if ((count == 2) && dst[1] & 0x80) {
dst[2] = 0xff;
dst[3] = 0xff;
}
#else
dst += 4-count;
if (copy_from_user(dst, src, count))
goto fetch_fault;
if ((count == 2) && dst[2] & 0x80) {
dst[0] = 0xff;
dst[1] = 0xff;
}
#endif
ret = 0;
break;
case 8:
switch ((instruction&0xFF00)>>8) {
case 0x81: /* mov.w R0,@(disp,Rn) */
src = (unsigned char*) &regs->regs[0];
#if !defined(__LITTLE_ENDIAN__)
src += 2;
#endif
dst = (unsigned char*) *rm; /* called Rn in the spec */
dst += (instruction&0x000F)<<1;
if (copy_to_user(dst, src, 2))
goto fetch_fault;
ret = 0;
break;
case 0x85: /* mov.w @(disp,Rm),R0 */
src = (unsigned char*) *rm;
src += (instruction&0x000F)<<1;
dst = (unsigned char*) &regs->regs[0];
*(unsigned long*)dst = 0;
#if !defined(__LITTLE_ENDIAN__)
dst += 2;
#endif
if (copy_from_user(dst, src, 2))
goto fetch_fault;
#ifdef __LITTLE_ENDIAN__
if (dst[1] & 0x80) {
dst[2] = 0xff;
dst[3] = 0xff;
}
#else
if (dst[2] & 0x80) {
dst[0] = 0xff;
dst[1] = 0xff;
}
#endif
ret = 0;
break;
}
break;
}
return ret;
fetch_fault:
/* Argh. Address not only misaligned but also non-existent.
* Raise an EFAULT and see if it's trapped
*/
return die_if_no_fixup("Fault in unaligned fixup", regs, 0);
}
/*
* emulate the instruction in the delay slot
* - fetches the instruction from PC+2
*/
static inline int handle_unaligned_delayslot(struct pt_regs *regs)
{
u16 instruction;
if (copy_from_user(&instruction, (u16 *)(regs->pc+2), 2)) {
/* the instruction-fetch faulted */
if (user_mode(regs))
return -EFAULT;
/* kernel */
die("delay-slot-insn faulting in handle_unaligned_delayslot",
regs, 0);
}
return handle_unaligned_ins(instruction,regs);
}
/*
* handle an instruction that does an unaligned memory access
* - have to be careful of branch delay-slot instructions that fault
* SH3:
* - if the branch would be taken PC points to the branch
* - if the branch would not be taken, PC points to delay-slot
* SH4:
* - PC always points to delayed branch
* - return 0 if handled, -EFAULT if failed (may not return if in kernel)
*/
/* Macros to determine offset from current PC for branch instructions */
/* Explicit type coercion is used to force sign extension where needed */
#define SH_PC_8BIT_OFFSET(instr) ((((signed char)(instr))*2) + 4)
#define SH_PC_12BIT_OFFSET(instr) ((((signed short)(instr<<4))>>3) + 4)
/*
* XXX: SH-2A needs this too, but it needs an overhaul thanks to mixed 32-bit
* opcodes..
*/
#ifndef CONFIG_CPU_SH2A
static int handle_unaligned_notify_count = 10;
static int handle_unaligned_access(u16 instruction, struct pt_regs *regs)
{
u_int rm;
int ret, index;
index = (instruction>>8)&15; /* 0x0F00 */
rm = regs->regs[index];
/* shout about the first ten userspace fixups */
if (user_mode(regs) && handle_unaligned_notify_count>0) {
handle_unaligned_notify_count--;
printk(KERN_NOTICE "Fixing up unaligned userspace access "
"in \"%s\" pid=%d pc=0x%p ins=0x%04hx\n",
current->comm,current->pid,(u16*)regs->pc,instruction);
}
ret = -EFAULT;
switch (instruction&0xF000) {
case 0x0000:
if (instruction==0x000B) {
/* rts */
ret = handle_unaligned_delayslot(regs);
if (ret==0)
regs->pc = regs->pr;
}
else if ((instruction&0x00FF)==0x0023) {
/* braf @Rm */
ret = handle_unaligned_delayslot(regs);
if (ret==0)
regs->pc += rm + 4;
}
else if ((instruction&0x00FF)==0x0003) {
/* bsrf @Rm */
ret = handle_unaligned_delayslot(regs);
if (ret==0) {
regs->pr = regs->pc + 4;
regs->pc += rm + 4;
}
}
else {
/* mov.[bwl] to/from memory via r0+rn */
goto simple;
}
break;
case 0x1000: /* mov.l Rm,@(disp,Rn) */
goto simple;
case 0x2000: /* mov.[bwl] to memory, possibly with pre-decrement */
goto simple;
case 0x4000:
if ((instruction&0x00FF)==0x002B) {
/* jmp @Rm */
ret = handle_unaligned_delayslot(regs);
