fdc53a6dbf
Modified dvb_register_adapter() to avoid kmalloc/kfree. Drivers have to embed struct dvb_adapter into their private data struct from now on. (Andreas Oberritter) Signed-off-by: Johannes Stezenbach <js@linuxtv.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2644 lines
62 KiB
C
2644 lines
62 KiB
C
/*
|
|
* skystar2.c - driver for the Technisat SkyStar2 PCI DVB card
|
|
* based on the FlexCopII by B2C2,Inc.
|
|
*
|
|
* Copyright (C) 2003 Vadim Catana, skystar@moldova.cc
|
|
*
|
|
* FIX: DISEQC Tone Burst in flexcop_diseqc_ioctl()
|
|
* FIX: FULL soft DiSEqC for skystar2 (FlexCopII rev 130) VP310 equipped
|
|
* Vincenzo Di Massa, hawk.it at tiscalinet.it
|
|
*
|
|
* Converted to Linux coding style
|
|
* Misc reorganization, polishing, restyling
|
|
* Roberto Ragusa, skystar2-c5b8 at robertoragusa dot it
|
|
*
|
|
* Added hardware filtering support,
|
|
* Niklas Peinecke, peinecke at gdv.uni-hannover.de
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public License
|
|
* as published by the Free Software Foundation; either version 2.1
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/version.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
|
|
#include <linux/dvb/frontend.h>
|
|
#include <linux/dvb/dmx.h>
|
|
#include "dvb_demux.h"
|
|
#include "dmxdev.h"
|
|
#include "dvb_filter.h"
|
|
#include "dvbdev.h"
|
|
#include "demux.h"
|
|
#include "dvb_net.h"
|
|
#include "stv0299.h"
|
|
#include "mt352.h"
|
|
#include "mt312.h"
|
|
#include "nxt2002.h"
|
|
|
|
static int debug;
|
|
static int enable_hw_filters = 2;
|
|
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "Set debugging level (0 = default, 1 = most messages, 2 = all messages).");
|
|
module_param(enable_hw_filters, int, 0444);
|
|
MODULE_PARM_DESC(enable_hw_filters, "enable hardware filters: supported values: 0 (none), 1, 2");
|
|
|
|
#define dprintk(x...) do { if (debug>=1) printk(x); } while (0)
|
|
#define ddprintk(x...) do { if (debug>=2) printk(x); } while (0)
|
|
|
|
#define SIZE_OF_BUF_DMA1 0x3ac00
|
|
#define SIZE_OF_BUF_DMA2 0x758
|
|
|
|
#define MAX_N_HW_FILTERS (6+32)
|
|
#define N_PID_SLOTS 256
|
|
|
|
struct dmaq {
|
|
u32 bus_addr;
|
|
u32 head;
|
|
u32 tail;
|
|
u32 buffer_size;
|
|
u8 *buffer;
|
|
};
|
|
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9)
|
|
#define __iomem
|
|
#endif
|
|
|
|
struct adapter {
|
|
struct pci_dev *pdev;
|
|
|
|
u8 card_revision;
|
|
u32 b2c2_revision;
|
|
u32 pid_filter_max;
|
|
u32 mac_filter_max;
|
|
u32 irq;
|
|
void __iomem *io_mem;
|
|
unsigned long io_port;
|
|
u8 mac_addr[8];
|
|
u32 dw_sram_type;
|
|
|
|
struct dvb_adapter dvb_adapter;
|
|
struct dvb_demux demux;
|
|
struct dmxdev dmxdev;
|
|
struct dmx_frontend hw_frontend;
|
|
struct dmx_frontend mem_frontend;
|
|
struct i2c_adapter i2c_adap;
|
|
struct dvb_net dvbnet;
|
|
|
|
struct semaphore i2c_sem;
|
|
|
|
struct dmaq dmaq1;
|
|
struct dmaq dmaq2;
|
|
|
|
u32 dma_ctrl;
|
|
u32 dma_status;
|
|
|
|
int capturing;
|
|
|
|
spinlock_t lock;
|
|
|
|
int useable_hw_filters;
|
|
u16 hw_pids[MAX_N_HW_FILTERS];
|
|
u16 pid_list[N_PID_SLOTS];
|
|
int pid_rc[N_PID_SLOTS]; // ref counters for the pids
|
|
int pid_count;
|
|
int whole_bandwidth_count;
|
|
u32 mac_filter;
|
|
|
|
struct dvb_frontend* fe;
|
|
int (*fe_sleep)(struct dvb_frontend* fe);
|
|
};
|
|
|
|
#define write_reg_dw(adapter,reg,value) writel(value, adapter->io_mem + reg)
|
|
#define read_reg_dw(adapter,reg) readl(adapter->io_mem + reg)
|
|
|
|
static void write_reg_bitfield(struct adapter *adapter, u32 reg, u32 zeromask, u32 orvalue)
|
|
{
|
|
u32 tmp;
|
|
|
|
tmp = read_reg_dw(adapter, reg);
|
|
tmp = (tmp & ~zeromask) | orvalue;
|
|
write_reg_dw(adapter, reg, tmp);
|
|
}
|
|
|
|
/* i2c functions */
|
|
static int i2c_main_write_for_flex2(struct adapter *adapter, u32 command, u8 *buf, int retries)
|
|
{
|
|
int i;
|
|
u32 value;
|
|
|
|
write_reg_dw(adapter, 0x100, 0);
|
|
write_reg_dw(adapter, 0x100, command);
|
|
|
|
for (i = 0; i < retries; i++) {
|
|
value = read_reg_dw(adapter, 0x100);
|
|
|
|
if ((value & 0x40000000) == 0) {
|
|
if ((value & 0x81000000) == 0x80000000) {
|
|
if (buf != 0)
|
|
*buf = (value >> 0x10) & 0xff;
|
|
|
|
return 1;
|
|
}
|
|
} else {
|
|
write_reg_dw(adapter, 0x100, 0);
|
|
write_reg_dw(adapter, 0x100, command);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* device = 0x10000000 for tuner, 0x20000000 for eeprom */
|
|
static void i2c_main_setup(u32 device, u32 chip_addr, u8 op, u8 addr, u32 value, u32 len, u32 *command)
|
|
{
|
|
*command = device | ((len - 1) << 26) | (value << 16) | (addr << 8) | chip_addr;
|
|
|
|
if (op != 0)
|
|
*command = *command | 0x03000000;
|
|
else
|
|
*command = *command | 0x01000000;
|
|
}
|
|
|
|
static int flex_i2c_read4(struct adapter *adapter, u32 device, u32 chip_addr, u16 addr, u8 *buf, u8 len)
|
|
{
|
|
u32 command;
|
|
u32 value;
|
|
|
|
int result, i;
|
|
|
|
i2c_main_setup(device, chip_addr, 1, addr, 0, len, &command);
|
|
|
|
result = i2c_main_write_for_flex2(adapter, command, buf, 100000);
|
|
|
|
if ((result & 0xff) != 0) {
|
|
if (len > 1) {
|
|
value = read_reg_dw(adapter, 0x104);
|
|
|
|
for (i = 1; i < len; i++) {
|
|
buf[i] = value & 0xff;
|
|
value = value >> 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int flex_i2c_write4(struct adapter *adapter, u32 device, u32 chip_addr, u32 addr, u8 *buf, u8 len)
|
|
{
|
|
u32 command;
|
|
u32 value;
|
|
int i;
|
|
|
|
if (len > 1) {
|
|
value = 0;
|
|
|
|
for (i = len; i > 1; i--) {
|
|
value = value << 8;
|
|
value = value | buf[i - 1];
|
|
}
|
|
|
|
write_reg_dw(adapter, 0x104, value);
|
|
}
|
|
|
|
i2c_main_setup(device, chip_addr, 0, addr, buf[0], len, &command);
|
|
|
|
return i2c_main_write_for_flex2(adapter, command, NULL, 100000);
|
|
}
|
|
|
|
static void fixchipaddr(u32 device, u32 bus, u32 addr, u32 *ret)
|
|
{
|
|
if (device == 0x20000000)
|
|
*ret = bus | ((addr >> 8) & 3);
|
|
else
|
|
*ret = bus;
|
|
}
|
|
|
|
static u32 flex_i2c_read(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len)
|
|
{
|
|
u32 chipaddr;
|
|
u32 bytes_to_transfer;
|
|
u8 *start;
|
|
|
|
ddprintk("%s:\n", __FUNCTION__);
|
|
|
|
start = buf;
|
|
|
|
while (len != 0) {
|
|
bytes_to_transfer = len;
|
|
|
|
if (bytes_to_transfer > 4)
|
|
bytes_to_transfer = 4;
|
|
|
|
fixchipaddr(device, bus, addr, &chipaddr);
|
|
|
|
if (flex_i2c_read4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0)
|
|
return buf - start;
|
|
|
|
buf = buf + bytes_to_transfer;
|
|
addr = addr + bytes_to_transfer;
|
|
len = len - bytes_to_transfer;
|
|
};
|
|
|
|
return buf - start;
|
|
}
|
|
|
|
static u32 flex_i2c_write(struct adapter *adapter, u32 device, u32 bus, u32 addr, u8 *buf, u32 len)
|
|
{
|
|
u32 chipaddr;
|
|
u32 bytes_to_transfer;
|
|
u8 *start;
|
|
|
|
ddprintk("%s:\n", __FUNCTION__);
|
|
|
|
start = buf;
|
|
|
|
while (len != 0) {
|
|
bytes_to_transfer = len;
|
|
|
|
if (bytes_to_transfer > 4)
|
|
bytes_to_transfer = 4;
|
|
|
|
fixchipaddr(device, bus, addr, &chipaddr);
|
|
|
|
if (flex_i2c_write4(adapter, device, chipaddr, addr, buf, bytes_to_transfer) == 0)
|
|
return buf - start;
|
|
|
|
buf = buf + bytes_to_transfer;
|
|
addr = addr + bytes_to_transfer;
|
|
len = len - bytes_to_transfer;
|
|
}
|
|
|
|
return buf - start;
|
|
}
|
|
|
|
static int master_xfer(struct i2c_adapter* adapter, struct i2c_msg *msgs, int num)
|
|
{
|
|
struct adapter *tmp = i2c_get_adapdata(adapter);
|
|
int i, ret = 0;
|
|
|
|
if (down_interruptible(&tmp->i2c_sem))
|
|
return -ERESTARTSYS;
|
|
|
|
ddprintk("%s: %d messages to transfer\n", __FUNCTION__, num);
|
|
|
|
for (i = 0; i < num; i++) {
|
|
ddprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i,
|
|
msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len);
|
|
}
|
|
|
|
// read command
|
|
if ((num == 2) && (msgs[0].flags == 0) && (msgs[1].flags == I2C_M_RD) && (msgs[0].buf != NULL) && (msgs[1].buf != NULL)) {
|
|
|
|
ret = flex_i2c_read(tmp, 0x10000000, msgs[0].addr, msgs[0].buf[0], msgs[1].buf, msgs[1].len);
|
|
|
|
up(&tmp->i2c_sem);
|
|
|
|
if (ret != msgs[1].len) {
|
|
dprintk("%s: read error !\n", __FUNCTION__);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
dprintk("message %d: flags=0x%x, addr=0x%x, buf=0x%x, len=%d \n", i,
|
|
msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len);
|
|
}
|
|
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
// write command
|
|
for (i = 0; i < num; i++) {
|
|
|
|
if ((msgs[i].flags != 0) || (msgs[i].buf == NULL) || (msgs[i].len < 2))
|
|
return -EINVAL;
|
|
|
|
ret = flex_i2c_write(tmp, 0x10000000, msgs[i].addr, msgs[i].buf[0], &msgs[i].buf[1], msgs[i].len - 1);
|
|
|
|
up(&tmp->i2c_sem);
|
|
|
|
if (ret != msgs[0].len - 1) {
|
|
dprintk("%s: write error %i !\n", __FUNCTION__, ret);
|
|
|
|
