kernel-fxtec-pro1x/drivers/net/wireless/ath9k/main.c
David S. Miller f11c179eea Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
Conflicts:
	drivers/net/wireless/orinoco/orinoco.c
2009-02-25 00:02:05 -08:00

2727 lines
68 KiB
C

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/nl80211.h>
#include "ath9k.h"
#define ATH_PCI_VERSION "0.1"
static char *dev_info = "ath9k";
MODULE_AUTHOR("Atheros Communications");
MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
/* We use the hw_value as an index into our private channel structure */
#define CHAN2G(_freq, _idx) { \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 30, \
}
#define CHAN5G(_freq, _idx) { \
.band = IEEE80211_BAND_5GHZ, \
.center_freq = (_freq), \
.hw_value = (_idx), \
.max_power = 30, \
}
/* Some 2 GHz radios are actually tunable on 2312-2732
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static struct ieee80211_channel ath9k_2ghz_chantable[] = {
CHAN2G(2412, 0), /* Channel 1 */
CHAN2G(2417, 1), /* Channel 2 */
CHAN2G(2422, 2), /* Channel 3 */
CHAN2G(2427, 3), /* Channel 4 */
CHAN2G(2432, 4), /* Channel 5 */
CHAN2G(2437, 5), /* Channel 6 */
CHAN2G(2442, 6), /* Channel 7 */
CHAN2G(2447, 7), /* Channel 8 */
CHAN2G(2452, 8), /* Channel 9 */
CHAN2G(2457, 9), /* Channel 10 */
CHAN2G(2462, 10), /* Channel 11 */
CHAN2G(2467, 11), /* Channel 12 */
CHAN2G(2472, 12), /* Channel 13 */
CHAN2G(2484, 13), /* Channel 14 */
};
/* Some 5 GHz radios are actually tunable on XXXX-YYYY
* on 5 MHz steps, we support the channels which we know
* we have calibration data for all cards though to make
* this static */
static struct ieee80211_channel ath9k_5ghz_chantable[] = {
/* _We_ call this UNII 1 */
CHAN5G(5180, 14), /* Channel 36 */
CHAN5G(5200, 15), /* Channel 40 */
CHAN5G(5220, 16), /* Channel 44 */
CHAN5G(5240, 17), /* Channel 48 */
/* _We_ call this UNII 2 */
CHAN5G(5260, 18), /* Channel 52 */
CHAN5G(5280, 19), /* Channel 56 */
CHAN5G(5300, 20), /* Channel 60 */
CHAN5G(5320, 21), /* Channel 64 */
/* _We_ call this "Middle band" */
CHAN5G(5500, 22), /* Channel 100 */
CHAN5G(5520, 23), /* Channel 104 */
CHAN5G(5540, 24), /* Channel 108 */
CHAN5G(5560, 25), /* Channel 112 */
CHAN5G(5580, 26), /* Channel 116 */
CHAN5G(5600, 27), /* Channel 120 */
CHAN5G(5620, 28), /* Channel 124 */
CHAN5G(5640, 29), /* Channel 128 */
CHAN5G(5660, 30), /* Channel 132 */
CHAN5G(5680, 31), /* Channel 136 */
CHAN5G(5700, 32), /* Channel 140 */
/* _We_ call this UNII 3 */
CHAN5G(5745, 33), /* Channel 149 */
CHAN5G(5765, 34), /* Channel 153 */
CHAN5G(5785, 35), /* Channel 157 */
CHAN5G(5805, 36), /* Channel 161 */
CHAN5G(5825, 37), /* Channel 165 */
};
static void ath_cache_conf_rate(struct ath_softc *sc,
struct ieee80211_conf *conf)
{
switch (conf->channel->band) {
case IEEE80211_BAND_2GHZ:
if (conf_is_ht20(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
else if (conf_is_ht40_minus(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
else if (conf_is_ht40_plus(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
else
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11G];
break;
case IEEE80211_BAND_5GHZ:
if (conf_is_ht20(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
else if (conf_is_ht40_minus(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
else if (conf_is_ht40_plus(conf))
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
else
sc->cur_rate_table =
sc->hw_rate_table[ATH9K_MODE_11A];
break;
default:
BUG_ON(1);
break;
}
}
static void ath_update_txpow(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
u32 txpow;
if (sc->curtxpow != sc->config.txpowlimit) {
ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
/* read back in case value is clamped */
ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
sc->curtxpow = txpow;
}
}
static u8 parse_mpdudensity(u8 mpdudensity)
{
/*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
* 0 for no restriction
* 1 for 1/4 us
* 2 for 1/2 us
* 3 for 1 us
* 4 for 2 us
* 5 for 4 us
* 6 for 8 us
* 7 for 16 us
*/
switch (mpdudensity) {
case 0:
return 0;
case 1:
case 2:
case 3:
/* Our lower layer calculations limit our precision to
1 microsecond */
return 1;
case 4:
return 2;
case 5:
return 4;
case 6:
return 8;
case 7:
return 16;
default:
return 0;
}
}
static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
{
struct ath_rate_table *rate_table = NULL;
struct ieee80211_supported_band *sband;
struct ieee80211_rate *rate;
int i, maxrates;
switch (band) {
case IEEE80211_BAND_2GHZ:
rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
break;
case IEEE80211_BAND_5GHZ:
rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
break;
default:
break;
}
if (rate_table == NULL)
return;
sband = &sc->sbands[band];
rate = sc->rates[band];
if (rate_table->rate_cnt > ATH_RATE_MAX)
maxrates = ATH_RATE_MAX;
else
maxrates = rate_table->rate_cnt;
for (i = 0; i < maxrates; i++) {
rate[i].bitrate = rate_table->info[i].ratekbps / 100;
rate[i].hw_value = rate_table->info[i].ratecode;
if (rate_table->info[i].short_preamble) {
rate[i].hw_value_short = rate_table->info[i].ratecode |
rate_table->info[i].short_preamble;
rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
}
sband->n_bitrates++;
DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
rate[i].bitrate / 10, rate[i].hw_value);
}
}
/*
* Set/change channels. If the channel is really being changed, it's done
* by reseting the chip. To accomplish this we must first cleanup any pending
* DMA, then restart stuff.
*/
static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
{
struct ath_hw *ah = sc->sc_ah;
bool fastcc = true, stopped;
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_channel *channel = hw->conf.channel;
int r;
if (sc->sc_flags & SC_OP_INVALID)
return -EIO;
ath9k_ps_wakeup(sc);
/*
* This is only performed if the channel settings have
* actually changed.
*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, false);
stopped = ath_stoprecv(sc);
/* XXX: do not flush receive queue here. We don't want
* to flush data frames already in queue because of
* changing channel. */
if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
fastcc = false;
DPRINTF(sc, ATH_DBG_CONFIG,
"(%u MHz) -> (%u MHz), chanwidth: %d\n",
sc->sc_ah->curchan->channel,
channel->center_freq, sc->tx_chan_width);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, hchan, fastcc);
if (r) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset channel (%u Mhz) "
"reset status %u\n",
channel->center_freq, r);
spin_unlock_bh(&sc->sc_resetlock);
return r;
}
spin_unlock_bh(&sc->sc_resetlock);
sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
sc->sc_flags &= ~SC_OP_FULL_RESET;
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to restart recv logic\n");
return -EIO;
}
ath_cache_conf_rate(sc, &hw->conf);
ath_update_txpow(sc);
ath9k_hw_set_interrupts(ah, sc->imask);
ath9k_ps_restore(sc);
return 0;
}
/*
* This routine performs the periodic noise floor calibration function
* that is used to adjust and optimize the chip performance. This
* takes environmental changes (location, temperature) into account.
