kernel-fxtec-pro1x/drivers/media/dvb/frontends/mt352.c
Johannes Stezenbach d91b730dfb [PATCH] dvb: make needlessly global code static or drop it
- make needlessly global code static
- #if 0 the following unused global functions:
  - ttpci/av7110_hw.c: av7110_reset_arm
  - ttpci/av7110_hw.c: av7110_send_ci_cmd
- frontends/mt352.[ch]: drop mt352_read

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Johannes Stezenbach <js@linuxtv.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-17 07:59:32 -07:00

598 lines
14 KiB
C

/*
* Driver for Zarlink DVB-T MT352 demodulator
*
* Written by Holger Waechtler <holger@qanu.de>
* and Daniel Mack <daniel@qanu.de>
*
* AVerMedia AVerTV DVB-T 771 support by
* Wolfram Joost <dbox2@frokaschwei.de>
*
* Support for Samsung TDTC9251DH01C(M) tuner
* Copyright (C) 2004 Antonio Mancuso <antonio.mancuso@digitaltelevision.it>
* Amauri Celani <acelani@essegi.net>
*
* DVICO FusionHDTV DVB-T1 and DVICO FusionHDTV DVB-T Lite support by
* Christopher Pascoe <c.pascoe@itee.uq.edu.au>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include "dvb_frontend.h"
#include "mt352_priv.h"
#include "mt352.h"
struct mt352_state {
struct i2c_adapter* i2c;
struct dvb_frontend frontend;
struct dvb_frontend_ops ops;
/* configuration settings */
struct mt352_config config;
};
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "mt352: " args); \
} while (0)
static int mt352_single_write(struct dvb_frontend *fe, u8 reg, u8 val)
{
struct mt352_state* state = fe->demodulator_priv;
u8 buf[2] = { reg, val };
struct i2c_msg msg = { .addr = state->config.demod_address, .flags = 0,
.buf = buf, .len = 2 };
int err = i2c_transfer(state->i2c, &msg, 1);
if (err != 1) {
printk("mt352_write() to reg %x failed (err = %d)!\n", reg, err);
return err;
}
return 0;
}
int mt352_write(struct dvb_frontend* fe, u8* ibuf, int ilen)
{
int err,i;
for (i=0; i < ilen-1; i++)
if ((err = mt352_single_write(fe,ibuf[0]+i,ibuf[i+1])))
return err;
return 0;
}
static int mt352_read_register(struct mt352_state* state, u8 reg)
{
int ret;
u8 b0 [] = { reg };
u8 b1 [] = { 0 };
struct i2c_msg msg [] = { { .addr = state->config.demod_address,
.flags = 0,
.buf = b0, .len = 1 },
{ .addr = state->config.demod_address,
.flags = I2C_M_RD,
.buf = b1, .len = 1 } };
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
printk("%s: readreg error (reg=%d, ret==%i)\n",
__FUNCTION__, reg, ret);
return ret;
}
return b1[0];
}
static int mt352_sleep(struct dvb_frontend* fe)
{
static u8 mt352_softdown[] = { CLOCK_CTL, 0x20, 0x08 };
mt352_write(fe, mt352_softdown, sizeof(mt352_softdown));
return 0;
}
static void mt352_calc_nominal_rate(struct mt352_state* state,
enum fe_bandwidth bandwidth,
unsigned char *buf)
{
u32 adc_clock = 20480; /* 20.340 MHz */
u32 bw,value;
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
bw = 6;
break;
case BANDWIDTH_7_MHZ:
bw = 7;
break;