if (ret==0)
regs->pc = rm;
}
else if ((instruction&0x00FF)==0x000B) {
/* jsr @Rm */
ret = handle_unaligned_delayslot(regs);
if (ret==0) {
regs->pr = regs->pc + 4;
regs->pc = rm;
}
}
else {
/* mov.[bwl] to/from memory via r0+rn */
goto simple;
}
break;
case 0x5000: /* mov.l @(disp,Rm),Rn */
goto simple;
case 0x6000: /* mov.[bwl] from memory, possibly with post-increment */
goto simple;
case 0x8000: /* bf lab, bf/s lab, bt lab, bt/s lab */
switch (instruction&0x0F00) {
case 0x0100: /* mov.w R0,@(disp,Rm) */
goto simple;
case 0x0500: /* mov.w @(disp,Rm),R0 */
goto simple;
case 0x0B00: /* bf lab - no delayslot*/
break;
case 0x0F00: /* bf/s lab */
ret = handle_unaligned_delayslot(regs);
if (ret==0) {
#if defined(CONFIG_CPU_SH4) || defined(CONFIG_SH7705_CACHE_32KB)
if ((regs->sr & 0x00000001) != 0)
regs->pc += 4; /* next after slot */
else
#endif
regs->pc += SH_PC_8BIT_OFFSET(instruction);
}
break;
case 0x0900: /* bt lab - no delayslot */
break;
case 0x0D00: /* bt/s lab */
ret = handle_unaligned_delayslot(regs);
if (ret==0) {
#if defined(CONFIG_CPU_SH4) || defined(CONFIG_SH7705_CACHE_32KB)
if ((regs->sr & 0x00000001) == 0)
regs->pc += 4; /* next after slot */
else
#endif
regs->pc += SH_PC_8BIT_OFFSET(instruction);
}
break;
}
break;
case 0xA000: /* bra label */
ret = handle_unaligned_delayslot(regs);
if (ret==0)
regs->pc += SH_PC_12BIT_OFFSET(instruction);
break;
case 0xB000: /* bsr label */
ret = handle_unaligned_delayslot(regs);
if (ret==0) {
regs->pr = regs->pc + 4;
regs->pc += SH_PC_12BIT_OFFSET(instruction);
}
break;
}
return ret;
/* handle non-delay-slot instruction */
simple:
ret = handle_unaligned_ins(instruction,regs);
if (ret==0)
regs->pc += instruction_size(instruction);
return ret;
}
#endif /* CONFIG_CPU_SH2A */
#ifdef CONFIG_CPU_HAS_SR_RB
#define lookup_exception_vector(x) \
__asm__ __volatile__ ("stc r2_bank, %0\n\t" : "=r" ((x)))
#else
#define lookup_exception_vector(x) \
__asm__ __volatile__ ("mov r4, %0\n\t" : "=r" ((x)))
#endif
/*
* Handle various address error exceptions:
* - instruction address error:
* misaligned PC
* PC >= 0x80000000 in user mode
* - data address error (read and write)
* misaligned data access
* access to >= 0x80000000 is user mode
* Unfortuntaly we can't distinguish between instruction address error
* and data address errors caused by read accesses.
*/
asmlinkage void do_address_error(struct pt_regs *regs,
unsigned long writeaccess,
unsigned long address)
{
unsigned long error_code = 0;
mm_segment_t oldfs;
siginfo_t info;
#ifndef CONFIG_CPU_SH2A
u16 instruction;
int tmp;
#endif
/* Intentional ifdef */
#ifdef CONFIG_CPU_HAS_SR_RB
lookup_exception_vector(error_code);
#endif
oldfs = get_fs();
if (user_mode(regs)) {
int si_code = BUS_ADRERR;
local_irq_enable();
/* bad PC is not something we can fix */
if (regs->pc & 1) {
si_code = BUS_ADRALN;
goto uspace_segv;
}
#ifndef CONFIG_CPU_SH2A
set_fs(USER_DS);
if (copy_from_user(&instruction, (u16 *)(regs->pc), 2)) {
/* Argh. Fault on the instruction itself.
This should never happen non-SMP
*/
set_fs(oldfs);
goto uspace_segv;
}
tmp = handle_unaligned_access(instruction, regs);
set_fs(oldfs);
if (tmp==0)
return; /* sorted */
#endif
uspace_segv:
printk(KERN_NOTICE "Sending SIGBUS to \"%s\" due to unaligned "
"access (PC %lx PR %lx)\n", current->comm, regs->pc,
regs->pr);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = si_code;
info.si_addr = (void __user *)address;
force_sig_info(SIGBUS, &info, current);
} else {
if (regs->pc & 1)
die("unaligned program counter", regs, error_code);
#ifndef CONFIG_CPU_SH2A
set_fs(KERNEL_DS);
if (copy_from_user(&instruction, (u16 *)(regs->pc), 2)) {
/* Argh. Fault on the instruction itself.