* When the task is complete, it reschedules itself depending on the
* appropriate interval that was calculated.
*/
static void ath_ani_calibrate(unsigned long data)
{
struct ath_softc *sc;
struct ath_hw *ah;
bool longcal = false;
bool shortcal = false;
bool aniflag = false;
unsigned int timestamp = jiffies_to_msecs(jiffies);
u32 cal_interval;
sc = (struct ath_softc *)data;
ah = sc->sc_ah;
/*
* don't calibrate when we're scanning.
* we are most likely not on our home channel.
*/
if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
return;
/* Long calibration runs independently of short calibration. */
if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
longcal = true;
DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
sc->ani.longcal_timer = timestamp;
}
/* Short calibration applies only while caldone is false */
if (!sc->ani.caldone) {
if ((timestamp - sc->ani.shortcal_timer) >=
ATH_SHORT_CALINTERVAL) {
shortcal = true;
DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
sc->ani.shortcal_timer = timestamp;
sc->ani.resetcal_timer = timestamp;
}
} else {
if ((timestamp - sc->ani.resetcal_timer) >=
ATH_RESTART_CALINTERVAL) {
sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
if (sc->ani.caldone)
sc->ani.resetcal_timer = timestamp;
}
}
/* Verify whether we must check ANI */
if ((timestamp - sc->ani.checkani_timer) >=
ATH_ANI_POLLINTERVAL) {
aniflag = true;
sc->ani.checkani_timer = timestamp;
}
/* Skip all processing if there's nothing to do. */
if (longcal || shortcal || aniflag) {
/* Call ANI routine if necessary */
if (aniflag)
ath9k_hw_ani_monitor(ah, &sc->nodestats,
ah->curchan);
/* Perform calibration if necessary */
if (longcal || shortcal) {
bool iscaldone = false;
if (ath9k_hw_calibrate(ah, ah->curchan,
sc->rx_chainmask, longcal,
&iscaldone)) {
if (longcal)
sc->ani.noise_floor =
ath9k_hw_getchan_noise(ah,
ah->curchan);
DPRINTF(sc, ATH_DBG_ANI,
"calibrate chan %u/%x nf: %d\n",
ah->curchan->channel,
ah->curchan->channelFlags,
sc->ani.noise_floor);
} else {
DPRINTF(sc, ATH_DBG_ANY,
"calibrate chan %u/%x failed\n",
ah->curchan->channel,
ah->curchan->channelFlags);
}
sc->ani.caldone = iscaldone;
}
}
/*
* Set timer interval based on previous results.
* The interval must be the shortest necessary to satisfy ANI,
* short calibration and long calibration.
*/
cal_interval = ATH_LONG_CALINTERVAL;
if (sc->sc_ah->config.enable_ani)
cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
if (!sc->ani.caldone)
cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
}
/*
* Update tx/rx chainmask. For legacy association,
* hard code chainmask to 1x1, for 11n association, use
* the chainmask configuration, for bt coexistence, use
* the chainmask configuration even in legacy mode.
*/
static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
{
sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
if (is_ht ||
(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
} else {
sc->tx_chainmask = 1;
sc->rx_chainmask = 1;
}
DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
sc->tx_chainmask, sc->rx_chainmask);
}
static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
{
struct ath_node *an;
an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR)
ath_tx_node_init(sc, an);
an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
sta->ht_cap.ampdu_factor);
an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
}
static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
{
struct ath_node *an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR)
ath_tx_node_cleanup(sc, an);
}
static void ath9k_tasklet(unsigned long data)
{
struct ath_softc *sc = (struct ath_softc *)data;
u32 status = sc->intrstatus;
if (status & ATH9K_INT_FATAL) {
/* need a chip reset */
ath_reset(sc, false);
return;
} else {
if (status &
(ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
spin_lock_bh(&sc->rx.rxflushlock);
ath_rx_tasklet(sc, 0);
spin_unlock_bh(&sc->rx.rxflushlock);
}
/* XXX: optimize this */
if (status & ATH9K_INT_TX)
ath_tx_tasklet(sc);
}
/* re-enable hardware interrupt */
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
}
irqreturn_t ath_isr(int irq, void *dev)
{
struct ath_softc *sc = dev;
struct ath_hw *ah = sc->sc_ah;
enum ath9k_int status;
bool sched = false;
do {
if (sc->sc_flags & SC_OP_INVALID) {
/*
* The hardware is not ready/present, don't
* touch anything. Note this can happen early
* on if the IRQ is shared.
*/
return IRQ_NONE;
}
if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
return IRQ_NONE;
}
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
status &= sc->imask; /* discard unasked-for bits */
/*
* If there are no status bits set, then this interrupt was not
* for me (should have been caught above).
*/
if (!status)
return IRQ_NONE;
sc->intrstatus = status;
if (status & ATH9K_INT_FATAL) {
/* need a chip reset */
sched = true;
} else if (status & ATH9K_INT_RXORN) {
/* need a chip reset */
sched = true;
} else {
if (status & ATH9K_INT_SWBA) {
/* schedule a tasklet for beacon handling */
tasklet_schedule(&sc->bcon_tasklet);
}
if (status & ATH9K_INT_RXEOL) {
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work
* at least on older hardware revs.
*/
sched = true;
}
if (status & ATH9K_INT_TXURN)
/* bump tx trigger level */
ath9k_hw_updatetxtriglevel(ah, true);
/* XXX: optimize this */
if (status & ATH9K_INT_RX)
sched = true;
if (status & ATH9K_INT_TX)
sched = true;
if (status & ATH9K_INT_BMISS)
sched = true;
/* carrier sense timeout */
if (status & ATH9K_INT_CST)
sched = true;
if (status & ATH9K_INT_MIB) {
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to
* fire.
*/
ath9k_hw_set_interrupts(ah, 0);
/*
* Let the hal handle the event. We assume
* it will clear whatever condition caused
* the interrupt.
*/
ath9k_hw_procmibevent(ah, &sc->nodestats);
ath9k_hw_set_interrupts(ah, sc->imask);
}
if (status & ATH9K_INT_TIM_TIMER) {
if (!(ah->caps.hw_caps &
ATH9K_HW_CAP_AUTOSLEEP)) {
/* Clear RxAbort bit so that we can
* receive frames */
ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
ath9k_hw_setrxabort(ah, 0);
sched = true;
sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
}
}
}
} while (0);
ath_debug_stat_interrupt(sc, status);
if (sched) {
/* turn off every interrupt except SWBA */
ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
tasklet_schedule(&sc->intr_tq);
}
return IRQ_HANDLED;
}
static u32 ath_get_extchanmode(struct ath_softc *sc,
struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type)
{
u32 chanmode = 0;
switch (chan->band) {
case IEEE80211_BAND_2GHZ:
switch(channel_type) {
case NL80211_CHAN_NO_HT:
case NL80211_CHAN_HT20:
chanmode = CHANNEL_G_HT20;
break;
case NL80211_CHAN_HT40PLUS:
chanmode = CHANNEL_G_HT40PLUS;
break;
case NL80211_CHAN_HT40MINUS:
chanmode = CHANNEL_G_HT40MINUS;
break;
}
break;
case IEEE80211_BAND_5GHZ:
switch(channel_type) {
case NL80211_CHAN_NO_HT:
case NL80211_CHAN_HT20:
chanmode = CHANNEL_A_HT20;
break;
case NL80211_CHAN_HT40PLUS:
chanmode = CHANNEL_A_HT40PLUS;
break;
case NL80211_CHAN_HT40MINUS:
chanmode = CHANNEL_A_HT40MINUS;
break;
}
break;
default:
break;
}
return chanmode;
}
static int ath_keyset(struct ath_softc *sc, u16 keyix,
struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
{
bool status;
status = ath9k_hw_set_keycache_entry(sc->sc_ah,
keyix, hk, mac, false);
return status != false;
}
static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
struct ath9k_keyval *hk,
const u8 *addr)
{
const u8 *key_rxmic;
const u8 *key_txmic;
key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
if (addr == NULL) {
/* Group key installation */
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
return ath_keyset(sc, keyix, hk, addr);
}
if (!sc->splitmic) {
/*
* data key goes at first index,
* the hal handles the MIC keys at index+64.
