kernel-fxtec-pro1x/drivers/media/dvb/frontends/tda1004x.c
Andrew de Quincey 86f40cc3c9 V4L/DVB (3673): Fix budget-av CAM reset
Unfortunately on the budget-av board, the CAM reset line is tied to the
frontend reset line, so resetting the CAM also zaps the frontend. This
breaks the tda1004x at least, and causes it to fail to tune until the
budget-av module is reloaded. This patch adds an exported function to dvb_frontend
that allows a card to forcibly reinitialise a frontend. The budget-av now
does this on CAM reset, which corrects this problem.
since they do not tie the CAM reset line to the frontend reset line.

Signed-off-by: Andrew de Quincey <adq_dvb@lidskialf.net>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2006-04-02 04:56:02 -03:00

1345 lines
38 KiB
C

/*
Driver for Philips tda1004xh OFDM Demodulator
(c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* This driver needs external firmware. Please use the commands
* "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
* "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
* download/extract them, and then copy them to /usr/lib/hotplug/firmware
* or /lib/firmware (depending on configuration of firmware hotplug).
*/
#define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
#define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "tda1004x.h"
enum tda1004x_demod {
TDA1004X_DEMOD_TDA10045,
TDA1004X_DEMOD_TDA10046,
};
struct tda1004x_state {
struct i2c_adapter* i2c;
struct dvb_frontend_ops ops;
const struct tda1004x_config* config;
struct dvb_frontend frontend;
/* private demod data */
enum tda1004x_demod demod_type;
};
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "tda1004x: " args); \
} while (0)
#define TDA1004X_CHIPID 0x00
#define TDA1004X_AUTO 0x01
#define TDA1004X_IN_CONF1 0x02
#define TDA1004X_IN_CONF2 0x03
#define TDA1004X_OUT_CONF1 0x04
#define TDA1004X_OUT_CONF2 0x05
#define TDA1004X_STATUS_CD 0x06
#define TDA1004X_CONFC4 0x07
#define TDA1004X_DSSPARE2 0x0C
#define TDA10045H_CODE_IN 0x0D
#define TDA10045H_FWPAGE 0x0E
#define TDA1004X_SCAN_CPT 0x10
#define TDA1004X_DSP_CMD 0x11
#define TDA1004X_DSP_ARG 0x12
#define TDA1004X_DSP_DATA1 0x13
#define TDA1004X_DSP_DATA2 0x14
#define TDA1004X_CONFADC1 0x15
#define TDA1004X_CONFC1 0x16
#define TDA10045H_S_AGC 0x1a
#define TDA10046H_AGC_TUN_LEVEL 0x1a
#define TDA1004X_SNR 0x1c
#define TDA1004X_CONF_TS1 0x1e
#define TDA1004X_CONF_TS2 0x1f
#define TDA1004X_CBER_RESET 0x20
#define TDA1004X_CBER_MSB 0x21
#define TDA1004X_CBER_LSB 0x22
#define TDA1004X_CVBER_LUT 0x23
#define TDA1004X_VBER_MSB 0x24
#define TDA1004X_VBER_MID 0x25
#define TDA1004X_VBER_LSB 0x26
#define TDA1004X_UNCOR 0x27
#define TDA10045H_CONFPLL_P 0x2D
#define TDA10045H_CONFPLL_M_MSB 0x2E
#define TDA10045H_CONFPLL_M_LSB 0x2F
#define TDA10045H_CONFPLL_N 0x30
#define TDA10046H_CONFPLL1 0x2D
#define TDA10046H_CONFPLL2 0x2F
#define TDA10046H_CONFPLL3 0x30
#define TDA10046H_TIME_WREF1 0x31
#define TDA10046H_TIME_WREF2 0x32
#define TDA10046H_TIME_WREF3 0x33
#define TDA10046H_TIME_WREF4 0x34
#define TDA10046H_TIME_WREF5 0x35
#define TDA10045H_UNSURW_MSB 0x31
#define TDA10045H_UNSURW_LSB 0x32
#define TDA10045H_WREF_MSB 0x33
#define TDA10045H_WREF_MID 0x34
#define TDA10045H_WREF_LSB 0x35
#define TDA10045H_MUXOUT 0x36
#define TDA1004X_CONFADC2 0x37
#define TDA10045H_IOFFSET 0x38
#define TDA10046H_CONF_TRISTATE1 0x3B
#define TDA10046H_CONF_TRISTATE2 0x3C
#define TDA10046H_CONF_POLARITY 0x3D
#define TDA10046H_FREQ_OFFSET 0x3E
#define TDA10046H_GPIO_OUT_SEL 0x41
#define TDA10046H_GPIO_SELECT 0x42
#define TDA10046H_AGC_CONF 0x43
#define TDA10046H_AGC_THR 0x44
#define TDA10046H_AGC_RENORM 0x45
#define TDA10046H_AGC_GAINS 0x46
#define TDA10046H_AGC_TUN_MIN 0x47
#define TDA10046H_AGC_TUN_MAX 0x48
#define TDA10046H_AGC_IF_MIN 0x49
#define TDA10046H_AGC_IF_MAX 0x4A
#define TDA10046H_FREQ_PHY2_MSB 0x4D
#define TDA10046H_FREQ_PHY2_LSB 0x4E
#define TDA10046H_CVBER_CTRL 0x4F
#define TDA10046H_AGC_IF_LEVEL 0x52
#define TDA10046H_CODE_CPT 0x57
#define TDA10046H_CODE_IN 0x58
static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
{
int ret;
u8 buf[] = { reg, data };
struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
msg.addr = state->config->demod_address;
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
__FUNCTION__, reg, data, ret);
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
{ .flags = I2C_M_RD, .buf = b1, .len = 1 }};
dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
msg[0].addr = state->config->demod_address;
msg[1].addr = state->config->demod_address;
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
ret);
return -1;
}
dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
reg, b1[0], ret);
return b1[0];
}
static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
{
int val;
dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
mask, data);
// read a byte and check
val = tda1004x_read_byte(state, reg);
if (val < 0)
return val;
// mask if off
val = val & ~mask;
val |= data & 0xff;
// write it out again
return tda1004x_write_byteI(state, reg, val);
}
static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
{
int i;
int result;
dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
result = 0;
for (i = 0; i < len; i++) {
result = tda1004x_write_byteI(state, reg + i, buf[i]);
if (result != 0)
break;
}
return result;
}
static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
{
int result;
dprintk("%s\n", __FUNCTION__);
result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
msleep(20);
return result;
}
static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
{
dprintk("%s\n", __FUNCTION__);
return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
}
static int tda10045h_set_bandwidth(struct tda1004x_state *state,
fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
break;
case BANDWIDTH_7_MHZ:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
break;
case BANDWIDTH_8_MHZ:
tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
break;
default:
return -EINVAL;
}
tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
return 0;
}
static int tda10046h_set_bandwidth(struct tda1004x_state *state,
fe_bandwidth_t bandwidth)
{
static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
int tda10046_clk53m;
if ((state->config->if_freq == TDA10046_FREQ_045) ||
(state->config->if_freq == TDA10046_FREQ_052))
tda10046_clk53m = 0;
else
tda10046_clk53m = 1;
switch (bandwidth) {
case BANDWIDTH_6_MHZ:
if (tda10046_clk53m)
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
sizeof(bandwidth_6mhz_53M));
else
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
sizeof(bandwidth_6mhz_48M));
if (state->config->if_freq == TDA10046_FREQ_045) {
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
}
break;
case BANDWIDTH_7_MHZ:
if (tda10046_clk53m)
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
sizeof(bandwidth_7mhz_53M));
else
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
sizeof(bandwidth_7mhz_48M));
if (state->config->if_freq == TDA10046_FREQ_045) {
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
}
break;
case BANDWIDTH_8_MHZ:
if (tda10046_clk53m)
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
sizeof(bandwidth_8mhz_53M));
else
tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
sizeof(bandwidth_8mhz_48M));
if (state->config->if_freq == TDA10046_FREQ_045) {
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
}
break;
default:
return -EINVAL;
}
return 0;
}
static int tda1004x_do_upload(struct tda1004x_state *state,
unsigned char *mem, unsigned int len,
u8 dspCodeCounterReg, u8 dspCodeInReg)
{
u8 buf[65];
struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
int tx_size;
int pos = 0;
/* clear code counter */
tda1004x_write_byteI(state, dspCodeCounterReg, 0);
fw_msg.addr = state->config->demod_address;
buf[0] = dspCodeInReg;
while (pos != len) {
// work out how much to send this time
tx_size = len - pos;
if (tx_size > 0x10)
tx_size = 0x10;
// send the chunk
memcpy(buf + 1, mem + pos, tx_size);
fw_msg.len = tx_size + 1;
if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
printk(KERN_ERR "tda1004x: Error during firmware upload\n");
return -EIO;
}
pos += tx_size;
dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
}
// give the DSP a chance to settle 03/10/05 Hac
msleep(100);
return 0;
}
static int tda1004x_check_upload_ok(struct tda1004x_state *state)
{
u8 data1, data2;
unsigned long timeout;
if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
timeout = jiffies + 2 * HZ;
while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
if (time_after(jiffies, timeout)) {
printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
break;
}
msleep(1);
}
} else
msleep(100);
// check upload was OK
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
return -EIO;
}
printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
return 0;
}
static int tda10045_fwupload(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int ret;
const struct firmware *fw;
/* don't re-upload unless necessary */
if (tda1004x_check_upload_ok(state) == 0)
return 0;
/* request the firmware, this will block until someone uploads it */
printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
if (ret) {
printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
return ret;
}