dprintk("message %d: flags=0x%x, addr=0x%x, buf[0]=0x%x, len=%d \n", i,
|
|
msgs[i].flags, msgs[i].addr, msgs[i].buf[0], msgs[i].len);
|
|
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
printk("%s: unknown command format !\n", __FUNCTION__);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* SRAM (Skystar2 rev2.3 has one "ISSI IS61LV256" chip on board,
|
|
but it seems that FlexCopII can work with more than one chip) */
|
|
static void sram_set_net_dest(struct adapter *adapter, u8 dest)
|
|
{
|
|
u32 tmp;
|
|
|
|
udelay(1000);
|
|
|
|
tmp = (read_reg_dw(adapter, 0x714) & 0xfffffffc) | (dest & 3);
|
|
|
|
udelay(1000);
|
|
|
|
write_reg_dw(adapter, 0x714, tmp);
|
|
write_reg_dw(adapter, 0x714, tmp);
|
|
|
|
udelay(1000);
|
|
|
|
/* return value is never used? */
|
|
/* return tmp; */
|
|
}
|
|
|
|
static void sram_set_cai_dest(struct adapter *adapter, u8 dest)
|
|
{
|
|
u32 tmp;
|
|
|
|
udelay(1000);
|
|
|
|
tmp = (read_reg_dw(adapter, 0x714) & 0xfffffff3) | ((dest & 3) << 2);
|
|
|
|
udelay(1000);
|
|
udelay(1000);
|
|
|
|
write_reg_dw(adapter, 0x714, tmp);
|
|
write_reg_dw(adapter, 0x714, tmp);
|
|
|
|
udelay(1000);
|
|
|
|
/* return value is never used? */
|
|
/* return tmp; */
|
|
}
|
|
|
|
static void sram_set_cao_dest(struct adapter *adapter, u8 dest)
|
|
{
|
|
u32 tmp;
|
|
|
|
udelay(1000);
|
|
|
|
tmp = (read_reg_dw(adapter, 0x714) & 0xffffffcf) | ((dest & 3) << 4);
|
|
|
|
udelay(1000);
|
|
udelay(1000);
|
|
|
|
write_reg_dw(adapter, 0x714, tmp);
|
|
write_reg_dw(adapter, 0x714, tmp);
|
|
|
|
udelay(1000);
|
|
|
|
/* return value is never used? */
|
|
/* return tmp; */
|
|
}
|
|
|
|
static void sram_set_media_dest(struct adapter *adapter, u8 dest)
|
|
{
|
|
u32 tmp;
|
|
|
|
udelay(1000);
|
|
|
|
tmp = (read_reg_dw(adapter, 0x714) & 0xffffff3f) | ((dest & 3) << 6);
|
|
|
|
udelay(1000);
|
|
udelay(1000);
|
|
|
|
write_reg_dw(adapter, 0x714, tmp);
|
|
write_reg_dw(adapter, 0x714, tmp);
|
|
|
|
udelay(1000);
|
|
|
|
/* return value is never used? */
|
|
/* return tmp; */
|
|
}
|
|
|
|
/* SRAM memory is accessed through a buffer register in the FlexCop
|
|
chip (0x700). This register has the following structure:
|
|
bits 0-14 : address
|
|
bit 15 : read/write flag
|
|
bits 16-23 : 8-bit word to write
|
|
bits 24-27 : = 4
|
|
bits 28-29 : memory bank selector
|
|
bit 31 : busy flag
|
|
*/
|
|
static void flex_sram_write(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len)
|
|
{
|
|
int i, retries;
|
|
u32 command;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
command = bank | addr | 0x04000000 | (*buf << 0x10);
|
|
|
|
retries = 2;
|
|
|
|
while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) {
|
|
mdelay(1);
|
|
retries--;
|
|
};
|
|
|
|
if (retries == 0)
|
|
printk("%s: SRAM timeout\n", __FUNCTION__);
|
|
|
|
write_reg_dw(adapter, 0x700, command);
|
|
|
|
buf++;
|
|
addr++;
|
|
}
|
|
}
|
|
|
|
static void flex_sram_read(struct adapter *adapter, u32 bank, u32 addr, u8 *buf, u32 len)
|
|
{
|
|
int i, retries;
|
|
u32 command, value;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
command = bank | addr | 0x04008000;
|
|
|
|
retries = 10000;
|
|
|
|
while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) {
|
|
mdelay(1);
|
|
retries--;
|
|
};
|
|
|
|
if (retries == 0)
|
|
printk("%s: SRAM timeout\n", __FUNCTION__);
|
|
|
|
write_reg_dw(adapter, 0x700, command);
|
|
|
|
retries = 10000;
|
|
|
|
while (((read_reg_dw(adapter, 0x700) & 0x80000000) != 0) && (retries > 0)) {
|
|
mdelay(1);
|
|
retries--;
|
|
};
|
|
|
|
if (retries == 0)
|
|
printk("%s: SRAM timeout\n", __FUNCTION__);
|
|
|
|
value = read_reg_dw(adapter, 0x700) >> 0x10;
|
|
|
|
*buf = (value & 0xff);
|
|
|
|
addr++;
|
|
buf++;
|
|
}
|
|
}
|
|
|
|
static void sram_write_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len)
|
|
{
|
|
u32 bank;
|
|
|
|
bank = 0;
|
|
|
|
if (adapter->dw_sram_type == 0x20000) {
|
|
bank = (addr & 0x18000) << 0x0d;
|
|
}
|
|
|
|
if (adapter->dw_sram_type == 0x00000) {
|
|
if ((addr >> 0x0f) == 0)
|
|
bank = 0x20000000;
|
|
else
|
|
bank = 0x10000000;
|
|
}
|
|
|
|
flex_sram_write(adapter, bank, addr & 0x7fff, buf, len);
|
|
}
|
|
|
|
static void sram_read_chunk(struct adapter *adapter, u32 addr, u8 *buf, u16 len)
|
|
{
|
|
u32 bank;
|
|
|
|
bank = 0;
|
|
|
|
if (adapter->dw_sram_type == 0x20000) {
|
|
bank = (addr & 0x18000) << 0x0d;
|
|
}
|
|
|
|
if (adapter->dw_sram_type == 0x00000) {
|
|
if ((addr >> 0x0f) == 0)
|
|
bank = 0x20000000;
|
|
else
|
|
bank = 0x10000000;
|
|
}
|
|
|
|
flex_sram_read(adapter, bank, addr & 0x7fff, buf, len);
|
|
}
|
|
|
|
static void sram_read(struct adapter *adapter, u32 addr, u8 *buf, u32 len)
|
|
{
|
|
u32 length;
|
|
|
|
while (len != 0) {
|
|
length = len;
|
|
|
|
// check if the address range belongs to the same
|
|
// 32K memory chip. If not, the data is read from
|
|
// one chip at a time.
|
|
if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) {
|
|
length = (((addr >> 0x0f) + 1) << 0x0f) - addr;
|
|
}
|
|
|
|
sram_read_chunk(adapter, addr, buf, length);
|
|
|
|
addr = addr + length;
|
|
buf = buf + length;
|
|
len = len - length;
|
|
}
|
|
}
|
|
|
|
static void sram_write(struct adapter *adapter, u32 addr, u8 *buf, u32 len)
|
|
{
|
|
u32 length;
|
|
|
|
while (len != 0) {
|
|
length = len;
|
|
|
|
// check if the address range belongs to the same
|
|
// 32K memory chip. If not, the data is written to
|
|
// one chip at a time.
|
|
if ((addr >> 0x0f) != ((addr + len - 1) >> 0x0f)) {
|
|
length = (((addr >> 0x0f) + 1) << 0x0f) - addr;
|
|
}
|
|
|
|
sram_write_chunk(adapter, addr, buf, length);
|
|
|
|
addr = addr + length;
|
|
buf = buf + length;
|
|
len = len - length;
|
|
}
|
|
}
|
|
|
|
static void sram_set_size(struct adapter *adapter, u32 mask)
|
|
{
|
|
write_reg_dw(adapter, 0x71c, (mask | (~0x30000 & read_reg_dw(adapter, 0x71c))));
|
|
}
|
|
|
|
static void sram_init(struct adapter *adapter)
|
|
{
|
|
u32 tmp;
|
|
|
|
tmp = read_reg_dw(adapter, 0x71c);
|
|
|
|
write_reg_dw(adapter, 0x71c, 1);
|
|
|
|
if (read_reg_dw(adapter, 0x71c) != 0) {
|
|
write_reg_dw(adapter, 0x71c, tmp);
|
|
|
|
adapter->dw_sram_type = tmp & 0x30000;
|
|
|
|
ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type);
|
|
|
|
} else {
|
|
|
|
adapter->dw_sram_type = 0x10000;
|
|
|
|
ddprintk("%s: dw_sram_type = %x\n", __FUNCTION__, adapter->dw_sram_type);
|
|
}
|
|
|
|
/* return value is never used? */
|
|
/* return adapter->dw_sram_type; */
|
|
}
|
|
|
|
static int sram_test_location(struct adapter *adapter, u32 mask, u32 addr)
|
|
{
|
|
u8 tmp1, tmp2;
|
|
|
|
dprintk("%s: mask = %x, addr = %x\n", __FUNCTION__, mask, addr);
|
|
|
|
sram_set_size(adapter, mask);
|
|
sram_init(adapter);
|
|
|
|
tmp2 = 0xa5;
|
|
tmp1 = 0x4f;
|
|
|
|
sram_write(adapter, addr, &tmp2, 1);
|
|
sram_write(adapter, addr + 4, &tmp1, 1);
|
|
|
|
tmp2 = 0;
|
|
|
|
mdelay(20);
|
|
|
|
sram_read(adapter, addr, &tmp2, 1);
|
|
sram_read(adapter, addr, &tmp2, 1);
|
|
|
|
dprintk("%s: wrote 0xa5, read 0x%2x\n", __FUNCTION__, tmp2);
|
|
|
|
if (tmp2 != 0xa5)
|
|
return 0;
|
|
|
|
tmp2 = 0x5a;
|
|
tmp1 = 0xf4;
|
|
|
|
sram_write(adapter, addr, &tmp2, 1);
|
|
sram_write(adapter, addr + 4, &tmp1, 1);
|
|
|
|
tmp2 = 0;
|
|
|
|
mdelay(20);
|
|
|
|
sram_read(adapter, addr, &tmp2, 1);
|
|
sram_read(adapter, addr, &tmp2, 1);
|
|
|
|
dprintk("%s: wrote 0x5a, read 0x%2x\n", __FUNCTION__, tmp2);
|
|
|
|
if (tmp2 != 0x5a)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static u32 sram_length(struct adapter *adapter)
|
|
{
|
|
if (adapter->dw_sram_type == 0x10000)
|
|
return 32768; // 32K
|
|
if (adapter->dw_sram_type == 0x00000)
|
|
return 65536; // 64K
|
|
if (adapter->dw_sram_type == 0x20000)
|
|
return 131072; // 128K
|
|
|
|
return 32768; // 32K
|
|
}
|
|
|
|
/* FlexcopII can work with 32K, 64K or 128K of external SRAM memory.
|
|
- for 128K there are 4x32K chips at bank 0,1,2,3.
|
|
- for 64K there are 2x32K chips at bank 1,2.
|
|
- for 32K there is one 32K chip at bank 0.
|
|
|
|
FlexCop works only with one bank at a time. The bank is selected
|
|
by bits 28-29 of the 0x700 register.
|
|
|
|
bank 0 covers addresses 0x00000-0x07fff
|
|
bank 1 covers addresses 0x08000-0x0ffff
|
|
bank 2 covers addresses 0x10000-0x17fff
|
|
bank 3 covers addresses 0x18000-0x1ffff
|
|
*/
|
|
static int sram_detect_for_flex2(struct adapter *adapter)
|
|
{
|
|
u32 tmp, tmp2, tmp3;
|
|
|
|
dprintk("%s:\n", __FUNCTION__);
|
|
|
|
tmp = read_reg_dw(adapter, 0x208);
|
|
write_reg_dw(adapter, 0x208, 0);
|
|
|
|
tmp2 = read_reg_dw(adapter, 0x71c);
|
|
|
|
dprintk("%s: tmp2 = %x\n", __FUNCTION__, tmp2);
|
|
|
|
write_reg_dw(adapter, 0x71c, 1);
|
|
|
|
tmp3 = read_reg_dw(adapter, 0x71c);
|
|
|
|
dprintk("%s: tmp3 = %x\n", __FUNCTION__, tmp3);
|
|
|
|
write_reg_dw(adapter, 0x71c, tmp2);
|
|
|
|
// check for internal SRAM ???