*/
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
return ath_keyset(sc, keyix, hk, addr);
}
/*
* TX key goes at first index, RX key at +32.
* The hal handles the MIC keys at index+64.
*/
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
if (!ath_keyset(sc, keyix, hk, NULL)) {
/* Txmic entry failed. No need to proceed further */
DPRINTF(sc, ATH_DBG_KEYCACHE,
"Setting TX MIC Key Failed\n");
return 0;
}
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
/* XXX delete tx key on failure? */
return ath_keyset(sc, keyix + 32, hk, addr);
}
static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
{
int i;
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
if (test_bit(i, sc->keymap) ||
test_bit(i + 64, sc->keymap))
continue; /* At least one part of TKIP key allocated */
if (sc->splitmic &&
(test_bit(i + 32, sc->keymap) ||
test_bit(i + 64 + 32, sc->keymap)))
continue; /* At least one part of TKIP key allocated */
/* Found a free slot for a TKIP key */
return i;
}
return -1;
}
static int ath_reserve_key_cache_slot(struct ath_softc *sc)
{
int i;
/* First, try to find slots that would not be available for TKIP. */
if (sc->splitmic) {
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
if (!test_bit(i, sc->keymap) &&
(test_bit(i + 32, sc->keymap) ||
test_bit(i + 64, sc->keymap) ||
test_bit(i + 64 + 32, sc->keymap)))
return i;
if (!test_bit(i + 32, sc->keymap) &&
(test_bit(i, sc->keymap) ||
test_bit(i + 64, sc->keymap) ||
test_bit(i + 64 + 32, sc->keymap)))
return i + 32;
if (!test_bit(i + 64, sc->keymap) &&
(test_bit(i , sc->keymap) ||
test_bit(i + 32, sc->keymap) ||
test_bit(i + 64 + 32, sc->keymap)))
return i + 64;
if (!test_bit(i + 64 + 32, sc->keymap) &&
(test_bit(i, sc->keymap) ||
test_bit(i + 32, sc->keymap) ||
test_bit(i + 64, sc->keymap)))
return i + 64 + 32;
}
} else {
for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
if (!test_bit(i, sc->keymap) &&
test_bit(i + 64, sc->keymap))
return i;
if (test_bit(i, sc->keymap) &&
!test_bit(i + 64, sc->keymap))
return i + 64;
}
}
/* No partially used TKIP slots, pick any available slot */
for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
/* Do not allow slots that could be needed for TKIP group keys
* to be used. This limitation could be removed if we know that
* TKIP will not be used. */
if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
continue;
if (sc->splitmic) {
if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
continue;
if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
continue;
}
if (!test_bit(i, sc->keymap))
return i; /* Found a free slot for a key */
}
/* No free slot found */
return -1;
}
static int ath_key_config(struct ath_softc *sc,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath9k_keyval hk;
const u8 *mac = NULL;
int ret = 0;
int idx;
memset(&hk, 0, sizeof(hk));
switch (key->alg) {
case ALG_WEP:
hk.kv_type = ATH9K_CIPHER_WEP;
break;
case ALG_TKIP:
hk.kv_type = ATH9K_CIPHER_TKIP;
break;
case ALG_CCMP:
hk.kv_type = ATH9K_CIPHER_AES_CCM;
break;
default:
return -EOPNOTSUPP;
}
hk.kv_len = key->keylen;
memcpy(hk.kv_val, key->key, key->keylen);
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
/* For now, use the default keys for broadcast keys. This may
* need to change with virtual interfaces. */
idx = key->keyidx;
} else if (key->keyidx) {
struct ieee80211_vif *vif;
if (WARN_ON(!sta))
return -EOPNOTSUPP;
mac = sta->addr;
vif = sc->vifs[0];
if (vif->type != NL80211_IFTYPE_AP) {
/* Only keyidx 0 should be used with unicast key, but
* allow this for client mode for now. */
idx = key->keyidx;
} else
return -EIO;
} else {
if (WARN_ON(!sta))
return -EOPNOTSUPP;
mac = sta->addr;
if (key->alg == ALG_TKIP)
idx = ath_reserve_key_cache_slot_tkip(sc);
else
idx = ath_reserve_key_cache_slot(sc);
if (idx < 0)
return -ENOSPC; /* no free key cache entries */
}
if (key->alg == ALG_TKIP)
ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
else
ret = ath_keyset(sc, idx, &hk, mac);
if (!ret)
return -EIO;
set_bit(idx, sc->keymap);
if (key->alg == ALG_TKIP) {
set_bit(idx + 64, sc->keymap);
if (sc->splitmic) {
set_bit(idx + 32, sc->keymap);
set_bit(idx + 64 + 32, sc->keymap);
}
}
return idx;
}
static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
{
ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
if (key->hw_key_idx < IEEE80211_WEP_NKID)
return;
clear_bit(key->hw_key_idx, sc->keymap);
if (key->alg != ALG_TKIP)
return;
clear_bit(key->hw_key_idx + 64, sc->keymap);
if (sc->splitmic) {
clear_bit(key->hw_key_idx + 32, sc->keymap);
clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
}
}
static void setup_ht_cap(struct ath_softc *sc,
struct ieee80211_sta_ht_cap *ht_info)
{
#define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
#define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
ht_info->ht_supported = true;
ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_SM_PS |
IEEE80211_HT_CAP_SGI_40 |
IEEE80211_HT_CAP_DSSSCCK40;
ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
/* set up supported mcs set */
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
switch(sc->rx_chainmask) {
case 1:
ht_info->mcs.rx_mask[0] = 0xff;
break;
case 3:
case 5:
case 7:
default:
ht_info->mcs.rx_mask[0] = 0xff;
ht_info->mcs.rx_mask[1] = 0xff;
break;
}
ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
}
static void ath9k_bss_assoc_info(struct ath_softc *sc,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf)
{
struct ath_vif *avp = (void *)vif->drv_priv;
if (bss_conf->assoc) {
DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
bss_conf->aid, sc->curbssid);
/* New association, store aid */
if (avp->av_opmode == NL80211_IFTYPE_STATION) {
sc->curaid = bss_conf->aid;
ath9k_hw_write_associd(sc);
}
/* Configure the beacon */
ath_beacon_config(sc, 0);
sc->sc_flags |= SC_OP_BEACONS;
/* Reset rssi stats */
sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
/* Start ANI */
mod_timer(&sc->ani.timer,
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
} else {
DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
sc->curaid = 0;
}
}
/********************************/
/* LED functions */
/********************************/
static void ath_led_blink_work(struct work_struct *work)
{
struct ath_softc *sc = container_of(work, struct ath_softc,
ath_led_blink_work.work);
if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
return;
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
(sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
(sc->sc_flags & SC_OP_LED_ON) ?