case BANDWIDTH_8_MHZ:
default:
bw = 8;
break;
}
if (state->config.adc_clock)
adc_clock = state->config.adc_clock;
value = 64 * bw * (1<<16) / (7 * 8);
value = value * 1000 / adc_clock;
dprintk("%s: bw %d, adc_clock %d => 0x%x\n",
__FUNCTION__, bw, adc_clock, value);
buf[0] = msb(value);
buf[1] = lsb(value);
}
static void mt352_calc_input_freq(struct mt352_state* state,
unsigned char *buf)
{
int adc_clock = 20480; /* 20.480000 MHz */
int if2 = 36167; /* 36.166667 MHz */
int ife,value;
if (state->config.adc_clock)
adc_clock = state->config.adc_clock;
if (state->config.if2)
if2 = state->config.if2;
ife = (2*adc_clock - if2);
value = -16374 * ife / adc_clock;
dprintk("%s: if2 %d, ife %d, adc_clock %d => %d / 0x%x\n",
__FUNCTION__, if2, ife, adc_clock, value, value & 0x3fff);
buf[0] = msb(value);
buf[1] = lsb(value);
}
static int mt352_set_parameters(struct dvb_frontend* fe,
struct dvb_frontend_parameters *param)
{
struct mt352_state* state = fe->demodulator_priv;
unsigned char buf[13];
static unsigned char tuner_go[] = { 0x5d, 0x01 };
static unsigned char fsm_go[] = { 0x5e, 0x01 };
unsigned int tps = 0;
struct dvb_ofdm_parameters *op = &param->u.ofdm;
switch (op->code_rate_HP) {
case FEC_2_3:
tps |= (1 << 7);
break;
case FEC_3_4:
tps |= (2 << 7);
break;
case FEC_5_6:
tps |= (3 << 7);
break;
case FEC_7_8:
tps |= (4 << 7);
break;
case FEC_1_2:
case FEC_AUTO:
break;
default:
return -EINVAL;
}
switch (op->code_rate_LP) {
case FEC_2_3:
tps |= (1 << 4);
break;
case FEC_3_4:
tps |= (2 << 4);
break;
case FEC_5_6:
tps |= (3 << 4);
break;
case FEC_7_8:
tps |= (4 << 4);
break;
case FEC_1_2:
case FEC_AUTO:
break;
case FEC_NONE:
if (op->hierarchy_information == HIERARCHY_AUTO ||
op->hierarchy_information == HIERARCHY_NONE)
break;
default:
return -EINVAL;
}
switch (op->constellation) {
case QPSK:
break;
case QAM_AUTO:
case QAM_16:
tps |= (1 << 13);
break;
case QAM_64:
tps |= (2 << 13);
break;
default:
return -EINVAL;
}
switch (op->transmission_mode) {
case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_AUTO:
break;
case TRANSMISSION_MODE_8K:
tps |= (1 << 0);
break;
default:
return -EINVAL;
}
switch (op->guard_interval) {
case GUARD_INTERVAL_1_32:
case GUARD_INTERVAL_AUTO:
break;
case GUARD_INTERVAL_1_16:
tps |= (1 << 2);
break;
case GUARD_INTERVAL_1_8:
tps |= (2 << 2);
break;
case GUARD_INTERVAL_1_4:
tps |= (3 << 2);
break;
default:
return -EINVAL;
}
switch (op->hierarchy_information) {
case HIERARCHY_AUTO:
case HIERARCHY_NONE:
break;
case HIERARCHY_1:
tps |= (1 << 10);
break;
case HIERARCHY_2:
tps |= (2 << 10);
break;
case HIERARCHY_4:
tps |= (3 << 10);
break;
default:
return -EINVAL;
}
buf[0] = TPS_GIVEN_1; /* TPS_GIVEN_1 and following registers */
buf[1] = msb(tps); /* TPS_GIVEN_(1|0) */
buf[2] = lsb(tps);
buf[3] = 0x50; // old
// buf[3] = 0xf4; // pinnacle
mt352_calc_nominal_rate(state, op->bandwidth, buf+4);