|
|
tmp3--;
|
|
if (tmp3 != 0) {
|
|
sram_set_size(adapter, 0x10000);
|
|
sram_init(adapter);
|
|
write_reg_dw(adapter, 0x208, tmp);
|
|
|
|
dprintk("%s: sram size = 32K\n", __FUNCTION__);
|
|
|
|
return 32;
|
|
}
|
|
|
|
if (sram_test_location(adapter, 0x20000, 0x18000) != 0) {
|
|
sram_set_size(adapter, 0x20000);
|
|
sram_init(adapter);
|
|
write_reg_dw(adapter, 0x208, tmp);
|
|
|
|
dprintk("%s: sram size = 128K\n", __FUNCTION__);
|
|
|
|
return 128;
|
|
}
|
|
|
|
if (sram_test_location(adapter, 0x00000, 0x10000) != 0) {
|
|
sram_set_size(adapter, 0x00000);
|
|
sram_init(adapter);
|
|
write_reg_dw(adapter, 0x208, tmp);
|
|
|
|
dprintk("%s: sram size = 64K\n", __FUNCTION__);
|
|
|
|
return 64;
|
|
}
|
|
|
|
if (sram_test_location(adapter, 0x10000, 0x00000) != 0) {
|
|
sram_set_size(adapter, 0x10000);
|
|
sram_init(adapter);
|
|
write_reg_dw(adapter, 0x208, tmp);
|
|
|
|
dprintk("%s: sram size = 32K\n", __FUNCTION__);
|
|
|
|
return 32;
|
|
}
|
|
|
|
sram_set_size(adapter, 0x10000);
|
|
sram_init(adapter);
|
|
write_reg_dw(adapter, 0x208, tmp);
|
|
|
|
dprintk("%s: SRAM detection failed. Set to 32K \n", __FUNCTION__);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sll_detect_sram_size(struct adapter *adapter)
|
|
{
|
|
sram_detect_for_flex2(adapter);
|
|
}
|
|
|
|
/* EEPROM (Skystar2 has one "24LC08B" chip on board) */
|
|
/*
|
|
static int eeprom_write(struct adapter *adapter, u16 addr, u8 *buf, u16 len)
|
|
{
|
|
return flex_i2c_write(adapter, 0x20000000, 0x50, addr, buf, len);
|
|
}
|
|
*/
|
|
|
|
static int eeprom_read(struct adapter *adapter, u16 addr, u8 *buf, u16 len)
|
|
{
|
|
return flex_i2c_read(adapter, 0x20000000, 0x50, addr, buf, len);
|
|
}
|
|
|
|
static u8 calc_lrc(u8 *buf, int len)
|
|
{
|
|
int i;
|
|
u8 sum;
|
|
|
|
sum = 0;
|
|
|
|
for (i = 0; i < len; i++)
|
|
sum = sum ^ buf[i];
|
|
|
|
return sum;
|
|
}
|
|
|
|
static int eeprom_lrc_read(struct adapter *adapter, u32 addr, u32 len, u8 *buf, int retries)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < retries; i++) {
|
|
if (eeprom_read(adapter, addr, buf, len) == len) {
|
|
if (calc_lrc(buf, len - 1) == buf[len - 1])
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
static int eeprom_lrc_write(struct adapter *adapter, u32 addr, u32 len, u8 *wbuf, u8 *rbuf, int retries)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < retries; i++) {
|
|
if (eeprom_write(adapter, addr, wbuf, len) == len) {
|
|
if (eeprom_lrc_read(adapter, addr, len, rbuf, retries) == 1)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
*/
|
|
|
|
|
|
/* These functions could be used to unlock SkyStar2 cards. */
|
|
|
|
/*
|
|
static int eeprom_writeKey(struct adapter *adapter, u8 *key, u32 len)
|
|
{
|
|
u8 rbuf[20];
|
|
u8 wbuf[20];
|
|
|
|
if (len != 16)
|
|
return 0;
|
|
|
|
memcpy(wbuf, key, len);
|
|
|
|
wbuf[16] = 0;
|
|
wbuf[17] = 0;
|
|
wbuf[18] = 0;
|
|
wbuf[19] = calc_lrc(wbuf, 19);
|
|
|
|
return eeprom_lrc_write(adapter, 0x3e4, 20, wbuf, rbuf, 4);
|
|
}
|
|
|
|
static int eeprom_readKey(struct adapter *adapter, u8 *key, u32 len)
|
|
{
|
|
u8 buf[20];
|
|
|
|
if (len != 16)
|
|
return 0;
|
|
|
|
if (eeprom_lrc_read(adapter, 0x3e4, 20, buf, 4) == 0)
|
|
return 0;
|
|
|
|
memcpy(key, buf, len);
|
|
|
|
return 1;
|
|
}
|
|
*/
|
|
|
|
static int eeprom_get_mac_addr(struct adapter *adapter, char type, u8 *mac)
|
|
{
|
|
u8 tmp[8];
|
|
|
|
if (eeprom_lrc_read(adapter, 0x3f8, 8, tmp, 4) != 0) {
|
|
if (type != 0) {
|
|
mac[0] = tmp[0];
|
|
mac[1] = tmp[1];
|
|
mac[2] = tmp[2];
|
|
mac[3] = 0xfe;
|
|
mac[4] = 0xff;
|
|
mac[5] = tmp[3];
|
|
mac[6] = tmp[4];
|
|
mac[7] = tmp[5];
|
|
|
|
} else {
|
|
|
|
mac[0] = tmp[0];
|
|
mac[1] = tmp[1];
|
|
mac[2] = tmp[2];
|
|
mac[3] = tmp[3];
|
|
mac[4] = tmp[4];
|
|
mac[5] = tmp[5];
|
|
}
|
|
|
|
return 1;
|
|
|
|
} else {
|
|
|
|
if (type == 0) {
|
|
memset(mac, 0, 6);
|
|
|
|
} else {
|
|
|
|
memset(mac, 0, 8);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
static char eeprom_set_mac_addr(struct adapter *adapter, char type, u8 *mac)
|
|
{
|
|
u8 tmp[8];
|
|
|
|
if (type != 0) {
|
|
tmp[0] = mac[0];
|
|
tmp[1] = mac[1];
|
|
tmp[2] = mac[2];
|
|
tmp[3] = mac[5];
|
|
tmp[4] = mac[6];
|
|
tmp[5] = mac[7];
|
|
|
|
} else {
|
|
|
|
tmp[0] = mac[0];
|
|
tmp[1] = mac[1];
|
|
tmp[2] = mac[2];
|
|
tmp[3] = mac[3];
|
|
tmp[4] = mac[4];
|
|
tmp[5] = mac[5];
|
|
}
|
|
|
|
tmp[6] = 0;
|
|
tmp[7] = calc_lrc(tmp, 7);
|
|
|
|
if (eeprom_write(adapter, 0x3f8, tmp, 8) == 8)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
*/
|
|
|
|
/* PID filter */
|
|
|
|
/* every flexcop has 6 "lower" hw PID filters */
|
|
/* these are enabled by setting bits 0-5 of 0x208 */
|
|
/* for the 32 additional filters we have to select one */
|
|
/* of them through 0x310 and modify through 0x314 */
|
|
/* op: 0=disable, 1=enable */
|
|
static void filter_enable_hw_filter(struct adapter *adapter, int id, u8 op)
|
|
{
|
|
dprintk("%s: id=%d op=%d\n", __FUNCTION__, id, op);
|
|
if (id <= 5) {
|
|
u32 mask = (0x00000001 << id);
|
|
write_reg_bitfield(adapter, 0x208, mask, op ? mask : 0);
|
|
} else {
|
|
/* select */
|
|
write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f);
|
|
/* modify */
|
|
write_reg_bitfield(adapter, 0x314, 0x00006000, op ? 0x00004000 : 0);
|
|
}
|
|
}
|
|
|
|
/* this sets the PID that should pass the specified filter */
|
|
static void pid_set_hw_pid(struct adapter *adapter, int id, u16 pid)
|
|
{
|
|
dprintk("%s: id=%d pid=%d\n", __FUNCTION__, id, pid);
|
|
if (id <= 5) {
|
|
u32 adr = 0x300 + ((id & 6) << 1);
|
|
int shift = (id & 1) ? 16 : 0;
|
|
dprintk("%s: id=%d addr=%x %c pid=%d\n", __FUNCTION__, id, adr, (id & 1) ? 'h' : 'l', pid);
|
|
write_reg_bitfield(adapter, adr, (0x7fff) << shift, (pid & 0x1fff) << shift);
|
|
} else {
|
|
/* select */
|
|
write_reg_bitfield(adapter, 0x310, 0x1f, (id - 6) & 0x1f);
|
|
/* modify */
|
|
write_reg_bitfield(adapter, 0x314, 0x1fff, pid & 0x1fff);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
static void filter_enable_null_filter(struct adapter *adapter, u32 op)
|
|
{
|
|
dprintk("%s: op=%x\n", __FUNCTION__, op);
|
|
|
|
write_reg_bitfield(adapter, 0x208, 0x00000040, op?0x00000040:0);
|
|
}
|
|
*/
|
|
|
|
static void filter_enable_mask_filter(struct adapter *adapter, u32 op)
|
|
{
|
|
dprintk("%s: op=%x\n", __FUNCTION__, op);
|
|
|
|
write_reg_bitfield(adapter, 0x208, 0x00000080, op ? 0x00000080 : 0);
|
|
}
|
|
|
|
|
|
static void ctrl_enable_mac(struct adapter *adapter, u32 op)
|
|
{
|
|
write_reg_bitfield(adapter, 0x208, 0x00004000, op ? 0x00004000 : 0);
|
|
}
|
|
|
|
static int ca_set_mac_dst_addr_filter(struct adapter *adapter, u8 *mac)
|
|
{
|
|
u32 tmp1, tmp2;
|
|
|
|
tmp1 = (mac[3] << 0x18) | (mac[2] << 0x10) | (mac[1] << 0x08) | mac[0];
|
|
tmp2 = (mac[5] << 0x08) | mac[4];
|
|
|
|
write_reg_dw(adapter, 0x418, tmp1);
|
|
write_reg_dw(adapter, 0x41c, tmp2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
static void set_ignore_mac_filter(struct adapter *adapter, u8 op)
|
|
{
|
|
if (op != 0) {
|
|
write_reg_bitfield(adapter, 0x208, 0x00004000, 0);
|
|
adapter->mac_filter = 1;
|
|
} else {
|
|
if (adapter->mac_filter != 0) {
|
|
adapter->mac_filter = 0;
|
|
write_reg_bitfield(adapter, 0x208, 0x00004000, 0x00004000);
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
/*
|
|
static void check_null_filter_enable(struct adapter *adapter)
|
|
{
|
|
filter_enable_null_filter(adapter, 1);
|
|
filter_enable_mask_filter(adapter, 1);
|
|
}
|
|
*/
|
|
|
|
static void pid_set_group_pid(struct adapter *adapter, u16 pid)
|
|
{
|
|
u32 value;
|
|
|
|
dprintk("%s: pid=%x\n", __FUNCTION__, pid);
|
|
value = (pid & 0x3fff) | (read_reg_dw(adapter, 0x30c) & 0xffff0000);
|
|
write_reg_dw(adapter, 0x30c, value);
|
|
}
|
|
|
|
static void pid_set_group_mask(struct adapter *adapter, u16 pid)
|
|
{
|
|
u32 value;
|
|
|
|
dprintk("%s: pid=%x\n", __FUNCTION__, pid);
|
|
value = ((pid & 0x3fff) << 0x10) | (read_reg_dw(adapter, 0x30c) & 0xffff);
|
|
write_reg_dw(adapter, 0x30c, value);
|
|
}
|
|
|
|
/*
|
|
static int pid_get_group_pid(struct adapter *adapter)
|
|
{
|
|
return read_reg_dw(adapter, 0x30c) & 0x00001fff;
|
|
}
|
|
|
|
static int pid_get_group_mask(struct adapter *adapter)
|
|
{
|
|
return (read_reg_dw(adapter, 0x30c) >> 0x10)& 0x00001fff;
|
|
}
|
|
*/
|
|
|
|
/*
|
|
static void reset_hardware_pid_filter(struct adapter *adapter)
|
|
{
|
|
pid_set_stream1_pid(adapter, 0x1fff);
|
|
|
|
pid_set_stream2_pid(adapter, 0x1fff);
|
|
filter_enable_stream2_filter(adapter, 0);
|
|
|
|
pid_set_pcr_pid(adapter, 0x1fff);
|
|
filter_enable_pcr_filter(adapter, 0);
|
|
|
|
pid_set_pmt_pid(adapter, 0x1fff);
|
|
filter_enable_pmt_filter(adapter, 0);
|
|
|
|
pid_set_ecm_pid(adapter, 0x1fff);
|
|
filter_enable_ecm_filter(adapter, 0);
|
|
|
|
pid_set_emm_pid(adapter, 0x1fff);
|
|
filter_enable_emm_filter(adapter, 0);
|
|
}
|
|
*/
|
|
|
|
static void init_pids(struct adapter *adapter)
|
|
{
|
|
int i;
|
|
|
|
adapter->pid_count = 0;
|
|
adapter->whole_bandwidth_count = 0;
|
|
for (i = 0; i < adapter->useable_hw_filters; i++) {
|
|
dprintk("%s: setting filter %d to 0x1fff\n", __FUNCTION__, i);
|
|
adapter->hw_pids[i] = 0x1fff;
|
|
pid_set_hw_pid(adapter, i, 0x1fff);
|
|
}
|
|
|
|
pid_set_group_pid(adapter, 0);
|
|
pid_set_group_mask(adapter, 0x1fe0);
|
|
}
|
|
|
|
static void open_whole_bandwidth(struct adapter *adapter)
|
|
{
|
|
dprintk("%s:\n", __FUNCTION__);
|
|
pid_set_group_pid(adapter, 0);
|
|
pid_set_group_mask(adapter, 0);
|
|
/*
|
|
filter_enable_mask_filter(adapter, 1);
|
|
*/
|
|
}
|
|
|
|
static void close_whole_bandwidth(struct adapter *adapter)
|
|
{
|
|
dprintk("%s:\n", __FUNCTION__);
|
|
pid_set_group_pid(adapter, 0);
|
|
pid_set_group_mask(adapter, 0x1fe0);
|
|
/*
|
|
filter_enable_mask_filter(adapter, 1);
|
|
*/
|
|
}
|
|
|
|
static void whole_bandwidth_inc(struct adapter *adapter)
|
|
{
|
|
if (adapter->whole_bandwidth_count++ == 0)
|
|
open_whole_bandwidth(adapter);
|
|
}
|
|
|
|
static void whole_bandwidth_dec(struct adapter *adapter)
|
|
{
|
|
if (--adapter->whole_bandwidth_count <= 0)
|
|
close_whole_bandwidth(adapter);
|
|
}
|
|
|
|
/* The specified PID has to be let through the
|
|
hw filters.
