kernel-fxtec-pro1x/drivers/net/wireless/ath9k/recv.c
Luis R. Rodriguez ffb826767b ath9k: enable RXing of beacons on STA/IBSS
This enables beacons to come through on STA/IBSS.
It should fix sporadic connection issues. Right now
mac80211 expect beacons so give it beacons.

Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-11-21 11:06:06 -05:00

753 lines
20 KiB
C

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Implementation of receive path.
*/
#include "core.h"
/*
* Setup and link descriptors.
*
* 11N: we can no longer afford to self link the last descriptor.
* MAC acknowledges BA status as long as it copies frames to host
* buffer (or rx fifo). This can incorrectly acknowledge packets
* to a sender if last desc is self-linked.
*
* NOTE: Caller should hold the rxbuf lock.
*/
static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds;
struct sk_buff *skb;
ATH_RXBUF_RESET(bf);
ds = bf->bf_desc;
ds->ds_link = 0; /* link to null */
ds->ds_data = bf->bf_buf_addr;
/* XXX For RADAR?
* virtual addr of the beginning of the buffer. */
skb = bf->bf_mpdu;
ASSERT(skb != NULL);
ds->ds_vdata = skb->data;
/* setup rx descriptors */
ath9k_hw_setuprxdesc(ah,
ds,
skb_tailroom(skb), /* buffer size */
0);
if (sc->sc_rxlink == NULL)
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
else
*sc->sc_rxlink = bf->bf_daddr;
sc->sc_rxlink = &ds->ds_link;
ath9k_hw_rxena(ah);
}
static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc,
u32 len)
{
struct sk_buff *skb;
u32 off;
/*
* Cache-line-align. This is important (for the
* 5210 at least) as not doing so causes bogus data
* in rx'd frames.
*/
skb = dev_alloc_skb(len + sc->sc_cachelsz - 1);
if (skb != NULL) {
off = ((unsigned long) skb->data) % sc->sc_cachelsz;
if (off != 0)
skb_reserve(skb, sc->sc_cachelsz - off);
} else {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: skbuff alloc of size %u failed\n",
__func__, len);
return NULL;
}
return skb;
}
static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb)
{
struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
ASSERT(bf != NULL);
spin_lock_bh(&sc->sc_rxbuflock);
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
/*
* This buffer is still held for hw acess.
* Mark it as free to be re-queued it later.
*/
bf->bf_status |= ATH_BUFSTATUS_FREE;
} else {
/* XXX: we probably never enter here, remove after
* verification */
list_add_tail(&bf->list, &sc->sc_rxbuf);
ath_rx_buf_link(sc, bf);
}
spin_unlock_bh(&sc->sc_rxbuflock);
}
/*
* The skb indicated to upper stack won't be returned to us.
* So we have to allocate a new one and queue it by ourselves.
*/
static int ath_rx_indicate(struct ath_softc *sc,
struct sk_buff *skb,
struct ath_recv_status *status,
u16 keyix)
{
struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
struct sk_buff *nskb;
int type;
/* indicate frame to the stack, which will free the old skb. */
type = _ath_rx_indicate(sc, skb, status, keyix);
/* allocate a new skb and queue it to for H/W processing */
nskb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
if (nskb != NULL) {
bf->bf_mpdu = nskb;
bf->bf_buf_addr = pci_map_single(sc->pdev, nskb->data,
skb_end_pointer(nskb) - nskb->head,
PCI_DMA_FROMDEVICE);
bf->bf_dmacontext = bf->bf_buf_addr;
ATH_RX_CONTEXT(nskb)->ctx_rxbuf = bf;
/* queue the new wbuf to H/W */
ath_rx_requeue(sc, nskb);
}
return type;
}
static void ath_opmode_init(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
u32 rfilt, mfilt[2];
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt);
/* configure bssid mask */
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
/* configure operational mode */
ath9k_hw_setopmode(ah);
/* Handle any link-level address change. */
ath9k_hw_setmac(ah, sc->sc_myaddr);
/* calculate and install multicast filter */
mfilt[0] = mfilt[1] = ~0;
ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
DPRINTF(sc, ATH_DBG_CONFIG ,
"%s: RX filter 0x%x, MC filter %08x:%08x\n",
__func__, rfilt, mfilt[0], mfilt[1]);
}
int ath_rx_init(struct ath_softc *sc, int nbufs)
{
struct sk_buff *skb;
struct ath_buf *bf;
int error = 0;
do {
spin_lock_init(&sc->sc_rxflushlock);
sc->sc_flags &= ~SC_OP_RXFLUSH;
spin_lock_init(&sc->sc_rxbuflock);
/*
* Cisco's VPN software requires that drivers be able to
* receive encapsulated frames that are larger than the MTU.