msecs_to_jiffies(sc->led_off_duration) :
msecs_to_jiffies(sc->led_on_duration));
sc->led_on_duration =
max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25);
sc->led_off_duration =
max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10);
sc->led_on_cnt = sc->led_off_cnt = 0;
if (sc->sc_flags & SC_OP_LED_ON)
sc->sc_flags &= ~SC_OP_LED_ON;
else
sc->sc_flags |= SC_OP_LED_ON;
}
static void ath_led_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
struct ath_softc *sc = led->sc;
switch (brightness) {
case LED_OFF:
if (led->led_type == ATH_LED_ASSOC ||
led->led_type == ATH_LED_RADIO) {
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
(led->led_type == ATH_LED_RADIO));
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
if (led->led_type == ATH_LED_RADIO)
sc->sc_flags &= ~SC_OP_LED_ON;
} else {
sc->led_off_cnt++;
}
break;
case LED_FULL:
if (led->led_type == ATH_LED_ASSOC) {
sc->sc_flags |= SC_OP_LED_ASSOCIATED;
queue_delayed_work(sc->hw->workqueue,
&sc->ath_led_blink_work, 0);
} else if (led->led_type == ATH_LED_RADIO) {
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
sc->sc_flags |= SC_OP_LED_ON;
} else {
sc->led_on_cnt++;
}
break;
default:
break;
}
}
static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
char *trigger)
{
int ret;
led->sc = sc;
led->led_cdev.name = led->name;
led->led_cdev.default_trigger = trigger;
led->led_cdev.brightness_set = ath_led_brightness;
ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
if (ret)
DPRINTF(sc, ATH_DBG_FATAL,
"Failed to register led:%s", led->name);
else
led->registered = 1;
return ret;
}
static void ath_unregister_led(struct ath_led *led)
{
if (led->registered) {
led_classdev_unregister(&led->led_cdev);
led->registered = 0;
}
}
static void ath_deinit_leds(struct ath_softc *sc)
{
cancel_delayed_work_sync(&sc->ath_led_blink_work);
ath_unregister_led(&sc->assoc_led);
sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
ath_unregister_led(&sc->tx_led);
ath_unregister_led(&sc->rx_led);
ath_unregister_led(&sc->radio_led);
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
}
static void ath_init_leds(struct ath_softc *sc)
{
char *trigger;
int ret;
/* Configure gpio 1 for output */
ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
/* LED off, active low */
ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
trigger = ieee80211_get_radio_led_name(sc->hw);
snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
"ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->radio_led, trigger);
sc->radio_led.led_type = ATH_LED_RADIO;
if (ret)
goto fail;
trigger = ieee80211_get_assoc_led_name(sc->hw);
snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
"ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->assoc_led, trigger);
sc->assoc_led.led_type = ATH_LED_ASSOC;
if (ret)
goto fail;
trigger = ieee80211_get_tx_led_name(sc->hw);
snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
"ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->tx_led, trigger);
sc->tx_led.led_type = ATH_LED_TX;
if (ret)
goto fail;
trigger = ieee80211_get_rx_led_name(sc->hw);
snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
"ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
ret = ath_register_led(sc, &sc->rx_led, trigger);
sc->rx_led.led_type = ATH_LED_RX;
if (ret)
goto fail;
return;
fail:
ath_deinit_leds(sc);
}
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
/*******************/
/* Rfkill */
/*******************/
static void ath_radio_enable(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ieee80211_channel *channel = sc->hw->conf.channel;
int r;
ath9k_ps_wakeup(sc);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, ah->curchan, false);
if (r) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset channel %u (%uMhz) ",
"reset status %u\n",
channel->center_freq, r);
}
spin_unlock_bh(&sc->sc_resetlock);
ath_update_txpow(sc);
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to restart recv logic\n");
return;
}
if (sc->sc_flags & SC_OP_BEACONS)
ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
/* Re-Enable interrupts */
ath9k_hw_set_interrupts(ah, sc->imask);
/* Enable LED */
ath9k_hw_cfg_output(ah, ATH_LED_PIN,
AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
ieee80211_wake_queues(sc->hw);
ath9k_ps_restore(sc);
}
static void ath_radio_disable(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
struct ieee80211_channel *channel = sc->hw->conf.channel;
int r;
ath9k_ps_wakeup(sc);
ieee80211_stop_queues(sc->hw);
/* Disable LED */
ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
/* Disable interrupts */
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, false); /* clear pending tx frames */
ath_stoprecv(sc); /* turn off frame recv */
ath_flushrecv(sc); /* flush recv queue */
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, ah->curchan, false);
if (r) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset channel %u (%uMhz) "
"reset status %u\n",
channel->center_freq, r);
}
spin_unlock_bh(&sc->sc_resetlock);
ath9k_hw_phy_disable(ah);
ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
ath9k_ps_restore(sc);
}
static bool ath_is_rfkill_set(struct ath_softc *sc)
{
struct ath_hw *ah = sc->sc_ah;
return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
ah->rfkill_polarity;
}
/* h/w rfkill poll function */
static void ath_rfkill_poll(struct work_struct *work)
{
struct ath_softc *sc = container_of(work, struct ath_softc,
rf_kill.rfkill_poll.work);
bool radio_on;
if (sc->sc_flags & SC_OP_INVALID)
return;
radio_on = !ath_is_rfkill_set(sc);
/*
* enable/disable radio only when there is a
* state change in RF switch
*/
if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
enum rfkill_state state;
if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
: RFKILL_STATE_HARD_BLOCKED;
} else if (radio_on) {
ath_radio_enable(sc);
state = RFKILL_STATE_UNBLOCKED;
} else {
ath_radio_disable(sc);
state = RFKILL_STATE_HARD_BLOCKED;
}
if (state == RFKILL_STATE_HARD_BLOCKED)
sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
else
sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
rfkill_force_state(sc->rf_kill.rfkill, state);
}
queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
}
/* s/w rfkill handler */
static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
{
struct ath_softc *sc = data;
switch (state) {
case RFKILL_STATE_SOFT_BLOCKED:
if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
SC_OP_RFKILL_SW_BLOCKED)))
ath_radio_disable(sc);
sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
return 0;
case RFKILL_STATE_UNBLOCKED:
if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
"radio as it is disabled by h/w\n");
return -EPERM;
}
ath_radio_enable(sc);
}
return 0;
default:
return -EINVAL;
}
}
/* Init s/w rfkill */
static int ath_init_sw_rfkill(struct ath_softc *sc)
{
sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
RFKILL_TYPE_WLAN);
if (!sc->rf_kill.rfkill) {
DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
return -ENOMEM;
}
snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
"ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
sc->rf_kill.rfkill->data = sc;
sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
sc->rf_kill.rfkill->user_claim_unsupported = 1;
return 0;
}
/* Deinitialize rfkill */
static void ath_deinit_rfkill(struct ath_softc *sc)
{
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
rfkill_unregister(sc->rf_kill.rfkill);
sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
sc->rf_kill.rfkill = NULL;
}
}
static int ath_start_rfkill_poll(struct ath_softc *sc)
{
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
queue_delayed_work(sc->hw->workqueue,
&sc->rf_kill.rfkill_poll, 0);
if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
if (rfkill_register(sc->rf_kill.rfkill)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to register rfkill\n");
rfkill_free(sc->rf_kill.rfkill);
/* Deinitialize the device */
ath_cleanup(sc);
return -EIO;
} else {
sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
}
}
return 0;
}
#endif /* CONFIG_RFKILL */
void ath_cleanup(struct ath_softc *sc)
{
ath_detach(sc);
free_irq(sc->irq, sc);
ath_bus_cleanup(sc);
ieee80211_free_hw(sc->hw);
}
void ath_detach(struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
int i = 0;
ath9k_ps_wakeup(sc);
DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
ath_deinit_rfkill(sc);
#endif
ath_deinit_leds(sc);
ieee80211_unregister_hw(hw);
ath_rx_cleanup(sc);
ath_tx_cleanup(sc);
tasklet_kill(&sc->intr_tq);
tasklet_kill(&sc->bcon_tasklet);
if (!(sc->sc_flags & SC_OP_INVALID))
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
ath9k_hw_detach(sc->sc_ah);
ath9k_exit_debug(sc);
ath9k_ps_restore(sc);
}
static int ath_init(u16 devid, struct ath_softc *sc)
{
struct ath_hw *ah = NULL;
int status;
int error = 0, i;
int csz = 0;
/* XXX: hardware will not be ready until ath_open() being called */
sc->sc_flags |= SC_OP_INVALID;
if (ath9k_init_debug(sc) < 0)
printk(KERN_ERR "Unable to create debugfs files\n");
spin_lock_init(&sc->sc_resetlock);
mutex_init(&sc->mutex);
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
(unsigned long)sc);
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
ath_read_cachesize(sc, &csz);
/* XXX assert csz is non-zero */
sc->cachelsz = csz << 2; /* convert to bytes */
ah = ath9k_hw_attach(devid, sc, &status);
if (ah == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to attach hardware; HAL status %d\n", status);
error = -ENXIO;
goto bad;
}
sc->sc_ah = ah;
/* Get the hardware key cache size. */
sc->keymax = ah->caps.keycache_size;
if (sc->keymax > ATH_KEYMAX) {
DPRINTF(sc, ATH_DBG_KEYCACHE,
"Warning, using only %u entries in %u key cache\n",
ATH_KEYMAX, sc->keymax);
sc->keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->keymax; i++)
ath9k_hw_keyreset(ah, (u16) i);
if (ath9k_regd_init(sc->sc_ah))
goto bad;
/* default to MONITOR mode */
sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
/* Setup rate tables */
ath_rate_attach(sc);
ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles reseting
* these queues at the needed time.