|
|
We try to allocate an hardware filter and open whole
|
|
bandwidth when allocation is impossible.
|
|
All pids<=0x1f pass through the group filter.
|
|
Returns 1 on success, -1 on error */
|
|
static int add_hw_pid(struct adapter *adapter, u16 pid)
|
|
{
|
|
int i;
|
|
|
|
dprintk("%s: pid=%d\n", __FUNCTION__, pid);
|
|
|
|
if (pid <= 0x1f)
|
|
return 1;
|
|
|
|
/* we can't use a filter for 0x2000, so no search */
|
|
if (pid != 0x2000) {
|
|
/* find an unused hardware filter */
|
|
for (i = 0; i < adapter->useable_hw_filters; i++) {
|
|
dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i);
|
|
if (adapter->hw_pids[i] == 0x1fff) {
|
|
dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i);
|
|
adapter->hw_pids[i] = pid;
|
|
pid_set_hw_pid(adapter, i, pid);
|
|
filter_enable_hw_filter(adapter, i, 1);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
/* if we have not used a filter, this pid depends on whole bandwidth */
|
|
dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid);
|
|
whole_bandwidth_inc(adapter);
|
|
return 1;
|
|
}
|
|
|
|
/* returns -1 if the pid was not present in the filters */
|
|
static int remove_hw_pid(struct adapter *adapter, u16 pid)
|
|
{
|
|
int i;
|
|
|
|
dprintk("%s: pid=%d\n", __FUNCTION__, pid);
|
|
|
|
if (pid <= 0x1f)
|
|
return 1;
|
|
|
|
/* we can't use a filter for 0x2000, so no search */
|
|
if (pid != 0x2000) {
|
|
for (i = 0; i < adapter->useable_hw_filters; i++) {
|
|
dprintk("%s: pid=%d searching slot=%d\n", __FUNCTION__, pid, i);
|
|
if (adapter->hw_pids[i] == pid) { // find the pid slot
|
|
dprintk("%s: pid=%d slot=%d\n", __FUNCTION__, pid, i);
|
|
adapter->hw_pids[i] = 0x1fff;
|
|
pid_set_hw_pid(adapter, i, 0x1fff);
|
|
filter_enable_hw_filter(adapter, i, 0);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
/* if we have not used a filter, this pid depended on whole bandwith */
|
|
dprintk("%s: pid=%d whole_bandwidth\n", __FUNCTION__, pid);
|
|
whole_bandwidth_dec(adapter);
|
|
return 1;
|
|
}
|
|
|
|
/* Adds a PID to the filters.
|
|
Adding a pid more than once is possible, we keep reference counts.
|
|
Whole stream available through pid==0x2000.
|
|
Returns 1 on success, -1 on error */
|
|
static int add_pid(struct adapter *adapter, u16 pid)
|
|
{
|
|
int i;
|
|
|
|
dprintk("%s: pid=%d\n", __FUNCTION__, pid);
|
|
|
|
if (pid > 0x1ffe && pid != 0x2000)
|
|
return -1;
|
|
|
|
// check if the pid is already present
|
|
for (i = 0; i < adapter->pid_count; i++)
|
|
if (adapter->pid_list[i] == pid) {
|
|
adapter->pid_rc[i]++; // increment ref counter
|
|
return 1;
|
|
}
|
|
|
|
if (adapter->pid_count == N_PID_SLOTS)
|
|
return -1; // no more pids can be added
|
|
adapter->pid_list[adapter->pid_count] = pid; // register pid
|
|
adapter->pid_rc[adapter->pid_count] = 1;
|
|
adapter->pid_count++;
|
|
// hardware setting
|
|
add_hw_pid(adapter, pid);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Removes a PID from the filters. */
|
|
static int remove_pid(struct adapter *adapter, u16 pid)
|
|
{
|
|
int i;
|
|
|
|
dprintk("%s: pid=%d\n", __FUNCTION__, pid);
|
|
|
|
if (pid > 0x1ffe && pid != 0x2000)
|
|
return -1;
|
|
|
|
// check if the pid is present (it must be!)
|
|
for (i = 0; i < adapter->pid_count; i++) {
|
|
if (adapter->pid_list[i] == pid) {
|
|
adapter->pid_rc[i]--;
|
|
if (adapter->pid_rc[i] <= 0) {
|
|
// remove from the list
|
|
adapter->pid_count--;
|
|
adapter->pid_list[i]=adapter->pid_list[adapter->pid_count];
|
|
adapter->pid_rc[i] = adapter->pid_rc[adapter->pid_count];
|
|
// hardware setting
|
|
remove_hw_pid(adapter, pid);
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* dma & irq */
|
|
static void ctrl_enable_smc(struct adapter *adapter, u32 op)
|
|
{
|
|
write_reg_bitfield(adapter, 0x208, 0x00000800, op ? 0x00000800 : 0);
|
|
}
|
|
|
|
static void dma_enable_disable_irq(struct adapter *adapter, u32 flag1, u32 flag2, u32 flag3)
|
|
{
|
|
adapter->dma_ctrl = adapter->dma_ctrl & 0x000f0000;
|
|
|
|
if (flag1 == 0) {
|
|
if (flag2 == 0)
|
|
adapter->dma_ctrl = adapter->dma_ctrl & ~0x00010000;
|
|
else
|
|
adapter->dma_ctrl = adapter->dma_ctrl | 0x00010000;
|
|
|
|
if (flag3 == 0)
|
|
adapter->dma_ctrl = adapter->dma_ctrl & ~0x00020000;
|
|
else
|
|
adapter->dma_ctrl = adapter->dma_ctrl | 0x00020000;
|
|
|
|
} else {
|
|
|
|
if (flag2 == 0)
|
|
adapter->dma_ctrl = adapter->dma_ctrl & ~0x00040000;
|
|
else
|
|
adapter->dma_ctrl = adapter->dma_ctrl | 0x00040000;
|
|
|
|
if (flag3 == 0)
|
|
adapter->dma_ctrl = adapter->dma_ctrl & ~0x00080000;
|
|
else
|
|
adapter->dma_ctrl = adapter->dma_ctrl | 0x00080000;
|
|
}
|
|
}
|
|
|
|
static void irq_dma_enable_disable_irq(struct adapter *adapter, u32 op)
|
|
{
|
|
u32 value;
|
|
|
|
value = read_reg_dw(adapter, 0x208) & 0xfff0ffff;
|
|
|
|
if (op != 0)
|
|
value = value | (adapter->dma_ctrl & 0x000f0000);
|
|
|
|
write_reg_dw(adapter, 0x208, value);
|
|
}
|
|
|
|
/* FlexCopII has 2 dma channels. DMA1 is used to transfer TS data to
|
|
system memory.
|
|
|
|
The DMA1 buffer is divided in 2 subbuffers of equal size.
|
|
FlexCopII will transfer TS data to one subbuffer, signal an interrupt
|
|
when the subbuffer is full and continue fillig the second subbuffer.
|
|
|
|
For DMA1:
|
|
subbuffer size in 32-bit words is stored in the first 24 bits of
|
|
register 0x004. The last 8 bits of register 0x004 contain the number
|
|
of subbuffers.
|
|
|
|
the first 30 bits of register 0x000 contain the address of the first
|
|
subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1,
|
|
when dma1 is enabled.
|
|
|
|
the first 30 bits of register 0x00c contain the address of the second
|
|
subbuffer. the last 2 bits contain 1.
|
|
|
|
register 0x008 will contain the address of the subbuffer that was filled
|
|
with TS data, when FlexCopII will generate an interrupt.
|
|
|
|
For DMA2:
|
|
subbuffer size in 32-bit words is stored in the first 24 bits of
|
|
register 0x014. The last 8 bits of register 0x014 contain the number
|
|
of subbuffers.
|
|
|
|
the first 30 bits of register 0x010 contain the address of the first
|
|
subbuffer. The last 2 bits contain 0, when dma1 is disabled and 1,
|
|
when dma1 is enabled.
|
|
|
|
the first 30 bits of register 0x01c contain the address of the second
|
|
subbuffer. the last 2 bits contain 1.
|
|
|
|
register 0x018 contains the address of the subbuffer that was filled
|
|
with TS data, when FlexCopII generates an interrupt.