* Since we can't be sure how large a frame we'll get, setup
* to handle the larges on possible.
*/
sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN,
min(sc->sc_cachelsz,
(u16)64));
DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n",
__func__, sc->sc_cachelsz, sc->sc_rxbufsize);
/* Initialize rx descriptors */
error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
"rx", nbufs, 1);
if (error != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: failed to allocate rx descriptors: %d\n",
__func__, error);
break;
}
/* Pre-allocate a wbuf for each rx buffer */
list_for_each_entry(bf, &sc->sc_rxbuf, list) {
skb = ath_rxbuf_alloc(sc, sc->sc_rxbufsize);
if (skb == NULL) {
error = -ENOMEM;
break;
}
bf->bf_mpdu = skb;
bf->bf_buf_addr = pci_map_single(sc->pdev, skb->data,
skb_end_pointer(skb) - skb->head,
PCI_DMA_FROMDEVICE);
bf->bf_dmacontext = bf->bf_buf_addr;
ATH_RX_CONTEXT(skb)->ctx_rxbuf = bf;
}
sc->sc_rxlink = NULL;
} while (0);
if (error)
ath_rx_cleanup(sc);
return error;
}
/* Reclaim all rx queue resources */
void ath_rx_cleanup(struct ath_softc *sc)
{
struct sk_buff *skb;
struct ath_buf *bf;
list_for_each_entry(bf, &sc->sc_rxbuf, list) {
skb = bf->bf_mpdu;
if (skb)
dev_kfree_skb(skb);
}
/* cleanup rx descriptors */
if (sc->sc_rxdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
}
/*
* Calculate the receive filter according to the
* operating mode and state:
*
* o always accept unicast, broadcast, and multicast traffic
* o maintain current state of phy error reception (the hal
* may enable phy error frames for noise immunity work)
* o probe request frames are accepted only when operating in
* hostap, adhoc, or monitor modes
* o enable promiscuous mode according to the interface state
* o accept beacons:
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when operating as a repeater so we see repeater-sta beacons
* - when scanning
*/
u32 ath_calcrxfilter(struct ath_softc *sc)
{
#define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
u32 rfilt;
rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
| ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
| ATH9K_RX_FILTER_MCAST;
/* If not a STA, enable processing of Probe Requests */
if (sc->sc_ah->ah_opmode != ATH9K_M_STA)
rfilt |= ATH9K_RX_FILTER_PROBEREQ;
/* Can't set HOSTAP into promiscous mode */
if (((sc->sc_ah->ah_opmode != ATH9K_M_HOSTAP) &&
(sc->rx_filter & FIF_PROMISC_IN_BSS)) ||
(sc->sc_ah->ah_opmode == ATH9K_M_MONITOR)) {
rfilt |= ATH9K_RX_FILTER_PROM;
/* ??? To prevent from sending ACK */
rfilt &= ~ATH9K_RX_FILTER_UCAST;
}
if (sc->sc_ah->ah_opmode == ATH9K_M_STA ||
sc->sc_ah->ah_opmode == ATH9K_M_IBSS)
rfilt |= ATH9K_RX_FILTER_BEACON;
/* If in HOSTAP mode, want to enable reception of PSPOLL frames
& beacon frames */
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP)
rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL);
return rfilt;
#undef RX_FILTER_PRESERVE
}
/* Enable the receive h/w following a reset. */
int ath_startrecv(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf, *tbf;
spin_lock_bh(&sc->sc_rxbuflock);
if (list_empty(&sc->sc_rxbuf))
goto start_recv;
sc->sc_rxlink = NULL;
list_for_each_entry_safe(bf, tbf, &sc->sc_rxbuf, list) {
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
/* restarting h/w, no need for holding descriptors */
bf->bf_status &= ~ATH_BUFSTATUS_STALE;
/*
* Upper layer may not be done with the frame yet so
* we can't just re-queue it to hardware. Remove it
* from h/w queue. It'll be re-queued when upper layer
* returns the frame and ath_rx_requeue_mpdu is called.