/* reset chip */
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
msleep(10);
/* set parameters */
tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
release_firmware(fw);
if (ret)
return ret;
printk(KERN_INFO "tda1004x: firmware upload complete\n");
/* wait for DSP to initialise */
/* DSPREADY doesn't seem to work on the TDA10045H */
msleep(100);
return tda1004x_check_upload_ok(state);
}
static void tda10046_init_plls(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tda10046_clk53m;
if ((state->config->if_freq == TDA10046_FREQ_045) ||
(state->config->if_freq == TDA10046_FREQ_052))
tda10046_clk53m = 0;
else
tda10046_clk53m = 1;
tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
if(tda10046_clk53m) {
printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
} else {
printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
}
if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__);
tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
} else {
dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__);
tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
}
if(tda10046_clk53m)
tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
else
tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
/* Note clock frequency is handled implicitly */
switch (state->config->if_freq) {
case TDA10046_FREQ_045:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
break;
case TDA10046_FREQ_052:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
break;
case TDA10046_FREQ_3617:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
break;
case TDA10046_FREQ_3613:
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
break;
}
tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
/* let the PLLs settle */
msleep(120);
}
static int tda10046_fwupload(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
int ret;
const struct firmware *fw;
/* reset + wake up chip */
if (state->config->xtal_freq == TDA10046_XTAL_4M) {
tda1004x_write_byteI(state, TDA1004X_CONFC4, 0);
} else {
dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __FUNCTION__);
tda1004x_write_byteI(state, TDA1004X_CONFC4, 0x80);
}
tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
/* let the clocks recover from sleep */
msleep(5);
/* The PLLs need to be reprogrammed after sleep */
tda10046_init_plls(fe);
/* don't re-upload unless necessary */
if (tda1004x_check_upload_ok(state) == 0)
return 0;
if (state->config->request_firmware != NULL) {
/* request the firmware, this will block until someone uploads it */
printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
if (ret) {
printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
return ret;
}
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
release_firmware(fw);
if (ret)
return ret;
} else {
/* boot from firmware eeprom */
printk(KERN_INFO "tda1004x: booting from eeprom\n");
tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4);
msleep(300);
}
return tda1004x_check_upload_ok(state);
}
static int tda1004x_encode_fec(int fec)
{
// convert known FEC values
switch (fec) {
case FEC_1_2:
return 0;
case FEC_2_3:
return 1;
case FEC_3_4:
return 2;
case FEC_5_6:
return 3;
case FEC_7_8:
return 4;
}
// unsupported
return -EINVAL;
}
static int tda1004x_decode_fec(int tdafec)
{
// convert known FEC values
switch (tdafec) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_7_8;
}
// unsupported
return -1;
}
int tda1004x_write_byte(struct dvb_frontend* fe, int reg, int data)
{
struct tda1004x_state* state = fe->demodulator_priv;
return tda1004x_write_byteI(state, reg, data);
}
static int tda10045_init(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
dprintk("%s\n", __FUNCTION__);
if (tda10045_fwupload(fe)) {
printk("tda1004x: firmware upload failed\n");
return -EIO;
}
tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
// Init the PLL
if (state->config->pll_init) {
tda1004x_enable_tuner_i2c(state);
state->config->pll_init(fe);
tda1004x_disable_tuner_i2c(state);
}
// tda setup
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
return 0;
}
static int tda10046_init(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
dprintk("%s\n", __FUNCTION__);
if (tda10046_fwupload(fe)) {
printk("tda1004x: firmware upload failed\n");
return -EIO;
}
// Init the tuner PLL
if (state->config->pll_init) {
tda1004x_enable_tuner_i2c(state);
if (state->config->pll_init(fe)) {
printk(KERN_ERR "tda1004x: pll init failed\n");
return -EIO;
}
tda1004x_disable_tuner_i2c(state);
}
// tda setup
tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream
tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer
switch (state->config->agc_config) {