|
|
*/
|
|
static int dma_init_dma(struct adapter *adapter, u32 dma_channel)
|
|
{
|
|
u32 subbuffers, subbufsize, subbuf0, subbuf1;
|
|
|
|
if (dma_channel == 0) {
|
|
dprintk("%s: Initializing DMA1 channel\n", __FUNCTION__);
|
|
|
|
subbuffers = 2;
|
|
|
|
subbufsize = (((adapter->dmaq1.buffer_size / 2) / 4) << 8) | subbuffers;
|
|
|
|
subbuf0 = adapter->dmaq1.bus_addr & 0xfffffffc;
|
|
|
|
subbuf1 = ((adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) & 0xfffffffc) | 1;
|
|
|
|
dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0);
|
|
udelay(1000);
|
|
write_reg_dw(adapter, 0x000, subbuf0);
|
|
|
|
dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4);
|
|
udelay(1000);
|
|
write_reg_dw(adapter, 0x004, subbufsize);
|
|
|
|
dprintk("%s: second subbuffer address = 0x%x\n", __FUNCTION__, subbuf1);
|
|
udelay(1000);
|
|
write_reg_dw(adapter, 0x00c, subbuf1);
|
|
|
|
dprintk("%s: counter = 0x%x\n", __FUNCTION__, adapter->dmaq1.bus_addr & 0xfffffffc);
|
|
write_reg_dw(adapter, 0x008, adapter->dmaq1.bus_addr & 0xfffffffc);
|
|
udelay(1000);
|
|
|
|
dma_enable_disable_irq(adapter, 0, 1, subbuffers ? 1 : 0);
|
|
|
|
irq_dma_enable_disable_irq(adapter, 1);
|
|
|
|
sram_set_media_dest(adapter, 1);
|
|
sram_set_net_dest(adapter, 1);
|
|
sram_set_cai_dest(adapter, 2);
|
|
sram_set_cao_dest(adapter, 2);
|
|
}
|
|
|
|
if (dma_channel == 1) {
|
|
dprintk("%s: Initializing DMA2 channel\n", __FUNCTION__);
|
|
|
|
subbuffers = 2;
|
|
|
|
subbufsize = (((adapter->dmaq2.buffer_size / 2) / 4) << 8) | subbuffers;
|
|
|
|
subbuf0 = adapter->dmaq2.bus_addr & 0xfffffffc;
|
|
|
|
subbuf1 = ((adapter->dmaq2.bus_addr + adapter->dmaq2.buffer_size / 2) & 0xfffffffc) | 1;
|
|
|
|
dprintk("%s: first subbuffer address = 0x%x\n", __FUNCTION__, subbuf0);
|
|
udelay(1000);
|
|
write_reg_dw(adapter, 0x010, subbuf0);
|
|
|
|
dprintk("%s: subbuffer size = 0x%x\n", __FUNCTION__, (subbufsize >> 8) * 4);
|
|
udelay(1000);
|
|
write_reg_dw(adapter, 0x014, subbufsize);
|
|
|
|
dprintk("%s: second buffer address = 0x%x\n", __FUNCTION__, subbuf1);
|
|
udelay(1000);
|
|
write_reg_dw(adapter, 0x01c, subbuf1);
|
|
|
|
sram_set_cai_dest(adapter, 2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ctrl_enable_receive_data(struct adapter *adapter, u32 op)
|
|
{
|
|
if (op == 0) {
|
|
write_reg_bitfield(adapter, 0x208, 0x00008000, 0);
|
|
adapter->dma_status = adapter->dma_status & ~0x00000004;
|
|
} else {
|
|
write_reg_bitfield(adapter, 0x208, 0x00008000, 0x00008000);
|
|
adapter->dma_status = adapter->dma_status | 0x00000004;
|
|
}
|
|
}
|
|
|
|
/* bit 0 of dma_mask is set to 1 if dma1 channel has to be enabled/disabled
|
|
bit 1 of dma_mask is set to 1 if dma2 channel has to be enabled/disabled
|
|
*/
|
|
static void dma_start_stop(struct adapter *adapter, u32 dma_mask, int start_stop)
|
|
{
|
|
u32 dma_enable, dma1_enable, dma2_enable;
|
|
|
|
dprintk("%s: dma_mask=%x\n", __FUNCTION__, dma_mask);
|
|
|
|
if (start_stop == 1) {
|
|
dprintk("%s: starting dma\n", __FUNCTION__);
|
|
|
|
dma1_enable = 0;
|
|
dma2_enable = 0;
|
|
|
|
if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) == 0) && (adapter->dmaq1.bus_addr != 0)) {
|
|
adapter->dma_status = adapter->dma_status | 1;
|
|
dma1_enable = 1;
|
|
}
|
|
|
|
if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) == 0) && (adapter->dmaq2.bus_addr != 0)) {
|
|
adapter->dma_status = adapter->dma_status | 2;
|
|
dma2_enable = 1;
|
|
}
|
|
// enable dma1 and dma2
|
|
if ((dma1_enable == 1) && (dma2_enable == 1)) {
|
|
write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1);
|
|
write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1);
|
|
write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1);
|
|
|
|
ctrl_enable_receive_data(adapter, 1);
|
|
|
|
return;
|
|
}
|
|
// enable dma1
|
|
if ((dma1_enable == 1) && (dma2_enable == 0)) {
|
|
write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr | 1);
|
|
write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1);
|
|
|
|
ctrl_enable_receive_data(adapter, 1);
|
|
|
|
return;
|
|
}
|
|
// enable dma2
|
|
if ((dma1_enable == 0) && (dma2_enable == 1)) {
|
|
write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr | 1);
|
|
|
|
ctrl_enable_receive_data(adapter, 1);
|
|
|
|
return;
|
|
}
|
|
// start dma
|
|
if ((dma1_enable == 0) && (dma2_enable == 0)) {
|
|
ctrl_enable_receive_data(adapter, 1);
|
|
|
|
return;
|
|
}
|
|
|
|
} else {
|
|
|
|
dprintk("%s: stopping dma\n", __FUNCTION__);
|
|
|
|
dma_enable = adapter->dma_status & 0x00000003;
|
|
|
|
if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0)) {
|
|
dma_enable = dma_enable & 0xfffffffe;
|
|
}
|
|
|
|
if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0)) {
|
|
dma_enable = dma_enable & 0xfffffffd;
|
|
}
|
|
//stop dma
|
|
if ((dma_enable == 0) && ((adapter->dma_status & 4) != 0)) {
|
|
ctrl_enable_receive_data(adapter, 0);
|
|
|
|
udelay(3000);
|
|
}
|
|
//disable dma1
|
|
if (((dma_mask & 1) != 0) && ((adapter->dma_status & 1) != 0) && (adapter->dmaq1.bus_addr != 0)) {
|
|
write_reg_dw(adapter, 0x000, adapter->dmaq1.bus_addr);
|
|
write_reg_dw(adapter, 0x00c, (adapter->dmaq1.bus_addr + adapter->dmaq1.buffer_size / 2) | 1);
|
|
|
|
adapter->dma_status = adapter->dma_status & ~0x00000001;
|
|
}
|
|
//disable dma2
|
|
if (((dma_mask & 2) != 0) && ((adapter->dma_status & 2) != 0) && (adapter->dmaq2.bus_addr != 0)) {
|
|
write_reg_dw(adapter, 0x010, adapter->dmaq2.bus_addr);
|
|
|
|
adapter->dma_status = adapter->dma_status & ~0x00000002;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void open_stream(struct adapter *adapter, u16 pid)
|
|
{
|
|
u32 dma_mask;
|
|
|
|
++adapter->capturing;
|
|
|
|
filter_enable_mask_filter(adapter, 1);
|
|
|
|
add_pid(adapter, pid);
|
|
|
|
dprintk("%s: adapter->dma_status=%x\n", __FUNCTION__, adapter->dma_status);
|
|
|
|
if ((adapter->dma_status & 7) != 7) {
|
|
dma_mask = 0;
|
|
|
|
if (((adapter->dma_status & 0x10000000) != 0) && ((adapter->dma_status & 1) == 0)) {
|
|
dma_mask = dma_mask | 1;
|
|
|
|
adapter->dmaq1.head = 0;
|
|
adapter->dmaq1.tail = 0;
|
|
|
|
memset(adapter->dmaq1.buffer, 0, adapter->dmaq1.buffer_size);
|
|
}
|
|
|
|
if (((adapter->dma_status & 0x20000000) != 0) && ((adapter->dma_status & 2) == 0)) {
|
|
dma_mask = dma_mask | 2;
|
|
|
|
adapter->dmaq2.head = 0;
|
|
adapter->dmaq2.tail = 0;
|
|
}
|
|
|
|
if (dma_mask != 0) {
|
|
irq_dma_enable_disable_irq(adapter, 1);
|
|
|
|
dma_start_stop(adapter, dma_mask, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void close_stream(struct adapter *adapter, u16 pid)
|
|
{
|
|
if (adapter->capturing > 0)
|
|
--adapter->capturing;
|
|
|
|
dprintk("%s: dma_status=%x\n", __FUNCTION__, adapter->dma_status);
|
|
|
|
if (adapter->capturing == 0) {
|
|
u32 dma_mask = 0;
|
|
|
|
if ((adapter->dma_status & 1) != 0)
|
|
dma_mask = dma_mask | 0x00000001;
|
|
if ((adapter->dma_status & 2) != 0)
|
|
dma_mask = dma_mask | 0x00000002;
|
|
|
|
if (dma_mask != 0) {
|
|
dma_start_stop(adapter, dma_mask, 0);
|
|
}
|
|
}
|
|
remove_pid(adapter, pid);
|
|
}
|
|
|
|
static void interrupt_service_dma1(struct adapter *adapter)
|
|
{
|
|
struct dvb_demux *dvbdmx = &adapter->demux;
|
|
|
|
int n_cur_dma_counter;
|
|
u32 n_num_bytes_parsed;
|
|
u32 n_num_new_bytes_transferred;
|
|
u32 dw_default_packet_size = 188;
|
|
u8 gb_tmp_buffer[188];
|
|
u8 *pb_dma_buf_cur_pos;
|
|
|
|
n_cur_dma_counter = readl(adapter->io_mem + 0x008) - adapter->dmaq1.bus_addr;
|
|
n_cur_dma_counter = (n_cur_dma_counter / dw_default_packet_size) * dw_default_packet_size;
|
|
|
|
if ((n_cur_dma_counter < 0) || (n_cur_dma_counter > adapter->dmaq1.buffer_size)) {
|
|
dprintk("%s: dma counter outside dma buffer\n", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
adapter->dmaq1.head = n_cur_dma_counter;
|
|
|
|
if (adapter->dmaq1.tail <= n_cur_dma_counter) {
|
|
n_num_new_bytes_transferred = n_cur_dma_counter - adapter->dmaq1.tail;
|
|
|
|
} else {
|
|
|
|
n_num_new_bytes_transferred = (adapter->dmaq1.buffer_size - adapter->dmaq1.tail) + n_cur_dma_counter;
|
|
}
|
|
|
|
ddprintk("%s: n_cur_dma_counter = %d\n", __FUNCTION__, n_cur_dma_counter);
|
|
ddprintk("%s: dmaq1.tail = %d\n", __FUNCTION__, adapter->dmaq1.tail);
|
|
ddprintk("%s: bytes_transferred = %d\n", __FUNCTION__, n_num_new_bytes_transferred);
|
|
|
|
if (n_num_new_bytes_transferred < dw_default_packet_size)
|
|
return;
|
|
|
|
n_num_bytes_parsed = 0;
|
|
|
|
while (n_num_bytes_parsed < n_num_new_bytes_transferred) {
|
|
pb_dma_buf_cur_pos = adapter->dmaq1.buffer + adapter->dmaq1.tail;
|
|
|
|
if (adapter->dmaq1.buffer + adapter->dmaq1.buffer_size < adapter->dmaq1.buffer + adapter->dmaq1.tail + 188) {
|
|
memcpy(gb_tmp_buffer, adapter->dmaq1.buffer + adapter->dmaq1.tail,
|
|
adapter->dmaq1.buffer_size - adapter->dmaq1.tail);
|
|
memcpy(gb_tmp_buffer + (adapter->dmaq1.buffer_size - adapter->dmaq1.tail), adapter->dmaq1.buffer,
|
|
(188 - (adapter->dmaq1.buffer_size - adapter->dmaq1.tail)));
|
|
|
|
pb_dma_buf_cur_pos = gb_tmp_buffer;
|
|
}
|
|
|
|
if (adapter->capturing != 0) {
|
|
dvb_dmx_swfilter_packets(dvbdmx, pb_dma_buf_cur_pos, dw_default_packet_size / 188);
|
|
}
|
|
|
|
n_num_bytes_parsed = n_num_bytes_parsed + dw_default_packet_size;
|
|
|
|
adapter->dmaq1.tail = adapter->dmaq1.tail + dw_default_packet_size;
|
|
|
|
if (adapter->dmaq1.tail >= adapter->dmaq1.buffer_size)
|
|
adapter->dmaq1.tail = adapter->dmaq1.tail - adapter->dmaq1.buffer_size;
|
|
};
|
|
}
|
|
|
|
static void interrupt_service_dma2(struct adapter *adapter)
|
|
{
|
|
printk("%s:\n", __FUNCTION__);
|
|
}
|
|
|
|
static irqreturn_t isr(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct adapter *tmp = dev_id;
|
|
|
|
u32 value;
|
|
|
|
ddprintk("%s:\n", __FUNCTION__);
|
|
|
|
spin_lock_irq(&tmp->lock);
|
|
|
|
if (0 == ((value = read_reg_dw(tmp, 0x20c)) & 0x0f)) {
|
|
spin_unlock_irq(&tmp->lock);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
while (value != 0) {
|
|