This should never happen non-SMP
*/
set_fs(oldfs);
die("insn faulting in do_address_error", regs, 0);
}
handle_unaligned_access(instruction, regs);
set_fs(oldfs);
#else
printk(KERN_NOTICE "Killing process \"%s\" due to unaligned "
"access\n", current->comm);
force_sig(SIGSEGV, current);
#endif
}
}
#ifdef CONFIG_SH_DSP
/*
* SH-DSP support gerg@snapgear.com.
*/
int is_dsp_inst(struct pt_regs *regs)
{
unsigned short inst = 0;
/*
* Safe guard if DSP mode is already enabled or we're lacking
* the DSP altogether.
*/
if (!(current_cpu_data.flags & CPU_HAS_DSP) || (regs->sr & SR_DSP))
return 0;
get_user(inst, ((unsigned short *) regs->pc));
inst &= 0xf000;
/* Check for any type of DSP or support instruction */
if ((inst == 0xf000) || (inst == 0x4000))
return 1;
return 0;
}
#else
#define is_dsp_inst(regs) (0)
#endif /* CONFIG_SH_DSP */
#ifdef CONFIG_CPU_SH2A
asmlinkage void do_divide_error(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs)
{
siginfo_t info;
switch (r4) {
case TRAP_DIVZERO_ERROR:
info.si_code = FPE_INTDIV;
break;
case TRAP_DIVOVF_ERROR:
info.si_code = FPE_INTOVF;
break;
}
force_sig_info(SIGFPE, &info, current);
}
#endif
/* arch/sh/kernel/cpu/sh4/fpu.c */
extern int do_fpu_inst(unsigned short, struct pt_regs *);
extern asmlinkage void do_fpu_state_restore(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7, struct pt_regs __regs);
asmlinkage void do_reserved_inst(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
unsigned long error_code;
struct task_struct *tsk = current;
#ifdef CONFIG_SH_FPU_EMU
unsigned short inst = 0;
int err;
get_user(inst, (unsigned short*)regs->pc);
err = do_fpu_inst(inst, regs);
if (!err) {
regs->pc += instruction_size(inst);
return;
}
/* not a FPU inst. */
#endif
#ifdef CONFIG_SH_DSP
/* Check if it's a DSP instruction */
if (is_dsp_inst(regs)) {
/* Enable DSP mode, and restart instruction. */
regs->sr |= SR_DSP;
return;
}
#endif
lookup_exception_vector(error_code);
local_irq_enable();
CHK_REMOTE_DEBUG(regs);
force_sig(SIGILL, tsk);
die_if_no_fixup("reserved instruction", regs, error_code);
}
#ifdef CONFIG_SH_FPU_EMU
static int emulate_branch(unsigned short inst, struct pt_regs* regs)
{
/*
* bfs: 8fxx: PC+=d*2+4;
* bts: 8dxx: PC+=d*2+4;
* bra: axxx: PC+=D*2+4;
* bsr: bxxx: PC+=D*2+4 after PR=PC+4;
* braf:0x23: PC+=Rn*2+4;
* bsrf:0x03: PC+=Rn*2+4 after PR=PC+4;
* jmp: 4x2b: PC=Rn;
* jsr: 4x0b: PC=Rn after PR=PC+4;
* rts: 000b: PC=PR;
*/
if ((inst & 0xfd00) == 0x8d00) {
regs->pc += SH_PC_8BIT_OFFSET(inst);
return 0;
}
if ((inst & 0xe000) == 0xa000) {
regs->pc += SH_PC_12BIT_OFFSET(inst);
return 0;
}
if ((inst & 0xf0df) == 0x0003) {
regs->pc += regs->regs[(inst & 0x0f00) >> 8] + 4;
return 0;
}
if ((inst & 0xf0df) == 0x400b) {
regs->pc = regs->regs[(inst & 0x0f00) >> 8];
return 0;
}
if ((inst & 0xffff) == 0x000b) {
regs->pc = regs->pr;
return 0;
}
return 1;
}
#endif
asmlinkage void do_illegal_slot_inst(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
unsigned long error_code;
struct task_struct *tsk = current;
#ifdef CONFIG_SH_FPU_EMU
unsigned short inst = 0;
get_user(inst, (unsigned short *)regs->pc + 1);
if (!do_fpu_inst(inst, regs)) {
get_user(inst, (unsigned short *)regs->pc);
if (!emulate_branch(inst, regs))
return;
/* fault in branch.*/
}
/* not a FPU inst. */
#endif
lookup_exception_vector(error_code);
local_irq_enable();
CHK_REMOTE_DEBUG(regs);
force_sig(SIGILL, tsk);
die_if_no_fixup("illegal slot instruction", regs, error_code);
}
asmlinkage void do_exception_error(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
long ex;
lookup_exception_vector(ex);
die_if_kernel("exception", regs, ex);
}
#if defined(CONFIG_SH_STANDARD_BIOS)
void *gdb_vbr_vector;
static inline void __init gdb_vbr_init(void)
{
register unsigned long vbr;
/*
* Read the old value of the VBR register to initialise
* the vector through which debug and BIOS traps are
* delegated by the Linux trap handler.