*/
sc->beacon.beaconq = ath_beaconq_setup(ah);
if (sc->beacon.beaconq == -1) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup a beacon xmit queue\n");
error = -EIO;
goto bad2;
}
sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
if (sc->beacon.cabq == NULL) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup CAB xmit queue\n");
error = -EIO;
goto bad2;
}
sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
ath_cabq_update(sc);
for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
sc->tx.hwq_map[i] = -1;
/* Setup data queues */
/* NB: ensure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup xmit queue for BK traffic\n");
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup xmit queue for BE traffic\n");
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup xmit queue for VI traffic\n");
error = -EIO;
goto bad2;
}
if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to setup xmit queue for VO traffic\n");
error = -EIO;
goto bad2;
}
/* Initializes the noise floor to a reasonable default value.
* Later on this will be updated during ANI processing. */
sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)) {
/*
* Whether we should enable h/w TKIP MIC.
* XXX: if we don't support WME TKIP MIC, then we wouldn't
* report WMM capable, so it's always safe to turn on
* TKIP MIC in this case.
*/
ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
0, 1, NULL);
}
/*
* Check whether the separate key cache entries
* are required to handle both tx+rx MIC keys.
* With split mic keys the number of stations is limited
* to 27 otherwise 59.
*/
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)
&& ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
ATH9K_CIPHER_MIC, NULL)
&& ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
0, NULL))
sc->splitmic = 1;
/* turn on mcast key search if possible */
if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
(void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1, NULL);
sc->config.txpowlimit = ATH_TXPOWER_MAX;
/* 11n Capabilities */
if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
sc->sc_flags |= SC_OP_TXAGGR;
sc->sc_flags |= SC_OP_RXAGGR;
}
sc->tx_chainmask = ah->caps.tx_chainmask;
sc->rx_chainmask = ah->caps.rx_chainmask;
ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
sc->rx.defant = ath9k_hw_getdefantenna(ah);
if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
ATH_SET_VIF_BSSID_MASK(sc->bssidmask);
ath9k_hw_setbssidmask(sc);
}
sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
/* initialize beacon slots */
for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
sc->beacon.bslot[i] = ATH_IF_ID_ANY;
/* save MISC configurations */
sc->config.swBeaconProcess = 1;
/* setup channels and rates */
sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
sc->rates[IEEE80211_BAND_2GHZ];
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
ARRAY_SIZE(ath9k_2ghz_chantable);
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
sc->rates[IEEE80211_BAND_5GHZ];
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
ARRAY_SIZE(ath9k_5ghz_chantable);
}
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
ath9k_hw_btcoex_enable(sc->sc_ah);
return 0;
bad2:
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
bad:
if (ah)
ath9k_hw_detach(ah);
ath9k_exit_debug(sc);
return error;
}
int ath_attach(u16 devid, struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
int error = 0, i;
DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
error = ath_init(devid, sc);
if (error != 0)
return error;
/* get mac address from hardware and set in mac80211 */
SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_AMPDU_AGGREGATION |
IEEE80211_HW_SUPPORTS_PS |
IEEE80211_HW_PS_NULLFUNC_STACK;
if (AR_SREV_9160_10_OR_LATER(sc->sc_ah))
hw->flags |= IEEE80211_HW_MFP_CAPABLE;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
hw->wiphy->reg_notifier = ath9k_reg_notifier;
hw->wiphy->strict_regulatory = true;
hw->queues = 4;
hw->max_rates = 4;
hw->max_rate_tries = ATH_11N_TXMAXTRY;
hw->sta_data_size = sizeof(struct ath_node);
hw->vif_data_size = sizeof(struct ath_vif);
hw->rate_control_algorithm = "ath9k_rate_control";
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
}
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&sc->sbands[IEEE80211_BAND_5GHZ];
/* initialize tx/rx engine */
error = ath_tx_init(sc, ATH_TXBUF);
if (error != 0)
goto error_attach;
error = ath_rx_init(sc, ATH_RXBUF);
if (error != 0)
goto error_attach;
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
/* Initialze h/w Rfkill */
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
/* Initialize s/w rfkill */
error = ath_init_sw_rfkill(sc);
if (error)
goto error_attach;
#endif
if (ath9k_is_world_regd(sc->sc_ah)) {
/* Anything applied here (prior to wiphy registratoin) gets
* saved on the wiphy orig_* parameters */
const struct ieee80211_regdomain *regd =
ath9k_world_regdomain(sc->sc_ah);
hw->wiphy->custom_regulatory = true;
hw->wiphy->strict_regulatory = false;
wiphy_apply_custom_regulatory(sc->hw->wiphy, regd);
ath9k_reg_apply_radar_flags(hw->wiphy);
ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
} else {
/* This gets applied in the case of the absense of CRDA,
* its our own custom world regulatory domain, similar to
* cfg80211's but we enable passive scanning */
const struct ieee80211_regdomain *regd =
ath9k_default_world_regdomain();
wiphy_apply_custom_regulatory(sc->hw->wiphy, regd);
ath9k_reg_apply_radar_flags(hw->wiphy);
ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
}
error = ieee80211_register_hw(hw);
if (!ath9k_is_world_regd(sc->sc_ah))
regulatory_hint(hw->wiphy, sc->sc_ah->regulatory.alpha2);
/* Initialize LED control */
ath_init_leds(sc);
return 0;
error_attach:
/* cleanup tx queues */
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->tx.txq[i]);
ath9k_hw_detach(sc->sc_ah);
ath9k_exit_debug(sc);
return error;
}
int ath_reset(struct ath_softc *sc, bool retry_tx)
{
struct ath_hw *ah = sc->sc_ah;
struct ieee80211_hw *hw = sc->hw;
int r;
ath9k_hw_set_interrupts(ah, 0);
ath_drain_all_txq(sc, retry_tx);
ath_stoprecv(sc);
ath_flushrecv(sc);
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
if (r)
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset hardware; reset status %u\n", r);
spin_unlock_bh(&sc->sc_resetlock);
if (ath_startrecv(sc) != 0)
DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
/*
* We may be doing a reset in response to a request
* that changes the channel so update any state that
* might change as a result.