if ((value & 0x03) != 0)
|
|
interrupt_service_dma1(tmp);
|
|
if ((value & 0x0c) != 0)
|
|
interrupt_service_dma2(tmp);
|
|
value = read_reg_dw(tmp, 0x20c) & 0x0f;
|
|
}
|
|
|
|
spin_unlock_irq(&tmp->lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int init_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq,
|
|
int size, int dmaq_offset)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
dma_addr_t dma_addr;
|
|
|
|
dmaq->head = 0;
|
|
dmaq->tail = 0;
|
|
|
|
dmaq->buffer = pci_alloc_consistent(pdev, size + 0x80, &dma_addr);
|
|
if (!dmaq->buffer)
|
|
return -ENOMEM;
|
|
|
|
dmaq->bus_addr = dma_addr;
|
|
dmaq->buffer_size = size;
|
|
|
|
dma_init_dma(adapter, dmaq_offset);
|
|
|
|
ddprintk("%s: allocated dma buffer at 0x%p, length=%d\n",
|
|
__FUNCTION__, dmaq->buffer, size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_dma_queue(struct adapter *adapter)
|
|
{
|
|
struct {
|
|
struct dmaq *dmaq;
|
|
u32 dma_status;
|
|
int size;
|
|
} dmaq_desc[] = {
|
|
{ &adapter->dmaq1, 0x10000000, SIZE_OF_BUF_DMA1 },
|
|
{ &adapter->dmaq2, 0x20000000, SIZE_OF_BUF_DMA2 }
|
|
}, *p = dmaq_desc;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++, p++) {
|
|
if (init_dma_queue_one(adapter, p->dmaq, p->size, i) < 0)
|
|
adapter->dma_status &= ~p->dma_status;
|
|
else
|
|
adapter->dma_status |= p->dma_status;
|
|
}
|
|
return (adapter->dma_status & 0x30000000) ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static void free_dma_queue_one(struct adapter *adapter, struct dmaq *dmaq)
|
|
{
|
|
if (dmaq->buffer) {
|
|
pci_free_consistent(adapter->pdev, dmaq->buffer_size + 0x80,
|
|
dmaq->buffer, dmaq->bus_addr);
|
|
memset(dmaq, 0, sizeof(*dmaq));
|
|
}
|
|
}
|
|
|
|
static void free_dma_queue(struct adapter *adapter)
|
|
{
|
|
struct dmaq *dmaq[] = {
|
|
&adapter->dmaq1,
|
|
&adapter->dmaq2,
|
|
NULL
|
|
}, **p;
|
|
|
|
for (p = dmaq; *p; p++)
|
|
free_dma_queue_one(adapter, *p);
|
|
}
|
|
|
|
static void release_adapter(struct adapter *adapter)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
|
|
iounmap(adapter->io_mem);
|
|
pci_disable_device(pdev);
|
|
pci_release_region(pdev, 0);
|
|
pci_release_region(pdev, 1);
|
|
}
|
|
|
|
static void free_adapter_object(struct adapter *adapter)
|
|
{
|
|
dprintk("%s:\n", __FUNCTION__);
|
|
|
|
close_stream(adapter, 0);
|
|
free_irq(adapter->irq, adapter);
|
|
free_dma_queue(adapter);
|
|
release_adapter(adapter);
|
|
kfree(adapter);
|
|
}
|
|
|
|
static struct pci_driver skystar2_pci_driver;
|
|
|
|
static int claim_adapter(struct adapter *adapter)
|
|
{
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
u16 var;
|
|
int ret;
|
|
|
|
ret = pci_request_region(pdev, 1, skystar2_pci_driver.name);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = pci_request_region(pdev, 0, skystar2_pci_driver.name);
|
|
if (ret < 0)
|
|
goto err_pci_release_1;
|
|
|
|
pci_read_config_byte(pdev, PCI_CLASS_REVISION, &adapter->card_revision);
|
|
|
|
dprintk("%s: card revision %x \n", __FUNCTION__, adapter->card_revision);
|
|
|
|
ret = pci_enable_device(pdev);
|
|
if (ret < 0)
|
|
goto err_pci_release_0;
|
|
|
|
pci_read_config_word(pdev, 4, &var);
|
|
|
|
if ((var & 4) == 0)
|
|
pci_set_master(pdev);
|
|
|
|
adapter->io_port = pdev->resource[1].start;
|
|
|
|
adapter->io_mem = ioremap(pdev->resource[0].start, 0x800);
|
|
|
|
if (!adapter->io_mem) {
|
|
dprintk("%s: can not map io memory\n", __FUNCTION__);
|
|
ret = -EIO;
|
|
goto err_pci_disable;
|
|
}
|
|
|
|
dprintk("%s: io memory maped at %p\n", __FUNCTION__, adapter->io_mem);
|
|
|
|
ret = 1;
|
|
out:
|
|
return ret;
|
|
|
|
err_pci_disable:
|
|
pci_disable_device(pdev);
|
|
err_pci_release_0:
|
|
pci_release_region(pdev, 0);
|
|
err_pci_release_1:
|
|
pci_release_region(pdev, 1);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
static int sll_reset_flexcop(struct adapter *adapter)
|
|
{
|
|
write_reg_dw(adapter, 0x208, 0);
|
|
write_reg_dw(adapter, 0x210, 0xb2ff);
|
|
|
|
return 0;
|
|
}
|
|
*/
|
|
|
|
static void decide_how_many_hw_filters(struct adapter *adapter)
|
|
{
|
|
int hw_filters;
|
|
int mod_option_hw_filters;
|
|
|
|
// FlexCop IIb & III have 6+32 hw filters
|
|
// FlexCop II has 6 hw filters, every other should have at least 6
|
|
switch (adapter->b2c2_revision) {
|
|
case 0x82: /* II */
|
|
hw_filters = 6;
|
|
break;
|
|
case 0xc3: /* IIB */
|
|
hw_filters = 6 + 32;
|
|
break;
|
|
case 0xc0: /* III */
|
|
hw_filters = 6 + 32;
|
|
break;
|
|
default:
|
|
hw_filters = 6;
|
|
break;
|
|
}
|
|
printk("%s: the chip has %i hardware filters", __FILE__, hw_filters);
|
|
|
|
mod_option_hw_filters = 0;
|
|
if (enable_hw_filters >= 1)
|
|
mod_option_hw_filters += 6;
|
|
if (enable_hw_filters >= 2)
|
|
mod_option_hw_filters += 32;
|
|
|
|
if (mod_option_hw_filters >= hw_filters) {
|
|
adapter->useable_hw_filters = hw_filters;
|
|
} else {
|
|
adapter->useable_hw_filters = mod_option_hw_filters;
|
|
printk(", but only %d will be used because of module option", mod_option_hw_filters);
|
|
}
|
|
printk("\n");
|
|
dprintk("%s: useable_hardware_filters set to %i\n", __FILE__, adapter->useable_hw_filters);
|
|
}
|
|
|
|
static int driver_initialize(struct pci_dev *pdev)
|
|
{
|
|
struct adapter *adapter;
|
|
u32 tmp;
|
|
int ret = -ENOMEM;
|
|
|
|
adapter = kmalloc(sizeof(struct adapter), GFP_KERNEL);
|
|
if (!adapter) {
|
|
dprintk("%s: out of memory!\n", __FUNCTION__);
|
|
goto out;
|
|
}
|
|
|
|
memset(adapter, 0, sizeof(struct adapter));
|
|
|
|
pci_set_drvdata(pdev,adapter);
|
|
|
|
adapter->pdev = pdev;
|
|
adapter->irq = pdev->irq;
|
|
|
|
ret = claim_adapter(adapter);
|
|
if (ret < 0)
|
|
goto err_kfree;
|
|
|
|
irq_dma_enable_disable_irq(adapter, 0);
|
|
|
|
ret = request_irq(pdev->irq, isr, 0x4000000, "Skystar2", adapter);
|
|
if (ret < 0) {
|
|
dprintk("%s: unable to allocate irq=%d !\n", __FUNCTION__, pdev->irq);
|
|
goto err_release_adapter;
|
|
}
|
|
|
|
read_reg_dw(adapter, 0x208);
|
|
write_reg_dw(adapter, 0x208, 0);
|
|
write_reg_dw(adapter, 0x210, 0xb2ff);
|
|
write_reg_dw(adapter, 0x208, 0x40);
|
|
|
|
ret = init_dma_queue(adapter);
|
|
if (ret < 0)
|
|
goto err_free_irq;
|
|
|
|
adapter->b2c2_revision = (read_reg_dw(adapter, 0x204) >> 0x18);
|
|
|
|
switch (adapter->b2c2_revision) {
|
|
case 0x82:
|
|
printk("%s: FlexCopII(rev.130) chip found\n", __FILE__);
|
|
break;
|
|
case 0xc3:
|
|
printk("%s: FlexCopIIB(rev.195) chip found\n", __FILE__);
|
|
break;
|
|
case 0xc0:
|
|
printk("%s: FlexCopIII(rev.192) chip found\n", __FILE__);
|
|
break;
|
|
default:
|
|
printk("%s: The revision of the FlexCop chip on your card is %d\n", __FILE__, adapter->b2c2_revision);
|
|
printk("%s: This driver works only with FlexCopII(rev.130), FlexCopIIB(rev.195) and FlexCopIII(rev.192).\n", __FILE__);
|
|
ret = -ENODEV;
|
|
goto err_free_dma_queue;
|
|
}
|
|
|
|
decide_how_many_hw_filters(adapter);
|
|
|
|
init_pids(adapter);
|
|
|
|
tmp = read_reg_dw(adapter, 0x204);
|
|
|
|
write_reg_dw(adapter, 0x204, 0);
|
|
mdelay(20);
|
|
|
|
write_reg_dw(adapter, 0x204, tmp);
|
|
mdelay(10);
|
|
|
|
tmp = read_reg_dw(adapter, 0x308);
|
|
write_reg_dw(adapter, 0x308, 0x4000 | tmp);
|
|
|
|
adapter->dw_sram_type = 0x10000;
|
|
|
|
sll_detect_sram_size(adapter);
|
|
|
|
dprintk("%s sram length = %d, sram type= %x\n", __FUNCTION__, sram_length(adapter), adapter->dw_sram_type);
|
|
|
|
sram_set_media_dest(adapter, 1);
|
|
sram_set_net_dest(adapter, 1);
|
|
|
|
ctrl_enable_smc(adapter, 0);
|
|
|
|
sram_set_cai_dest(adapter, 2);
|
|
sram_set_cao_dest(adapter, 2);
|
|
|
|
dma_enable_disable_irq(adapter, 1, 0, 0);
|
|
|
|
if (eeprom_get_mac_addr(adapter, 0, adapter->mac_addr) != 0) {
|
|
printk("%s MAC address = %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x \n", __FUNCTION__, adapter->mac_addr[0],
|
|
adapter->mac_addr[1], adapter->mac_addr[2], adapter->mac_addr[3], adapter->mac_addr[4], adapter->mac_addr[5],
|
|
adapter->mac_addr[6], adapter->mac_addr[7]
|
|
);
|
|
|
|
ca_set_mac_dst_addr_filter(adapter, adapter->mac_addr);
|
|
ctrl_enable_mac(adapter, 1);
|
|
}
|
|
|
|
spin_lock_init(&adapter->lock);
|
|
|
|
out:
|
|
return ret;
|
|
|
|
err_free_dma_queue:
|
|
free_dma_queue(adapter);
|
|
err_free_irq:
|
|
free_irq(pdev->irq, adapter);
|
|
err_release_adapter:
|
|
release_adapter(adapter);
|
|
err_kfree:
|
|
pci_set_drvdata(pdev, NULL);
|
|
kfree(adapter);
|
|
goto out;
|
|
}
|
|
|
|
static void driver_halt(struct pci_dev *pdev)
|
|
{
|
|
struct adapter *adapter = pci_get_drvdata(pdev);
|
|
|
|
irq_dma_enable_disable_irq(adapter, 0);
|
|
|
|
ctrl_enable_receive_data(adapter, 0);
|
|
|
|
free_adapter_object(adapter);
|
|
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static int dvb_start_feed(struct dvb_demux_feed *dvbdmxfeed)
|
|
{
|
|
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
|
|
struct adapter *adapter = (struct adapter *) dvbdmx->priv;
|
|
|
|
dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type);
|
|
|
|
open_stream(adapter, dvbdmxfeed->pid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dvb_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
|
|
{
|
|
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
|
|
struct adapter *adapter = (struct adapter *) dvbdmx->priv;
|
|
|
|
dprintk("%s: PID=%d, type=%d\n", __FUNCTION__, dvbdmxfeed->pid, dvbdmxfeed->type);
|
|
|
|
close_stream(adapter, dvbdmxfeed->pid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* lnb control */
|
|
static void set_tuner_tone(struct adapter *adapter, u8 tone)
|
|
{
|
|
u16 wz_half_period_for_45_mhz[] = { 0x01ff, 0x0154, 0x00ff, 0x00cc };
|
|
u16 ax;
|
|
|
|
dprintk("%s: %u\n", __FUNCTION__, tone);
|
|
|
|
switch (tone) {
|
|
case 1:
|
|
ax = wz_half_period_for_45_mhz[0];
|
|
break;
|
|
case 2:
|
|
ax = wz_half_period_for_45_mhz[1];
|
|
break;
|
|
case 3:
|
|
ax = wz_half_period_for_45_mhz[2];
|
|
break;
|
|
case 4:
|
|
ax = wz_half_period_for_45_mhz[3];
|
|
break;
|
|
|
|
default:
|
|
ax = 0;
|
|
}
|
|
|
|
if (ax != 0) {
|
|