*/
asm volatile("stc vbr, %0" : "=r" (vbr));
gdb_vbr_vector = (void *)(vbr + 0x100);
printk("Setting GDB trap vector to 0x%08lx\n",
(unsigned long)gdb_vbr_vector);
}
#endif
void __init per_cpu_trap_init(void)
{
extern void *vbr_base;
#ifdef CONFIG_SH_STANDARD_BIOS
gdb_vbr_init();
#endif
/* NOTE: The VBR value should be at P1
(or P2, virtural "fixed" address space).
It's definitely should not in physical address. */
asm volatile("ldc %0, vbr"
: /* no output */
: "r" (&vbr_base)
: "memory");
}
void *set_exception_table_vec(unsigned int vec, void *handler)
{
extern void *exception_handling_table[];
void *old_handler;
old_handler = exception_handling_table[vec];
exception_handling_table[vec] = handler;
return old_handler;
}
extern asmlinkage void address_error_handler(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs);
void __init trap_init(void)
{
set_exception_table_vec(TRAP_RESERVED_INST, do_reserved_inst);
set_exception_table_vec(TRAP_ILLEGAL_SLOT_INST, do_illegal_slot_inst);
#if defined(CONFIG_CPU_SH4) && !defined(CONFIG_SH_FPU) || \
defined(CONFIG_SH_FPU_EMU)
/*
* For SH-4 lacking an FPU, treat floating point instructions as
* reserved. They'll be handled in the math-emu case, or faulted on
* otherwise.
*/
set_exception_table_evt(0x800, do_reserved_inst);
set_exception_table_evt(0x820, do_illegal_slot_inst);
#elif defined(CONFIG_SH_FPU)
set_exception_table_evt(0x800, do_fpu_state_restore);
set_exception_table_evt(0x820, do_fpu_state_restore);
#endif
#ifdef CONFIG_CPU_SH2
set_exception_table_vec(TRAP_ADDRESS_ERROR, address_error_handler);
#endif
#ifdef CONFIG_CPU_SH2A
set_exception_table_vec(TRAP_DIVZERO_ERROR, do_divide_error);
set_exception_table_vec(TRAP_DIVOVF_ERROR, do_divide_error);
#endif
/* Setup VBR for boot cpu */
per_cpu_trap_init();
}
#ifdef CONFIG_BUG
void handle_BUG(struct pt_regs *regs)
{
enum bug_trap_type tt;
tt = report_bug(regs->pc, regs);
if (tt == BUG_TRAP_TYPE_WARN) {
regs->pc += 2;
return;
}
die("Kernel BUG", regs, TRAPA_BUG_OPCODE & 0xff);
}
int is_valid_bugaddr(unsigned long addr)
{
return addr >= PAGE_OFFSET;
}
#endif
void show_trace(struct task_struct *tsk, unsigned long *sp,
struct pt_regs *regs)
{
unsigned long addr;
if (regs && user_mode(regs))
return;
printk("\nCall trace: ");
#ifdef CONFIG_KALLSYMS
printk("\n");
#endif
while (!kstack_end(sp)) {
addr = *sp++;
if (kernel_text_address(addr))
print_ip_sym(addr);
}
printk("\n");
if (!tsk)
tsk = current;
debug_show_held_locks(tsk);
}
void show_stack(struct task_struct *tsk, unsigned long *sp)
{
unsigned long stack;
if (!tsk)
tsk = current;
if (tsk == current)
sp = (unsigned long *)current_stack_pointer;
else
sp = (unsigned long *)tsk->thread.sp;
stack = (unsigned long)sp;
dump_mem("Stack: ", stack, THREAD_SIZE +
(unsigned long)task_stack_page(tsk));
show_trace(tsk, sp, NULL);
}
void dump_stack(void)
{
show_stack(NULL, NULL);
}
EXPORT_SYMBOL(dump_stack);