*/
ath_cache_conf_rate(sc, &hw->conf);
ath_update_txpow(sc);
if (sc->sc_flags & SC_OP_BEACONS)
ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
ath9k_hw_set_interrupts(ah, sc->imask);
if (retry_tx) {
int i;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
spin_lock_bh(&sc->tx.txq[i].axq_lock);
ath_txq_schedule(sc, &sc->tx.txq[i]);
spin_unlock_bh(&sc->tx.txq[i].axq_lock);
}
}
}
return r;
}
/*
* This function will allocate both the DMA descriptor structure, and the
* buffers it contains. These are used to contain the descriptors used
* by the system.
*/
int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
struct list_head *head, const char *name,
int nbuf, int ndesc)
{
#define DS2PHYS(_dd, _ds) \
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
struct ath_desc *ds;
struct ath_buf *bf;
int i, bsize, error;
DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
name, nbuf, ndesc);
/* ath_desc must be a multiple of DWORDs */
if ((sizeof(struct ath_desc) % 4) != 0) {
DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
ASSERT((sizeof(struct ath_desc) % 4) == 0);
error = -ENOMEM;
goto fail;
}
dd->dd_name = name;
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
/*
* Need additional DMA memory because we can't use
* descriptors that cross the 4K page boundary. Assume
* one skipped descriptor per 4K page.
*/
if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
u32 ndesc_skipped =
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
u32 dma_len;
while (ndesc_skipped) {
dma_len = ndesc_skipped * sizeof(struct ath_desc);
dd->dd_desc_len += dma_len;
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
};
}
/* allocate descriptors */
dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
&dd->dd_desc_paddr, GFP_ATOMIC);
if (dd->dd_desc == NULL) {
error = -ENOMEM;
goto fail;
}
ds = dd->dd_desc;
DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
dd->dd_name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf;
bf = kmalloc(bsize, GFP_KERNEL);
if (bf == NULL) {
error = -ENOMEM;
goto fail2;
}
memset(bf, 0, bsize);
dd->dd_bufptr = bf;
INIT_LIST_HEAD(head);
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
if (!(sc->sc_ah->caps.hw_caps &
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
/*
* Skip descriptor addresses which can cause 4KB
* boundary crossing (addr + length) with a 32 dword
* descriptor fetch.
*/
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
ASSERT((caddr_t) bf->bf_desc <
((caddr_t) dd->dd_desc +
dd->dd_desc_len));
ds += ndesc;
bf->bf_desc = ds;
bf->bf_daddr = DS2PHYS(dd, ds);
}
}
list_add_tail(&bf->list, head);
}
return 0;
fail2:
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
fail:
memset(dd, 0, sizeof(*dd));
return error;
#undef ATH_DESC_4KB_BOUND_CHECK
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
#undef DS2PHYS
}
void ath_descdma_cleanup(struct ath_softc *sc,
struct ath_descdma *dd,
struct list_head *head)
{
dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
dd->dd_desc_paddr);
INIT_LIST_HEAD(head);
kfree(dd->dd_bufptr);
memset(dd, 0, sizeof(*dd));
}
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case 0:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
break;
case 1:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
break;
case 2:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
break;
case 3:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
break;
default:
qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
break;
}
return qnum;
}
int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
{
int qnum;
switch (queue) {
case ATH9K_WME_AC_VO:
qnum = 0;
break;
case ATH9K_WME_AC_VI:
qnum = 1;
break;
case ATH9K_WME_AC_BE:
qnum = 2;
break;
case ATH9K_WME_AC_BK:
qnum = 3;
break;
default:
qnum = -1;
break;
}
return qnum;
}
/* XXX: Remove me once we don't depend on ath9k_channel for all
* this redundant data */
static void ath9k_update_ichannel(struct ath_softc *sc,
struct ath9k_channel *ichan)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_channel *chan = hw->conf.channel;
struct ieee80211_conf *conf = &hw->conf;
ichan->channel = chan->center_freq;
ichan->chan = chan;
if (chan->band == IEEE80211_BAND_2GHZ) {
ichan->chanmode = CHANNEL_G;
ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
} else {
ichan->chanmode = CHANNEL_A;
ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
}
sc->tx_chan_width = ATH9K_HT_MACMODE_20;
if (conf_is_ht(conf)) {
if (conf_is_ht40(conf))
sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
ichan->chanmode = ath_get_extchanmode(sc, chan,
conf->channel_type);
}
}
/**********************/
/* mac80211 callbacks */
/**********************/
static int ath9k_start(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
struct ieee80211_channel *curchan = hw->conf.channel;
struct ath9k_channel *init_channel;
int r, pos;
DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
"initial channel: %d MHz\n", curchan->center_freq);
mutex_lock(&sc->mutex);
/* setup initial channel */
pos = curchan->hw_value;
init_channel = &sc->sc_ah->channels[pos];
ath9k_update_ichannel(sc, init_channel);
/* Reset SERDES registers */
ath9k_hw_configpcipowersave(sc->sc_ah, 0);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
spin_lock_bh(&sc->sc_resetlock);
r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
if (r) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset hardware; reset status %u "
"(freq %u MHz)\n", r,
curchan->center_freq);
spin_unlock_bh(&sc->sc_resetlock);
goto mutex_unlock;
}
spin_unlock_bh(&sc->sc_resetlock);
/*
* This is needed only to setup initial state
* but it's best done after a reset.
*/
ath_update_txpow(sc);
/*
* Setup the hardware after reset:
* The receive engine is set going.
* Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to start recv logic\n");
r = -EIO;
goto mutex_unlock;
}
/* Setup our intr mask. */
sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
sc->imask |= ATH9K_INT_GTT;
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
sc->imask |= ATH9K_INT_CST;
ath_cache_conf_rate(sc, &hw->conf);
sc->sc_flags &= ~SC_OP_INVALID;
/* Disable BMISS interrupt when we're not associated */
sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
ieee80211_wake_queues(sc->hw);
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
r = ath_start_rfkill_poll(sc);
#endif
mutex_unlock:
mutex_unlock(&sc->mutex);
return r;
}
static int ath9k_tx(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ath_softc *sc = hw->priv;
struct ath_tx_control txctl;
int hdrlen, padsize;
memset(&txctl, 0, sizeof(struct ath_tx_control));
/*
* As a temporary workaround, assign seq# here; this will likely need
* to be cleaned up to work better with Beacon transmission and virtual
* BSSes.