*/
if (!(bf->bf_status & ATH_BUFSTATUS_FREE)) {
list_del(&bf->list);
continue;
}
}
/* chain descriptors */
ath_rx_buf_link(sc, bf);
}
/* We could have deleted elements so the list may be empty now */
if (list_empty(&sc->sc_rxbuf))
goto start_recv;
bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
ath9k_hw_rxena(ah); /* enable recv descriptors */
start_recv:
spin_unlock_bh(&sc->sc_rxbuflock);
ath_opmode_init(sc); /* set filters, etc. */
ath9k_hw_startpcureceive(ah); /* re-enable PCU/DMA engine */
return 0;
}
/* Disable the receive h/w in preparation for a reset. */
bool ath_stoprecv(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
u64 tsf;
bool stopped;
ath9k_hw_stoppcurecv(ah); /* disable PCU */
ath9k_hw_setrxfilter(ah, 0); /* clear recv filter */
stopped = ath9k_hw_stopdmarecv(ah); /* disable DMA engine */
mdelay(3); /* 3ms is long enough for 1 frame */
tsf = ath9k_hw_gettsf64(ah);
sc->sc_rxlink = NULL; /* just in case */
return stopped;
}
/* Flush receive queue */
void ath_flushrecv(struct ath_softc *sc)
{
/*
* ath_rx_tasklet may be used to handle rx interrupt and flush receive
* queue at the same time. Use a lock to serialize the access of rx
* queue.
* ath_rx_tasklet cannot hold the spinlock while indicating packets.
* Instead, do not claim the spinlock but check for a flush in
* progress (see references to sc_rxflush)
*/
spin_lock_bh(&sc->sc_rxflushlock);
sc->sc_flags |= SC_OP_RXFLUSH;
ath_rx_tasklet(sc, 1);
sc->sc_flags &= ~SC_OP_RXFLUSH;
spin_unlock_bh(&sc->sc_rxflushlock);
}
/* Process receive queue, as well as LED, etc. */
int ath_rx_tasklet(struct ath_softc *sc, int flush)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
struct ath_buf *bf, *bf_held = NULL;
struct ath_desc *ds;
struct ieee80211_hdr *hdr;
struct sk_buff *skb = NULL;
struct ath_recv_status rx_status;
struct ath_hal *ah = sc->sc_ah;
int type, rx_processed = 0;
u32 phyerr;
u8 chainreset = 0;
int retval;
__le16 fc;
do {
/* If handling rx interrupt and flush is in progress => exit */
if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
break;
spin_lock_bh(&sc->sc_rxbuflock);
if (list_empty(&sc->sc_rxbuf)) {
sc->sc_rxlink = NULL;
spin_unlock_bh(&sc->sc_rxbuflock);
break;
}
bf = list_first_entry(&sc->sc_rxbuf, struct ath_buf, list);
/*
* There is a race condition that BH gets scheduled after sw
* writes RxE and before hw re-load the last descriptor to get
* the newly chained one. Software must keep the last DONE
* descriptor as a holding descriptor - software does so by
* marking it with the STALE flag.
*/
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
bf_held = bf;
if (list_is_last(&bf_held->list, &sc->sc_rxbuf)) {
/*
* The holding descriptor is the last
* descriptor in queue. It's safe to
* remove the last holding descriptor
* in BH context.
*/
list_del(&bf_held->list);
bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
sc->sc_rxlink = NULL;
if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
list_add_tail(&bf_held->list,
&sc->sc_rxbuf);
ath_rx_buf_link(sc, bf_held);
}
spin_unlock_bh(&sc->sc_rxbuflock);
break;
}
bf = list_entry(bf->list.next, struct ath_buf, list);
}
ds = bf->bf_desc;
++rx_processed;
/*
* Must provide the virtual address of the current
* descriptor, the physical address, and the virtual
* address of the next descriptor in the h/w chain.
* This allows the HAL to look ahead to see if the
* hardware is done with a descriptor by checking the
* done bit in the following descriptor and the address
* of the current descriptor the DMA engine is working
* on. All this is necessary because of our use of
* a self-linked list to avoid rx overruns.