case TDA10046_AGC_DEFAULT:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
break;
case TDA10046_AGC_IFO_AUTO_NEG:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
break;
case TDA10046_AGC_IFO_AUTO_POS:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x00); // set AGC polarities
break;
case TDA10046_AGC_TDA827X:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x6a); // set AGC polarities
break;
case TDA10046_AGC_TDA827X_GPL:
tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup
tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold
tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
break;
}
tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0x61); // Turn both AGC outputs on
tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // }
tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // }
tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // }
tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
// tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes
tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
return 0;
}
static int tda1004x_set_fe(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fe_params)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int inversion;
dprintk("%s\n", __FUNCTION__);
if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
// setup auto offset
tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
// disable agc_conf[2]
tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
}
// set frequency
tda1004x_enable_tuner_i2c(state);
if (state->config->pll_set(fe, fe_params)) {
printk(KERN_ERR "tda1004x: pll set failed\n");
return -EIO;
}
tda1004x_disable_tuner_i2c(state);
// Hardcoded to use auto as much as possible on the TDA10045 as it
// is very unreliable if AUTO mode is _not_ used.
if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
}
// Set standard params.. or put them to auto
if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
(fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
(fe_params->u.ofdm.constellation == QAM_AUTO) ||
(fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
} else {
tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto
// set HP FEC
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
if (tmp < 0)
return tmp;
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
// set LP FEC
tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
if (tmp < 0)
return tmp;
tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
// set constellation
switch (fe_params->u.ofdm.constellation) {
case QPSK:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
break;
case QAM_16:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
break;
case QAM_64:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
break;
default:
return -EINVAL;
}
// set hierarchy
switch (fe_params->u.ofdm.hierarchy_information) {
case HIERARCHY_NONE:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
break;
case HIERARCHY_1:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
break;
case HIERARCHY_2:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
break;
case HIERARCHY_4:
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
break;
default:
return -EINVAL;
}
}
// set bandwidth
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
break;
case TDA1004X_DEMOD_TDA10046:
tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
break;
}
// set inversion
inversion = fe_params->inversion;
if (state->config->invert)
inversion = inversion ? INVERSION_OFF : INVERSION_ON;
switch (inversion) {
case INVERSION_OFF:
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
break;
case INVERSION_ON:
tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
break;
default:
return -EINVAL;
}
// set guard interval
switch (fe_params->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
case GUARD_INTERVAL_1_16:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
break;
case GUARD_INTERVAL_1_8:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
break;
case GUARD_INTERVAL_1_4:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
break;
case GUARD_INTERVAL_AUTO:
tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
break;
default:
return -EINVAL;
}
// set transmission mode
switch (fe_params->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
break;
case TRANSMISSION_MODE_8K:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
break;
case TRANSMISSION_MODE_AUTO:
tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
break;
default:
return -EINVAL;
}
// start the lock
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
break;
case TDA1004X_DEMOD_TDA10046:
tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