*/
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
sc->tx.seq_no += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
}
/* Add the padding after the header if this is not already done */
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
if (hdrlen & 3) {
padsize = hdrlen % 4;
if (skb_headroom(skb) < padsize)
return -1;
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, hdrlen);
}
/* Check if a tx queue is available */
txctl.txq = ath_test_get_txq(sc, skb);
if (!txctl.txq)
goto exit;
DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
if (ath_tx_start(sc, skb, &txctl) != 0) {
DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
goto exit;
}
return 0;
exit:
dev_kfree_skb_any(skb);
return 0;
}
static void ath9k_stop(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
if (sc->sc_flags & SC_OP_INVALID) {
DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
return;
}
mutex_lock(&sc->mutex);
ieee80211_stop_queues(sc->hw);
/* make sure h/w will not generate any interrupt
* before setting the invalid flag. */
ath9k_hw_set_interrupts(sc->sc_ah, 0);
if (!(sc->sc_flags & SC_OP_INVALID)) {
ath_drain_all_txq(sc, false);
ath_stoprecv(sc);
ath9k_hw_phy_disable(sc->sc_ah);
} else
sc->rx.rxlink = NULL;
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
#endif
/* disable HAL and put h/w to sleep */
ath9k_hw_disable(sc->sc_ah);
ath9k_hw_configpcipowersave(sc->sc_ah, 1);
sc->sc_flags |= SC_OP_INVALID;
mutex_unlock(&sc->mutex);
DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
}
static int ath9k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ath_vif *avp = (void *)conf->vif->drv_priv;
enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
/* Support only vif for now */
if (sc->nvifs)
return -ENOBUFS;
mutex_lock(&sc->mutex);
switch (conf->type) {
case NL80211_IFTYPE_STATION:
ic_opmode = NL80211_IFTYPE_STATION;
break;
case NL80211_IFTYPE_ADHOC:
ic_opmode = NL80211_IFTYPE_ADHOC;
break;
case NL80211_IFTYPE_AP:
ic_opmode = NL80211_IFTYPE_AP;
break;
default:
DPRINTF(sc, ATH_DBG_FATAL,
"Interface type %d not yet supported\n", conf->type);
return -EOPNOTSUPP;
}
DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
/* Set the VIF opmode */
avp->av_opmode = ic_opmode;
avp->av_bslot = -1;
if (ic_opmode == NL80211_IFTYPE_AP)
ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
sc->vifs[0] = conf->vif;
sc->nvifs++;
/* Set the device opmode */
sc->sc_ah->opmode = ic_opmode;
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if (ath9k_hw_phycounters(sc->sc_ah) &&
((conf->type == NL80211_IFTYPE_STATION) ||
(conf->type == NL80211_IFTYPE_ADHOC)))
sc->imask |= ATH9K_INT_MIB;
/*
* Some hardware processes the TIM IE and fires an
* interrupt when the TIM bit is set. For hardware
* that does, if not overridden by configuration,
* enable the TIM interrupt when operating as station.
*/
if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
(conf->type == NL80211_IFTYPE_STATION) &&
!sc->config.swBeaconProcess)
sc->imask |= ATH9K_INT_TIM;
ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
if (conf->type == NL80211_IFTYPE_AP) {
/* TODO: is this a suitable place to start ANI for AP mode? */
/* Start ANI */
mod_timer(&sc->ani.timer,
jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
}
mutex_unlock(&sc->mutex);
return 0;
}
static void ath9k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_if_init_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ath_vif *avp = (void *)conf->vif->drv_priv;
DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
mutex_lock(&sc->mutex);
/* Stop ANI */
del_timer_sync(&sc->ani.timer);
/* Reclaim beacon resources */
if (sc->sc_ah->opmode == NL80211_IFTYPE_AP ||
sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) {
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
ath_beacon_return(sc, avp);
}
sc->sc_flags &= ~SC_OP_BEACONS;
sc->vifs[0] = NULL;
sc->nvifs--;
mutex_unlock(&sc->mutex);
}
static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath_softc *sc = hw->priv;
struct ieee80211_conf *conf = &hw->conf;
mutex_lock(&sc->mutex);
if (changed & IEEE80211_CONF_CHANGE_PS) {
if (conf->flags & IEEE80211_CONF_PS) {
if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
sc->imask |= ATH9K_INT_TIM_TIMER;
ath9k_hw_set_interrupts(sc->sc_ah,
sc->imask);
}
ath9k_hw_setrxabort(sc->sc_ah, 1);
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
} else {
ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
ath9k_hw_setrxabort(sc->sc_ah, 0);
sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
if (sc->imask & ATH9K_INT_TIM_TIMER) {
sc->imask &= ~ATH9K_INT_TIM_TIMER;
ath9k_hw_set_interrupts(sc->sc_ah,
sc->imask);
}
}
}
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
struct ieee80211_channel *curchan = hw->conf.channel;
int pos = curchan->hw_value;
DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
curchan->center_freq);
/* XXX: remove me eventualy */
ath9k_update_ichannel(sc, &sc->sc_ah->channels[pos]);
ath_update_chainmask(sc, conf_is_ht(conf));
if (ath_set_channel(sc, &sc->sc_ah->channels[pos]) < 0) {
DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
mutex_unlock(&sc->mutex);
return -EINVAL;
}
}
if (changed & IEEE80211_CONF_CHANGE_POWER)
sc->config.txpowlimit = 2 * conf->power_level;
mutex_unlock(&sc->mutex);
return 0;
}
static int ath9k_config_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf)
{
struct ath_softc *sc = hw->priv;
struct ath_hw *ah = sc->sc_ah;
struct ath_vif *avp = (void *)vif->drv_priv;
u32 rfilt = 0;
int error, i;
/* TODO: Need to decide which hw opmode to use for multi-interface
* cases */
if (vif->type == NL80211_IFTYPE_AP &&
ah->opmode != NL80211_IFTYPE_AP) {
ah->opmode = NL80211_IFTYPE_STATION;
ath9k_hw_setopmode(ah);
memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
sc->curaid = 0;
ath9k_hw_write_associd(sc);
/* Request full reset to get hw opmode changed properly */
sc->sc_flags |= SC_OP_FULL_RESET;
}
if ((conf->changed & IEEE80211_IFCC_BSSID) &&
!is_zero_ether_addr(conf->bssid)) {
switch (vif->type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
/* Set BSSID */
memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
sc->curaid = 0;
ath9k_hw_write_associd(sc);
/* Set aggregation protection mode parameters */
sc->config.ath_aggr_prot = 0;
DPRINTF(sc, ATH_DBG_CONFIG,
"RX filter 0x%x bssid %pM aid 0x%x\n",
rfilt, sc->curbssid, sc->curaid);
/* need to reconfigure the beacon */
sc->sc_flags &= ~SC_OP_BEACONS ;
break;
default:
break;
}
}
if ((vif->type == NL80211_IFTYPE_ADHOC) ||
(vif->type == NL80211_IFTYPE_AP)) {
if ((conf->changed & IEEE80211_IFCC_BEACON) ||
(conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
conf->enable_beacon)) {
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; we may be called
* with beacon transmission active.