*/
retval = ath9k_hw_rxprocdesc(ah,
ds,
bf->bf_daddr,
PA2DESC(sc, ds->ds_link),
0);
if (retval == -EINPROGRESS) {
struct ath_buf *tbf;
struct ath_desc *tds;
if (list_is_last(&bf->list, &sc->sc_rxbuf)) {
spin_unlock_bh(&sc->sc_rxbuflock);
break;
}
tbf = list_entry(bf->list.next, struct ath_buf, list);
/*
* On some hardware the descriptor status words could
* get corrupted, including the done bit. Because of
* this, check if the next descriptor's done bit is
* set or not.
*
* If the next descriptor's done bit is set, the current
* descriptor has been corrupted. Force s/w to discard
* this descriptor and continue...
*/
tds = tbf->bf_desc;
retval = ath9k_hw_rxprocdesc(ah,
tds, tbf->bf_daddr,
PA2DESC(sc, tds->ds_link), 0);
if (retval == -EINPROGRESS) {
spin_unlock_bh(&sc->sc_rxbuflock);
break;
}
}
/* XXX: we do not support frames spanning
* multiple descriptors */
bf->bf_status |= ATH_BUFSTATUS_DONE;
skb = bf->bf_mpdu;
if (skb == NULL) { /* XXX ??? can this happen */
spin_unlock_bh(&sc->sc_rxbuflock);
continue;
}
/*
* Now we know it's a completed frame, we can indicate the
* frame. Remove the previous holding descriptor and leave
* this one in the queue as the new holding descriptor.
*/
if (bf_held) {
list_del(&bf_held->list);
bf_held->bf_status &= ~ATH_BUFSTATUS_STALE;
if (bf_held->bf_status & ATH_BUFSTATUS_FREE) {
list_add_tail(&bf_held->list, &sc->sc_rxbuf);
/* try to requeue this descriptor */
ath_rx_buf_link(sc, bf_held);
}
}
bf->bf_status |= ATH_BUFSTATUS_STALE;
bf_held = bf;
/*
* Release the lock here in case ieee80211_input() return
* the frame immediately by calling ath_rx_mpdu_requeue().
*/
spin_unlock_bh(&sc->sc_rxbuflock);
if (flush) {
/*
* If we're asked to flush receive queue, directly
* chain it back at the queue without processing it.
*/
goto rx_next;
}
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
memset(&rx_status, 0, sizeof(struct ath_recv_status));
if (ds->ds_rxstat.rs_more) {
/*
* Frame spans multiple descriptors; this
* cannot happen yet as we don't support
* jumbograms. If not in monitor mode,
* discard the frame.
*/
#ifndef ERROR_FRAMES
/*
* Enable this if you want to see
* error frames in Monitor mode.
*/
if (sc->sc_ah->ah_opmode != ATH9K_M_MONITOR)
goto rx_next;
#endif
/* fall thru for monitor mode handling... */
} else if (ds->ds_rxstat.rs_status != 0) {
if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
rx_status.flags |= ATH_RX_FCS_ERROR;
if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) {
phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
goto rx_next;
}
if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
/*
* Decrypt error. We only mark packet status
* here and always push up the frame up to let
* mac80211 handle the actual error case, be
* it no decryption key or real decryption
* error. This let us keep statistics there.
*/
rx_status.flags |= ATH_RX_DECRYPT_ERROR;
} else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
/*
* Demic error. We only mark frame status here
* and always push up the frame up to let
* mac80211 handle the actual error case. This
* let us keep statistics there. Hardware may
* post a false-positive MIC error.
*/
if (ieee80211_is_ctl(fc))
/*
* Sometimes, we get invalid
* MIC failures on valid control frames.
* Remove these mic errors.
*/
ds->ds_rxstat.rs_status &=
~ATH9K_RXERR_MIC;
else
rx_status.flags |= ATH_RX_MIC_ERROR;
}
/*
* Reject error frames with the exception of
* decryption and MIC failures. For monitor mode,
* we also ignore the CRC error.
*/
if (sc->sc_ah->ah_opmode == ATH9K_M_MONITOR) {
if (ds->ds_rxstat.rs_status &
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
ATH9K_RXERR_CRC))
goto rx_next;
} else {
if (ds->ds_rxstat.rs_status &
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
goto rx_next;
}
}
}
/*
* The status portion of the descriptor could get corrupted.