msleep(1);
tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
break;
}
msleep(10);
return 0;
}
static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
{
struct tda1004x_state* state = fe->demodulator_priv;
dprintk("%s\n", __FUNCTION__);
// inversion status
fe_params->inversion = INVERSION_OFF;
if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
fe_params->inversion = INVERSION_ON;
if (state->config->invert)
fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
// bandwidth
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
case 0x14:
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0xdb:
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x4f:
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
break;
case TDA1004X_DEMOD_TDA10046:
switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
case 0x5c:
case 0x54:
fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
break;
case 0x6a:
case 0x60:
fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
break;
case 0x7b:
case 0x70:
fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
break;
}
break;
}
// FEC
fe_params->u.ofdm.code_rate_HP =
tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
fe_params->u.ofdm.code_rate_LP =
tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
// constellation
switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
case 0:
fe_params->u.ofdm.constellation = QPSK;
break;
case 1:
fe_params->u.ofdm.constellation = QAM_16;
break;
case 2:
fe_params->u.ofdm.constellation = QAM_64;
break;
}
// transmission mode
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
// guard interval
switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
case 0:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
break;
}
// hierarchy
switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
case 0:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
break;
case 1:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
break;
case 2:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
break;
case 3:
fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
break;
}
return 0;
}
static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
{
struct tda1004x_state* state = fe->demodulator_priv;
int status;
int cber;
int vber;
dprintk("%s\n", __FUNCTION__);
// read status
status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
if (status == -1)
return -EIO;
// decode
*fe_status = 0;
if (status & 4)
*fe_status |= FE_HAS_SIGNAL;
if (status & 2)
*fe_status |= FE_HAS_CARRIER;
if (status & 8)
*fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
// if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
// is getting anything valid
if (!(*fe_status & FE_HAS_VITERBI)) {
// read the CBER
cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
if (cber == -1)
return -EIO;
status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
if (status == -1)
return -EIO;
cber |= (status << 8);
// The address 0x20 should be read to cope with a TDA10046 bug
tda1004x_read_byte(state, TDA1004X_CBER_RESET);
if (cber != 65535)
*fe_status |= FE_HAS_VITERBI;
}
// if we DO have some valid VITERBI output, but don't already have SYNC
// bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
// read the VBER
vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
if (vber == -1)
return -EIO;
status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
if (status == -1)
return -EIO;
vber |= (status << 8);
status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
if (status == -1)
return -EIO;
vber |= (status & 0x0f) << 16;
// The CVBER_LUT should be read to cope with TDA10046 hardware bug
tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
// if RS has passed some valid TS packets, then we must be
// getting some SYNC bytes
if (vber < 16632)
*fe_status |= FE_HAS_SYNC;
}
// success
dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
return 0;
}
static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int reg = 0;
dprintk("%s\n", __FUNCTION__);
// determine the register to use
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
reg = TDA10045H_S_AGC;
break;
case TDA1004X_DEMOD_TDA10046:
reg = TDA10046H_AGC_IF_LEVEL;
break;
}
// read it
tmp = tda1004x_read_byte(state, reg);
if (tmp < 0)
return -EIO;
*signal = (tmp << 8) | tmp;
dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
return 0;
}
static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
dprintk("%s\n", __FUNCTION__);
// read it
tmp = tda1004x_read_byte(state, TDA1004X_SNR);
if (tmp < 0)
return -EIO;
tmp = 255 - tmp;
*snr = ((tmp << 8) | tmp);
dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
return 0;
}