write_reg_dw(adapter, 0x200, ((ax << 0x0f) + (ax & 0x7fff)) | 0x40000000);
|
|
|
|
} else {
|
|
|
|
write_reg_dw(adapter, 0x200, 0x40ff8000);
|
|
}
|
|
}
|
|
|
|
static void set_tuner_polarity(struct adapter *adapter, u8 polarity)
|
|
{
|
|
u32 var;
|
|
|
|
dprintk("%s : polarity = %u \n", __FUNCTION__, polarity);
|
|
|
|
var = read_reg_dw(adapter, 0x204);
|
|
|
|
if (polarity == 0) {
|
|
dprintk("%s: LNB power off\n", __FUNCTION__);
|
|
var = var | 1;
|
|
};
|
|
|
|
if (polarity == 1) {
|
|
var = var & ~1;
|
|
var = var & ~4;
|
|
};
|
|
|
|
if (polarity == 2) {
|
|
var = var & ~1;
|
|
var = var | 4;
|
|
}
|
|
|
|
write_reg_dw(adapter, 0x204, var);
|
|
}
|
|
|
|
static void diseqc_send_bit(struct adapter *adapter, int data)
|
|
{
|
|
set_tuner_tone(adapter, 1);
|
|
udelay(data ? 500 : 1000);
|
|
set_tuner_tone(adapter, 0);
|
|
udelay(data ? 1000 : 500);
|
|
}
|
|
|
|
|
|
static void diseqc_send_byte(struct adapter *adapter, int data)
|
|
{
|
|
int i, par = 1, d;
|
|
|
|
for (i = 7; i >= 0; i--) {
|
|
d = (data >> i) & 1;
|
|
par ^= d;
|
|
diseqc_send_bit(adapter, d);
|
|
}
|
|
|
|
diseqc_send_bit(adapter, par);
|
|
}
|
|
|
|
|
|
static int send_diseqc_msg(struct adapter *adapter, int len, u8 *msg, unsigned long burst)
|
|
{
|
|
int i;
|
|
|
|
set_tuner_tone(adapter, 0);
|
|
mdelay(16);
|
|
|
|
for (i = 0; i < len; i++)
|
|
diseqc_send_byte(adapter, msg[i]);
|
|
|
|
mdelay(16);
|
|
|
|
if (burst != -1) {
|
|
if (burst)
|
|
diseqc_send_byte(adapter, 0xff);
|
|
else {
|
|
set_tuner_tone(adapter, 1);
|
|
udelay(12500);
|
|
set_tuner_tone(adapter, 0);
|
|
}
|
|
msleep(20);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flexcop_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
|
|
{
|
|
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
|
|
|
|
switch(tone) {
|
|
case SEC_TONE_ON:
|
|
set_tuner_tone(adapter, 1);
|
|
break;
|
|
case SEC_TONE_OFF:
|
|
set_tuner_tone(adapter, 0);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flexcop_diseqc_send_master_cmd(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd* cmd)
|
|
{
|
|
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
|
|
|
|
send_diseqc_msg(adapter, cmd->msg_len, cmd->msg, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flexcop_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
|
|
{
|
|
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
|
|
|
|
send_diseqc_msg(adapter, 0, NULL, minicmd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flexcop_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
|
|
{
|
|
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
|
|
|
|
dprintk("%s: FE_SET_VOLTAGE\n", __FUNCTION__);
|
|
|
|
switch (voltage) {
|
|
case SEC_VOLTAGE_13:
|
|
dprintk("%s: SEC_VOLTAGE_13, %x\n", __FUNCTION__, SEC_VOLTAGE_13);
|
|
set_tuner_polarity(adapter, 1);
|
|
return 0;
|
|
|
|
case SEC_VOLTAGE_18:
|
|
dprintk("%s: SEC_VOLTAGE_18, %x\n", __FUNCTION__, SEC_VOLTAGE_18);
|
|
set_tuner_polarity(adapter, 2);
|
|
return 0;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int flexcop_sleep(struct dvb_frontend* fe)
|
|
{
|
|
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
|
|
|
|
dprintk("%s: FE_SLEEP\n", __FUNCTION__);
|
|
set_tuner_polarity(adapter, 0);
|
|
|
|
if (adapter->fe_sleep) return adapter->fe_sleep(fe);
|
|
return 0;
|
|
}
|
|
|
|
static u32 flexcop_i2c_func(struct i2c_adapter *adapter)
|
|
{
|
|
printk("flexcop_i2c_func\n");
|
|
|
|
return I2C_FUNC_I2C;
|
|
}
|
|
|
|
static struct i2c_algorithm flexcop_algo = {
|
|
.name = "flexcop i2c algorithm",
|
|
.id = I2C_ALGO_BIT,
|
|
.master_xfer = master_xfer,
|
|
.functionality = flexcop_i2c_func,
|
|
};
|
|
|
|
|
|
|
|
|
|
static int samsung_tbmu24112_set_symbol_rate(struct dvb_frontend* fe, u32 srate, u32 ratio)
|
|
{
|
|
u8 aclk = 0;
|
|
u8 bclk = 0;
|
|
|
|
if (srate < 1500000) { aclk = 0xb7; bclk = 0x47; }
|
|
else if (srate < 3000000) { aclk = 0xb7; bclk = 0x4b; }
|
|
else if (srate < 7000000) { aclk = 0xb7; bclk = 0x4f; }
|
|
else if (srate < 14000000) { aclk = 0xb7; bclk = 0x53; }
|
|
else if (srate < 30000000) { aclk = 0xb6; bclk = 0x53; }
|
|
else if (srate < 45000000) { aclk = 0xb4; bclk = 0x51; }
|
|
|
|
stv0299_writereg (fe, 0x13, aclk);
|
|
stv0299_writereg (fe, 0x14, bclk);
|
|
stv0299_writereg (fe, 0x1f, (ratio >> 16) & 0xff);
|
|
stv0299_writereg (fe, 0x20, (ratio >> 8) & 0xff);
|
|
stv0299_writereg (fe, 0x21, (ratio ) & 0xf0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int samsung_tbmu24112_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params)
|
|
{
|
|
u8 buf[4];
|
|
u32 div;
|
|
struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) };
|
|
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
|
|
|
|
div = params->frequency / 125;
|
|
|
|
buf[0] = (div >> 8) & 0x7f;
|
|
buf[1] = div & 0xff;
|
|
buf[2] = 0x84; // 0xC4
|
|
buf[3] = 0x08;
|
|
|
|
if (params->frequency < 1500000) buf[3] |= 0x10;
|
|
|
|
if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static u8 samsung_tbmu24112_inittab[] = {
|
|
0x01, 0x15,
|
|
0x02, 0x30,
|
|
0x03, 0x00,
|
|
0x04, 0x7D,
|
|
0x05, 0x35,
|
|
0x06, 0x02,
|
|
0x07, 0x00,
|
|
0x08, 0xC3,
|
|
0x0C, 0x00,
|
|
0x0D, 0x81,
|
|
0x0E, 0x23,
|
|
0x0F, 0x12,
|
|
0x10, 0x7E,
|
|
0x11, 0x84,
|
|
0x12, 0xB9,
|
|
0x13, 0x88,
|
|
0x14, 0x89,
|
|
0x15, 0xC9,
|
|
0x16, 0x00,
|
|
0x17, 0x5C,
|
|
0x18, 0x00,
|
|
0x19, 0x00,
|
|
0x1A, 0x00,
|
|
0x1C, 0x00,
|
|
0x1D, 0x00,
|
|
0x1E, 0x00,
|
|
0x1F, 0x3A,
|
|
0x20, 0x2E,
|
|
0x21, 0x80,
|
|
0x22, 0xFF,
|
|
0x23, 0xC1,
|
|
0x28, 0x00,
|
|
0x29, 0x1E,
|
|
0x2A, 0x14,
|
|
0x2B, 0x0F,
|
|
0x2C, 0x09,
|
|
0x2D, 0x05,
|
|
0x31, 0x1F,
|
|
0x32, 0x19,
|
|
0x33, 0xFE,
|
|
0x34, 0x93,
|
|
0xff, 0xff,
|
|
};
|
|
|
|
static struct stv0299_config samsung_tbmu24112_config = {
|
|
.demod_address = 0x68,
|
|
.inittab = samsung_tbmu24112_inittab,
|
|
.mclk = 88000000UL,
|
|
.invert = 0,
|
|
.enhanced_tuning = 0,
|
|
.skip_reinit = 0,
|
|
.lock_output = STV0229_LOCKOUTPUT_LK,
|
|
.volt13_op0_op1 = STV0299_VOLT13_OP1,
|
|
.min_delay_ms = 100,
|
|
.set_symbol_rate = samsung_tbmu24112_set_symbol_rate,
|
|
.pll_set = samsung_tbmu24112_pll_set,
|
|
};
|
|
|
|
|
|
|
|
static int nxt2002_request_firmware(struct dvb_frontend* fe, const struct firmware **fw, char* name)
|
|
{
|
|
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
|
|
|
|
return request_firmware(fw, name, &adapter->pdev->dev);
|
|
}
|
|
|
|
|
|
static struct nxt2002_config samsung_tbmv_config = {
|
|
.demod_address = 0x0A,
|
|
.request_firmware = nxt2002_request_firmware,
|
|
};
|
|
|
|
static int samsung_tdtc9251dh0_demod_init(struct dvb_frontend* fe)
|
|
{
|
|
static u8 mt352_clock_config [] = { 0x89, 0x18, 0x2d };
|
|
static u8 mt352_reset [] = { 0x50, 0x80 };
|
|
static u8 mt352_adc_ctl_1_cfg [] = { 0x8E, 0x40 };
|
|
static u8 mt352_agc_cfg [] = { 0x67, 0x28, 0xa1 };
|
|
static u8 mt352_capt_range_cfg[] = { 0x75, 0x32 };
|
|
|
|
mt352_write(fe, mt352_clock_config, sizeof(mt352_clock_config));
|
|
udelay(2000);
|
|
mt352_write(fe, mt352_reset, sizeof(mt352_reset));
|
|
mt352_write(fe, mt352_adc_ctl_1_cfg, sizeof(mt352_adc_ctl_1_cfg));
|
|
|
|
mt352_write(fe, mt352_agc_cfg, sizeof(mt352_agc_cfg));
|
|
mt352_write(fe, mt352_capt_range_cfg, sizeof(mt352_capt_range_cfg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int samsung_tdtc9251dh0_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params, u8* pllbuf)
|
|
{
|
|
u32 div;
|
|
unsigned char bs = 0;
|
|
|
|
#define IF_FREQUENCYx6 217 /* 6 * 36.16666666667MHz */
|
|
div = (((params->frequency + 83333) * 3) / 500000) + IF_FREQUENCYx6;
|
|
|
|
if (params->frequency >= 48000000 && params->frequency <= 154000000) bs = 0x09;
|
|
if (params->frequency >= 161000000 && params->frequency <= 439000000) bs = 0x0a;
|
|
if (params->frequency >= 447000000 && params->frequency <= 863000000) bs = 0x08;
|
|
|
|
pllbuf[0] = 0xc2; // Note: non-linux standard PLL i2c address
|
|
pllbuf[1] = div >> 8;
|
|
pllbuf[2] = div & 0xff;
|
|
pllbuf[3] = 0xcc;
|
|
pllbuf[4] = bs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct mt352_config samsung_tdtc9251dh0_config = {
|
|
|
|
.demod_address = 0x0f,
|
|
.demod_init = samsung_tdtc9251dh0_demod_init,
|
|
.pll_set = samsung_tdtc9251dh0_pll_set,
|
|
};
|
|
|
|
static int skystar23_samsung_tbdu18132_pll_set(struct dvb_frontend* fe, struct dvb_frontend_parameters* params)
|
|
{
|
|
u8 buf[4];
|
|
u32 div;
|
|
struct i2c_msg msg = { .addr = 0x61, .flags = 0, .buf = buf, .len = sizeof(buf) };
|
|
struct adapter* adapter = (struct adapter*) fe->dvb->priv;
|
|
|
|
div = (params->frequency + (125/2)) / 125;
|
|
|
|
buf[0] = (div >> 8) & 0x7f;
|
|
buf[1] = (div >> 0) & 0xff;
|
|
buf[2] = 0x84 | ((div >> 10) & 0x60);
|
|
buf[3] = 0x80;
|
|
|
|
if (params->frequency < 1550000)
|
|
buf[3] |= 0x02;
|
|
|
|
if (i2c_transfer (&adapter->i2c_adap, &msg, 1) != 1) return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static struct mt312_config skystar23_samsung_tbdu18132_config = {
|
|
|
|
.demod_address = 0x0e,
|
|
.pll_set = skystar23_samsung_tbdu18132_pll_set,
|
|
};
|
|
|
|
|
|
|
|
|
|
static void frontend_init(struct adapter *skystar2)
|
|
{
|
|
switch(skystar2->pdev->device) {
|
|
case 0x2103: // Technisat Skystar2 OR Technisat Airstar2 (DVB-T or ATSC)
|
|
|
|
// Attempt to load the Nextwave nxt2002 for ATSC support
|
|
skystar2->fe = nxt2002_attach(&samsung_tbmv_config, &skystar2->i2c_adap);
|
|
if (skystar2->fe != NULL) {
|
|
skystar2->fe_sleep = skystar2->fe->ops->sleep;
|
|
skystar2->fe->ops->sleep = flexcop_sleep;
|
|
break;
|
|
}
|
|
|
|
// try the skystar2 v2.6 first (stv0299/Samsung tbmu24112(sl1935))
|
|
skystar2->fe = stv0299_attach(&samsung_tbmu24112_config, &skystar2->i2c_adap);
|
|
if (skystar2->fe != NULL) {
|
|
skystar2->fe->ops->set_voltage = flexcop_set_voltage;
|
|
skystar2->fe_sleep = skystar2->fe->ops->sleep;
|
|
skystar2->fe->ops->sleep = flexcop_sleep;
|
|
break;
|
|
}
|
|
|
|
// try the airstar2 (mt352/Samsung tdtc9251dh0(??))