mt352_calc_input_freq(state, buf+6);
state->config.pll_set(fe, param, buf+8);
mt352_write(fe, buf, sizeof(buf));
if (state->config.no_tuner) {
/* start decoding */
mt352_write(fe, fsm_go, 2);
} else {
/* start tuning */
mt352_write(fe, tuner_go, 2);
}
return 0;
}
static int mt352_get_parameters(struct dvb_frontend* fe,
struct dvb_frontend_parameters *param)
{
struct mt352_state* state = fe->demodulator_priv;
u16 tps;
u16 div;
u8 trl;
struct dvb_ofdm_parameters *op = &param->u.ofdm;
static const u8 tps_fec_to_api[8] =
{
FEC_1_2,
FEC_2_3,
FEC_3_4,
FEC_5_6,
FEC_7_8,
FEC_AUTO,
FEC_AUTO,
FEC_AUTO
};
if ( (mt352_read_register(state,0x00) & 0xC0) != 0xC0 )
return -EINVAL;
/* Use TPS_RECEIVED-registers, not the TPS_CURRENT-registers because
* the mt352 sometimes works with the wrong parameters
*/
tps = (mt352_read_register(state, TPS_RECEIVED_1) << 8) | mt352_read_register(state, TPS_RECEIVED_0);
div = (mt352_read_register(state, CHAN_START_1) << 8) | mt352_read_register(state, CHAN_START_0);
trl = mt352_read_register(state, TRL_NOMINAL_RATE_1);
op->code_rate_HP = tps_fec_to_api[(tps >> 7) & 7];
op->code_rate_LP = tps_fec_to_api[(tps >> 4) & 7];
switch ( (tps >> 13) & 3)
{
case 0:
op->constellation = QPSK;
break;
case 1:
op->constellation = QAM_16;
break;
case 2:
op->constellation = QAM_64;
break;
default:
op->constellation = QAM_AUTO;
break;
}
op->transmission_mode = (tps & 0x01) ? TRANSMISSION_MODE_8K : TRANSMISSION_MODE_2K;
switch ( (tps >> 2) & 3)
{
case 0:
op->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
op->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
op->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
op->guard_interval = GUARD_INTERVAL_1_4;
break;
default:
op->guard_interval = GUARD_INTERVAL_AUTO;
break;
}
switch ( (tps >> 10) & 7)
{
case 0:
op->hierarchy_information = HIERARCHY_NONE;
break;
case 1:
op->hierarchy_information = HIERARCHY_1;
break;
case 2:
op->hierarchy_information = HIERARCHY_2;
break;
case 3:
op->hierarchy_information = HIERARCHY_4;
break;
default:
op->hierarchy_information = HIERARCHY_AUTO;
break;
}
param->frequency = ( 500 * (div - IF_FREQUENCYx6) ) / 3 * 1000;
if (trl == 0x72)
op->bandwidth = BANDWIDTH_8_MHZ;
else if (trl == 0x64)
op->bandwidth = BANDWIDTH_7_MHZ;
else
op->bandwidth = BANDWIDTH_6_MHZ;
if (mt352_read_register(state, STATUS_2) & 0x02)
param->inversion = INVERSION_OFF;
else
param->inversion = INVERSION_ON;
return 0;
}
static int mt352_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
struct mt352_state* state = fe->demodulator_priv;
int s0, s1, s3;
/* FIXME:
*
* The MT352 design manual from Zarlink states (page 46-47):
*
* Notes about the TUNER_GO register:
*
* If the Read_Tuner_Byte (bit-1) is activated, then the tuner status
* byte is copied from the tuner to the STATUS_3 register and
* completion of the read operation is indicated by bit-5 of the
* INTERRUPT_3 register.