static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
int tmp2;
int counter;
dprintk("%s\n", __FUNCTION__);
// read the UCBLOCKS and reset
counter = 0;
tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
if (tmp < 0)
return -EIO;
tmp &= 0x7f;
while (counter++ < 5) {
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
if (tmp2 < 0)
return -EIO;
tmp2 &= 0x7f;
if ((tmp2 < tmp) || (tmp2 == 0))
break;
}
if (tmp != 0x7f)
*ucblocks = tmp;
else
*ucblocks = 0xffffffff;
dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
return 0;
}
static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct tda1004x_state* state = fe->demodulator_priv;
int tmp;
dprintk("%s\n", __FUNCTION__);
// read it in
tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
if (tmp < 0)
return -EIO;
*ber = tmp << 1;
tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
if (tmp < 0)
return -EIO;
*ber |= (tmp << 9);
// The address 0x20 should be read to cope with a TDA10046 bug
tda1004x_read_byte(state, TDA1004X_CBER_RESET);
dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
return 0;
}
static int tda1004x_sleep(struct dvb_frontend* fe)
{
struct tda1004x_state* state = fe->demodulator_priv;
switch (state->demod_type) {
case TDA1004X_DEMOD_TDA10045:
tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
break;
case TDA1004X_DEMOD_TDA10046:
if (state->config->pll_sleep != NULL) {
tda1004x_enable_tuner_i2c(state);
state->config->pll_sleep(fe);
if (state->config->if_freq != TDA10046_FREQ_052) {
/* special hack for Philips EUROPA Based boards:
* keep the I2c bridge open for tuner access in analog mode
*/
tda1004x_disable_tuner_i2c(state);
}
}
/* set outputs to tristate */
tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
break;
}
return 0;
}
static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
fesettings->min_delay_ms = 800;
/* Drift compensation makes no sense for DVB-T */
fesettings->step_size = 0;
fesettings->max_drift = 0;
return 0;
}
static void tda1004x_release(struct dvb_frontend* fe)
{
struct tda1004x_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops tda10045_ops = {
.info = {
.name = "Philips TDA10045H DVB-T",
.type = FE_OFDM,
.frequency_min = 51000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
},
.release = tda1004x_release,
.init = tda10045_init,
.sleep = tda1004x_sleep,
.set_frontend = tda1004x_set_fe,
.get_frontend = tda1004x_get_fe,
.get_tune_settings = tda1004x_get_tune_settings,
.read_status = tda1004x_read_status,
.read_ber = tda1004x_read_ber,
.read_signal_strength = tda1004x_read_signal_strength,
.read_snr = tda1004x_read_snr,
.read_ucblocks = tda1004x_read_ucblocks,
};
struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
struct i2c_adapter* i2c)
{
struct tda1004x_state *state;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
if (!state)
return NULL;
/* setup the state */
state->config = config;
state->i2c = i2c;
memcpy(&state->ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
state->demod_type = TDA1004X_DEMOD_TDA10045;
/* check if the demod is there */
if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
kfree(state);
return NULL;
}
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
}
static struct dvb_frontend_ops tda10046_ops = {
.info = {
.name = "Philips TDA10046H DVB-T",
.type = FE_OFDM,
.frequency_min = 51000000,
.frequency_max = 858000000,
.frequency_stepsize = 166667,
.caps =
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
},
.release = tda1004x_release,
.init = tda10046_init,
.sleep = tda1004x_sleep,
.set_frontend = tda1004x_set_fe,
.get_frontend = tda1004x_get_fe,
.get_tune_settings = tda1004x_get_tune_settings,
.read_status = tda1004x_read_status,
.read_ber = tda1004x_read_ber,
.read_signal_strength = tda1004x_read_signal_strength,
.read_snr = tda1004x_read_snr,
.read_ucblocks = tda1004x_read_ucblocks,
};
struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
struct i2c_adapter* i2c)
{
struct tda1004x_state *state;
/* allocate memory for the internal state */
state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
if (!state)
return NULL;
/* setup the state */
state->config = config;
state->i2c = i2c;
memcpy(&state->ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
state->demod_type = TDA1004X_DEMOD_TDA10046;
/* check if the demod is there */
if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
kfree(state);
return NULL;
}
/* create dvb_frontend */
state->frontend.ops = &state->ops;
state->frontend.demodulator_priv = state;
return &state->frontend;
}
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(tda10045_attach);
EXPORT_SYMBOL(tda10046_attach);
EXPORT_SYMBOL(tda1004x_write_byte);