*/
if (sc->sc_rxbufsize < ds->ds_rxstat.rs_datalen)
goto rx_next;
/*
* Sync and unmap the frame. At this point we're
* committed to passing the sk_buff somewhere so
* clear buf_skb; this means a new sk_buff must be
* allocated when the rx descriptor is setup again
* to receive another frame.
*/
skb_put(skb, ds->ds_rxstat.rs_datalen);
skb->protocol = cpu_to_be16(ETH_P_CONTROL);
rx_status.tsf = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
rx_status.rateieee =
sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate;
rx_status.rateKbps =
sc->sc_hwmap[ds->ds_rxstat.rs_rate].rateKbps;
rx_status.ratecode = ds->ds_rxstat.rs_rate;
/* HT rate */
if (rx_status.ratecode & 0x80) {
/* TODO - add table to avoid division */
if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
rx_status.flags |= ATH_RX_40MHZ;
rx_status.rateKbps =
(rx_status.rateKbps * 27) / 13;
}
if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
rx_status.rateKbps =
(rx_status.rateKbps * 10) / 9;
else
rx_status.flags |= ATH_RX_SHORT_GI;
}
/* sc_noise_floor is only available when the station
attaches to an AP, so we use a default value
if we are not yet attached. */
rx_status.abs_rssi =
ds->ds_rxstat.rs_rssi + sc->sc_ani.sc_noise_floor;
pci_dma_sync_single_for_cpu(sc->pdev,
bf->bf_buf_addr,
skb_tailroom(skb),
PCI_DMA_FROMDEVICE);
pci_unmap_single(sc->pdev,
bf->bf_buf_addr,
sc->sc_rxbufsize,
PCI_DMA_FROMDEVICE);
/* XXX: Ah! make me more readable, use a helper */
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
if (ds->ds_rxstat.rs_moreaggr == 0) {
rx_status.rssictl[0] =
ds->ds_rxstat.rs_rssi_ctl0;
rx_status.rssictl[1] =
ds->ds_rxstat.rs_rssi_ctl1;
rx_status.rssictl[2] =
ds->ds_rxstat.rs_rssi_ctl2;
rx_status.rssi = ds->ds_rxstat.rs_rssi;
if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) {
rx_status.rssiextn[0] =
ds->ds_rxstat.rs_rssi_ext0;
rx_status.rssiextn[1] =
ds->ds_rxstat.rs_rssi_ext1;
rx_status.rssiextn[2] =
ds->ds_rxstat.rs_rssi_ext2;
rx_status.flags |=
ATH_RX_RSSI_EXTN_VALID;
}
rx_status.flags |= ATH_RX_RSSI_VALID |
ATH_RX_CHAIN_RSSI_VALID;
}
} else {
/*
* Need to insert the "combined" rssi into the
* status structure for upper layer processing
*/
rx_status.rssi = ds->ds_rxstat.rs_rssi;
rx_status.flags |= ATH_RX_RSSI_VALID;
}
/* Pass frames up to the stack. */
type = ath_rx_indicate(sc, skb,
&rx_status, ds->ds_rxstat.rs_keyix);
/*
* change the default rx antenna if rx diversity chooses the
* other antenna 3 times in a row.
*/
if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
if (++sc->sc_rxotherant >= 3)
ath_setdefantenna(sc,
ds->ds_rxstat.rs_antenna);
} else {
sc->sc_rxotherant = 0;
}
#ifdef CONFIG_SLOW_ANT_DIV
if ((rx_status.flags & ATH_RX_RSSI_VALID) &&
ieee80211_is_beacon(fc)) {
ath_slow_ant_div(&sc->sc_antdiv, hdr, &ds->ds_rxstat);
}
#endif
/*
* For frames successfully indicated, the buffer will be
* returned to us by upper layers by calling
* ath_rx_mpdu_requeue, either synchronusly or asynchronously.
* So we don't want to do it here in this loop.
*/
continue;
rx_next:
bf->bf_status |= ATH_BUFSTATUS_FREE;
} while (TRUE);
if (chainreset) {
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Reset rx chain mask. "
"Do internal reset\n", __func__);
ASSERT(flush == 0);
ath_reset(sc, false);
}
return 0;
#undef PA2DESC
}