*/
ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
error = ath_beacon_alloc(sc, 0);
if (error != 0)
return error;
ath_beacon_sync(sc, 0);
}
}
/* Check for WLAN_CAPABILITY_PRIVACY ? */
if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
ath9k_hw_keysetmac(sc->sc_ah,
(u16)i,
sc->curbssid);
}
/* Only legacy IBSS for now */
if (vif->type == NL80211_IFTYPE_ADHOC)
ath_update_chainmask(sc, 0);
return 0;
}
#define SUPPORTED_FILTERS \
(FIF_PROMISC_IN_BSS | \
FIF_ALLMULTI | \
FIF_CONTROL | \
FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC | \
FIF_FCSFAIL)
/* FIXME: sc->sc_full_reset ? */
static void ath9k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count,
struct dev_mc_list *mclist)
{
struct ath_softc *sc = hw->priv;
u32 rfilt;
changed_flags &= SUPPORTED_FILTERS;
*total_flags &= SUPPORTED_FILTERS;
sc->rx.rxfilter = *total_flags;
rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
if (*total_flags & FIF_BCN_PRBRESP_PROMISC) {
memcpy(sc->curbssid, ath_bcast_mac, ETH_ALEN);
sc->curaid = 0;
ath9k_hw_write_associd(sc);
}
}
DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
}
static void ath9k_sta_notify(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum sta_notify_cmd cmd,
struct ieee80211_sta *sta)
{
struct ath_softc *sc = hw->priv;
switch (cmd) {
case STA_NOTIFY_ADD:
ath_node_attach(sc, sta);
break;
case STA_NOTIFY_REMOVE:
ath_node_detach(sc, sta);
break;
default:
break;
}
}
static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct ath_softc *sc = hw->priv;
struct ath9k_tx_queue_info qi;
int ret = 0, qnum;
if (queue >= WME_NUM_AC)
return 0;
mutex_lock(&sc->mutex);
qi.tqi_aifs = params->aifs;
qi.tqi_cwmin = params->cw_min;
qi.tqi_cwmax = params->cw_max;
qi.tqi_burstTime = params->txop;
qnum = ath_get_hal_qnum(queue, sc);
DPRINTF(sc, ATH_DBG_CONFIG,
"Configure tx [queue/halq] [%d/%d], "
"aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
queue, qnum, params->aifs, params->cw_min,
params->cw_max, params->txop);
ret = ath_txq_update(sc, qnum, &qi);
if (ret)
DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
mutex_unlock(&sc->mutex);
return ret;
}
static int ath9k_set_key(struct ieee80211_hw *hw,
enum set_key_cmd cmd,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath_softc *sc = hw->priv;
int ret = 0;
mutex_lock(&sc->mutex);
ath9k_ps_wakeup(sc);
DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
switch (cmd) {
case SET_KEY:
ret = ath_key_config(sc, sta, key);
if (ret >= 0) {
key->hw_key_idx = ret;
/* push IV and Michael MIC generation to stack */
key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
if (key->alg == ALG_TKIP)
key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
ret = 0;
}
break;
case DISABLE_KEY:
ath_key_delete(sc, key);
break;
default:
ret = -EINVAL;
}
ath9k_ps_restore(sc);
mutex_unlock(&sc->mutex);
return ret;
}
static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changed)
{
struct ath_softc *sc = hw->priv;
mutex_lock(&sc->mutex);
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
bss_conf->use_short_preamble);
if (bss_conf->use_short_preamble)
sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
else
sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
}
if (changed & BSS_CHANGED_ERP_CTS_PROT) {
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
bss_conf->use_cts_prot);
if (bss_conf->use_cts_prot &&
hw->conf.channel->band != IEEE80211_BAND_5GHZ)
sc->sc_flags |= SC_OP_PROTECT_ENABLE;
else
sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
}
if (changed & BSS_CHANGED_ASSOC) {
DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
bss_conf->assoc);
ath9k_bss_assoc_info(sc, vif, bss_conf);
}
mutex_unlock(&sc->mutex);
}
static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
{
u64 tsf;
struct ath_softc *sc = hw->priv;
mutex_lock(&sc->mutex);
tsf = ath9k_hw_gettsf64(sc->sc_ah);
mutex_unlock(&sc->mutex);
return tsf;
}
static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
{
struct ath_softc *sc = hw->priv;
mutex_lock(&sc->mutex);
ath9k_hw_settsf64(sc->sc_ah, tsf);
mutex_unlock(&sc->mutex);
}
static void ath9k_reset_tsf(struct ieee80211_hw *hw)
{
struct ath_softc *sc = hw->priv;
mutex_lock(&sc->mutex);
ath9k_hw_reset_tsf(sc->sc_ah);
mutex_unlock(&sc->mutex);
}
static int ath9k_ampdu_action(struct ieee80211_hw *hw,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta,
u16 tid, u16 *ssn)
{
struct ath_softc *sc = hw->priv;
int ret = 0;
switch (action) {
case IEEE80211_AMPDU_RX_START:
if (!(sc->sc_flags & SC_OP_RXAGGR))
ret = -ENOTSUPP;
break;
case IEEE80211_AMPDU_RX_STOP:
break;
case IEEE80211_AMPDU_TX_START:
ret = ath_tx_aggr_start(sc, sta, tid, ssn);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to start TX aggregation\n");
else
ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP:
ret = ath_tx_aggr_stop(sc, sta, tid);
if (ret < 0)
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to stop TX aggregation\n");
ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_RESUME:
ath_tx_aggr_resume(sc, sta, tid);
break;
default:
DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
}
return ret;
}
struct ieee80211_ops ath9k_ops = {
.tx = ath9k_tx,
.start = ath9k_start,
.stop = ath9k_stop,
.add_interface = ath9k_add_interface,
.remove_interface = ath9k_remove_interface,
.config = ath9k_config,
.config_interface = ath9k_config_interface,
.configure_filter = ath9k_configure_filter,
.sta_notify = ath9k_sta_notify,
.conf_tx = ath9k_conf_tx,
.bss_info_changed = ath9k_bss_info_changed,
.set_key = ath9k_set_key,
.get_tsf = ath9k_get_tsf,
.set_tsf = ath9k_set_tsf,
.reset_tsf = ath9k_reset_tsf,
.ampdu_action = ath9k_ampdu_action,
};
static struct {
u32 version;
const char * name;
} ath_mac_bb_names[] = {
{ AR_SREV_VERSION_5416_PCI, "5416" },
{ AR_SREV_VERSION_5416_PCIE, "5418" },
{ AR_SREV_VERSION_9100, "9100" },
{ AR_SREV_VERSION_9160, "9160" },
{ AR_SREV_VERSION_9280, "9280" },
{ AR_SREV_VERSION_9285, "9285" }
};
static struct {
u16 version;
const char * name;
} ath_rf_names[] = {
{ 0, "5133" },
{ AR_RAD5133_SREV_MAJOR, "5133" },
{ AR_RAD5122_SREV_MAJOR, "5122" },
{ AR_RAD2133_SREV_MAJOR, "2133" },
{ AR_RAD2122_SREV_MAJOR, "2122" }
};
/*
* Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
*/
const char *
ath_mac_bb_name(u32 mac_bb_version)
{
int i;
for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
if (ath_mac_bb_names[i].version == mac_bb_version) {
return ath_mac_bb_names[i].name;
}
}
return "????";
}
/*
* Return the RF name. "????" is returned if the RF is unknown.
*/
const char *
ath_rf_name(u16 rf_version)
{
int i;
for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
if (ath_rf_names[i].version == rf_version) {
return ath_rf_names[i].name;
}
}
return "????";
}
static int __init ath9k_init(void)
{
int error;
/* Register rate control algorithm */
error = ath_rate_control_register();
if (error != 0) {
printk(KERN_ERR
"ath9k: Unable to register rate control "
"algorithm: %d\n",
error);
goto err_out;
}
error = ath_pci_init();
if (error < 0) {
printk(KERN_ERR
"ath9k: No PCI devices found, driver not installed.\n");
error = -ENODEV;
goto err_rate_unregister;
}
error = ath_ahb_init();
if (error < 0) {
error = -ENODEV;
goto err_pci_exit;
}
return 0;
err_pci_exit:
ath_pci_exit();
err_rate_unregister:
ath_rate_control_unregister();
err_out:
return error;
}
module_init(ath9k_init);
static void __exit ath9k_exit(void)
{
ath_ahb_exit();
ath_pci_exit();
ath_rate_control_unregister();
printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
}
module_exit(ath9k_exit);