*/
if ((s0 = mt352_read_register(state, STATUS_0)) < 0)
return -EREMOTEIO;
if ((s1 = mt352_read_register(state, STATUS_1)) < 0)
return -EREMOTEIO;
if ((s3 = mt352_read_register(state, STATUS_3)) < 0)
return -EREMOTEIO;
*status = 0;
if (s0 & (1 << 4))
*status |= FE_HAS_CARRIER;
if (s0 & (1 << 1))
*status |= FE_HAS_VITERBI;
if (s0 & (1 << 5))
*status |= FE_HAS_LOCK;
if (s1 & (1 << 1))
*status |= FE_HAS_SYNC;
if (s3 & (1 << 6))
*status |= FE_HAS_SIGNAL;
if ((*status & (FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)) !=
(FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC))
*status &= ~FE_HAS_LOCK;
return 0;
}
static int mt352_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct mt352_state* state = fe->demodulator_priv;
*ber = (mt352_read_register (state, RS_ERR_CNT_2) << 16) |
(mt352_read_register (state, RS_ERR_CNT_1) << 8) |
(mt352_read_register (state, RS_ERR_CNT_0));
return 0;
}
static int mt352_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct mt352_state* state = fe->demodulator_priv;
u16 signal = ((mt352_read_register(state, AGC_GAIN_1) << 8) & 0x0f) |
(mt352_read_register(state, AGC_GAIN_0));
*strength = ~signal;
return 0;
}
static int mt352_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct mt352_state* state = fe->demodulator_priv;
u8 _snr = mt352_read_register (state, SNR);
*snr = (_snr << 8) | _snr;
return 0;
}
static int mt352_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct mt352_state* state = fe->demodulator_priv;
*ucblocks = (mt352_read_register (state, RS_UBC_1) << 8) |
(mt352_read_register (state, RS_UBC_0));
return 0;
}
static int mt352_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fe_tune_settings)
{
fe_tune_settings->min_delay_ms = 800;
fe_tune_settings->step_size = 0;
fe_tune_settings->max_drift = 0;
return 0;
}
static int mt352_init(struct dvb_frontend* fe)
{
struct mt352_state* state = fe->demodulator_priv;
static u8 mt352_reset_attach [] = { RESET, 0xC0 };
dprintk("%s: hello\n",__FUNCTION__);
if ((mt352_read_register(state, CLOCK_CTL) & 0x10) == 0 ||
(mt352_read_register(state, CONFIG) & 0x20) == 0) {
/* Do a "hard" reset */
mt352_write(fe, mt352_reset_attach, sizeof(mt352_reset_attach));
return state->config.demod_init(fe);
}
return 0;
}
static void mt352_release(struct dvb_frontend* fe)
{
struct mt352_state* state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops mt352_ops;
struct dvb_frontend* mt352_attach(const struct mt352_config* config,
struct i2c_adapter* i2c)
{
struct mt352_state* state = NULL;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct mt352_state), GFP_KERNEL);
if (state == NULL) goto error;
memset(state,0,sizeof(*state));
/* setup the state */
state->i2c = i2c;
memcpy(&state->config,config,sizeof(struct mt352_config));
memcpy(&state->ops, &mt352_ops, sizeof(struct dvb_frontend_ops));
/* check if the demod is there */
if (mt352_read_register(state, CHIP_ID) != ID_MT352) goto error;
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static struct dvb_frontend_ops mt352_ops = {
.info = {
.name = "Zarlink MT352 DVB-T",
.type = FE_OFDM,
.frequency_min = 174000000,
.frequency_max = 862000000,
.frequency_stepsize = 166667,
.frequency_tolerance = 0,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
FE_CAN_MUTE_TS
},
.release = mt352_release,
.init = mt352_init,
.sleep = mt352_sleep,
.set_frontend = mt352_set_parameters,
.get_frontend = mt352_get_parameters,
.get_tune_settings = mt352_get_tune_settings,
.read_status = mt352_read_status,
.read_ber = mt352_read_ber,
.read_signal_strength = mt352_read_signal_strength,
.read_snr = mt352_read_snr,
.read_ucblocks = mt352_read_ucblocks,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Zarlink MT352 DVB-T Demodulator driver");
MODULE_AUTHOR("Holger Waechtler, Daniel Mack, Antonio Mancuso");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(mt352_attach);
EXPORT_SYMBOL(mt352_write);