|
|
skystar2->fe = mt352_attach(&samsung_tdtc9251dh0_config, &skystar2->i2c_adap);
|
|
if (skystar2->fe != NULL) {
|
|
skystar2->fe->ops->info.frequency_min = 474000000;
|
|
skystar2->fe->ops->info.frequency_max = 858000000;
|
|
break;
|
|
}
|
|
|
|
// try the skystar2 v2.3 (vp310/Samsung tbdu18132(tsa5059))
|
|
skystar2->fe = vp310_attach(&skystar23_samsung_tbdu18132_config, &skystar2->i2c_adap);
|
|
if (skystar2->fe != NULL) {
|
|
skystar2->fe->ops->diseqc_send_master_cmd = flexcop_diseqc_send_master_cmd;
|
|
skystar2->fe->ops->diseqc_send_burst = flexcop_diseqc_send_burst;
|
|
skystar2->fe->ops->set_tone = flexcop_set_tone;
|
|
skystar2->fe->ops->set_voltage = flexcop_set_voltage;
|
|
skystar2->fe_sleep = skystar2->fe->ops->sleep;
|
|
skystar2->fe->ops->sleep = flexcop_sleep;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (skystar2->fe == NULL) {
|
|
printk("skystar2: A frontend driver was not found for device %04x/%04x subsystem %04x/%04x\n",
|
|
skystar2->pdev->vendor,
|
|
skystar2->pdev->device,
|
|
skystar2->pdev->subsystem_vendor,
|
|
skystar2->pdev->subsystem_device);
|
|
} else {
|
|
if (dvb_register_frontend(&skystar2->dvb_adapter, skystar2->fe)) {
|
|
printk("skystar2: Frontend registration failed!\n");
|
|
if (skystar2->fe->ops->release)
|
|
skystar2->fe->ops->release(skystar2->fe);
|
|
skystar2->fe = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int skystar2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
struct adapter *adapter;
|
|
struct dvb_adapter *dvb_adapter;
|
|
struct dvb_demux *dvbdemux;
|
|
struct dmx_demux *dmx;
|
|
int ret = -ENODEV;
|
|
|
|
if (!pdev)
|
|
goto out;
|
|
|
|
ret = driver_initialize(pdev);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
adapter = pci_get_drvdata(pdev);
|
|
dvb_adapter = &adapter->dvb_adapter;
|
|
|
|
ret = dvb_register_adapter(dvb_adapter, skystar2_pci_driver.name,
|
|
THIS_MODULE);
|
|
if (ret < 0) {
|
|
printk("%s: Error registering DVB adapter\n", __FUNCTION__);
|
|
goto err_halt;
|
|
}
|
|
|
|
dvb_adapter->priv = adapter;
|
|
|
|
|
|
init_MUTEX(&adapter->i2c_sem);
|
|
|
|
|
|
memset(&adapter->i2c_adap, 0, sizeof(struct i2c_adapter));
|
|
strcpy(adapter->i2c_adap.name, "SkyStar2");
|
|
|
|
i2c_set_adapdata(&adapter->i2c_adap, adapter);
|
|
|
|
#ifdef I2C_ADAP_CLASS_TV_DIGITAL
|
|
adapter->i2c_adap.class = I2C_ADAP_CLASS_TV_DIGITAL;
|
|
#else
|
|
adapter->i2c_adap.class = I2C_CLASS_TV_DIGITAL;
|
|
#endif
|
|
adapter->i2c_adap.algo = &flexcop_algo;
|
|
adapter->i2c_adap.algo_data = NULL;
|
|
adapter->i2c_adap.id = I2C_ALGO_BIT;
|
|
|
|
ret = i2c_add_adapter(&adapter->i2c_adap);
|
|
if (ret < 0)
|
|
goto err_dvb_unregister;
|
|
|
|
dvbdemux = &adapter->demux;
|
|
|
|
dvbdemux->priv = adapter;
|
|
dvbdemux->filternum = N_PID_SLOTS;
|
|
dvbdemux->feednum = N_PID_SLOTS;
|
|
dvbdemux->start_feed = dvb_start_feed;
|
|
dvbdemux->stop_feed = dvb_stop_feed;
|
|
dvbdemux->write_to_decoder = NULL;
|
|
dvbdemux->dmx.capabilities = (DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING);
|
|
|
|
ret = dvb_dmx_init(&adapter->demux);
|
|
if (ret < 0)
|
|
goto err_i2c_del;
|
|
|
|
dmx = &dvbdemux->dmx;
|
|
|
|
adapter->hw_frontend.source = DMX_FRONTEND_0;
|
|
adapter->dmxdev.filternum = N_PID_SLOTS;
|
|
adapter->dmxdev.demux = dmx;
|
|
adapter->dmxdev.capabilities = 0;
|
|
|
|
ret = dvb_dmxdev_init(&adapter->dmxdev, &adapter->dvb_adapter);
|
|
if (ret < 0)
|
|
goto err_dmx_release;
|
|
|
|
ret = dmx->add_frontend(dmx, &adapter->hw_frontend);
|
|
if (ret < 0)
|
|
goto err_dmxdev_release;
|
|
|
|
adapter->mem_frontend.source = DMX_MEMORY_FE;
|
|
|
|
ret = dmx->add_frontend(dmx, &adapter->mem_frontend);
|
|
if (ret < 0)
|
|
goto err_remove_hw_frontend;
|
|
|
|
ret = dmx->connect_frontend(dmx, &adapter->hw_frontend);
|
|
if (ret < 0)
|
|
goto err_remove_mem_frontend;
|
|
|
|
dvb_net_init(&adapter->dvb_adapter, &adapter->dvbnet, &dvbdemux->dmx);
|
|
|
|
frontend_init(adapter);
|
|
out:
|
|
return ret;
|
|
|
|
err_remove_mem_frontend:
|
|
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->mem_frontend);
|
|
err_remove_hw_frontend:
|
|
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &adapter->hw_frontend);
|
|
err_dmxdev_release:
|
|
dvb_dmxdev_release(&adapter->dmxdev);
|
|
err_dmx_release:
|
|
dvb_dmx_release(&adapter->demux);
|
|
err_i2c_del:
|
|
i2c_del_adapter(&adapter->i2c_adap);
|
|
err_dvb_unregister:
|
|
dvb_unregister_adapter(&adapter->dvb_adapter);
|
|
err_halt:
|
|
driver_halt(pdev);
|
|
goto out;
|
|
}
|
|
|
|
static void skystar2_remove(struct pci_dev *pdev)
|
|
{
|
|
struct adapter *adapter = pci_get_drvdata(pdev);
|
|
struct dvb_demux *dvbdemux;
|
|
struct dmx_demux *dmx;
|
|
|
|
if (!adapter)
|
|
return;
|
|
|
|
dvb_net_release(&adapter->dvbnet);
|
|
dvbdemux = &adapter->demux;
|
|
dmx = &dvbdemux->dmx;
|
|
|
|
dmx->close(dmx);
|
|
dmx->remove_frontend(dmx, &adapter->hw_frontend);
|
|
dmx->remove_frontend(dmx, &adapter->mem_frontend);
|
|
|
|
dvb_dmxdev_release(&adapter->dmxdev);
|
|
dvb_dmx_release(dvbdemux);
|
|
|
|
if (adapter->fe != NULL)
|
|
dvb_unregister_frontend(adapter->fe);
|
|
|
|
dvb_unregister_adapter(&adapter->dvb_adapter);
|
|
|
|
i2c_del_adapter(&adapter->i2c_adap);
|
|
|
|
driver_halt(pdev);
|
|
}
|
|
|
|
static struct pci_device_id skystar2_pci_tbl[] = {
|
|
{0x000013d0, 0x00002103, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000},
|
|
/* {0x000013d0, 0x00002200, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x00000000}, UNDEFINED HARDWARE - mail linuxtv.org list */ //FCIII
|
|
{0,},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, skystar2_pci_tbl);
|
|
|
|
static struct pci_driver skystar2_pci_driver = {
|
|
.name = "SkyStar2",
|
|
.id_table = skystar2_pci_tbl,
|
|
.probe = skystar2_probe,
|
|
.remove = skystar2_remove,
|
|
};
|
|
|
|
static int skystar2_init(void)
|
|
{
|
|
return pci_register_driver(&skystar2_pci_driver);
|
|
}
|
|
|
|
static void skystar2_cleanup(void)
|
|
{
|
|
pci_unregister_driver(&skystar2_pci_driver);
|
|
}
|
|
|
|
module_init(skystar2_init);
|
|
module_exit(skystar2_cleanup);
|
|
|
|
MODULE_DESCRIPTION("Technisat SkyStar2 DVB PCI Driver");
|
|
MODULE_LICENSE("GPL");
|