621 lines
16 KiB
C
621 lines
16 KiB
C
/*
|
|
* This file contains the routines for TLB flushing.
|
|
* On machines where the MMU does not use a hash table to store virtual to
|
|
* physical translations (ie, SW loaded TLBs or Book3E compilant processors,
|
|
* this does -not- include 603 however which shares the implementation with
|
|
* hash based processors)
|
|
*
|
|
* -- BenH
|
|
*
|
|
* Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
|
|
* IBM Corp.
|
|
*
|
|
* Derived from arch/ppc/mm/init.c:
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/of_fdt.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/code-patching.h>
|
|
|
|
#include "mmu_decl.h"
|
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
|
|
[MMU_PAGE_4K] = {
|
|
.shift = 12,
|
|
.ind = 20,
|
|
.enc = BOOK3E_PAGESZ_4K,
|
|
},
|
|
[MMU_PAGE_16K] = {
|
|
.shift = 14,
|
|
.enc = BOOK3E_PAGESZ_16K,
|
|
},
|
|
[MMU_PAGE_64K] = {
|
|
.shift = 16,
|
|
.ind = 28,
|
|
.enc = BOOK3E_PAGESZ_64K,
|
|
},
|
|
[MMU_PAGE_1M] = {
|
|
.shift = 20,
|
|
.enc = BOOK3E_PAGESZ_1M,
|
|
},
|
|
[MMU_PAGE_16M] = {
|
|
.shift = 24,
|
|
.ind = 36,
|
|
.enc = BOOK3E_PAGESZ_16M,
|
|
},
|
|
[MMU_PAGE_256M] = {
|
|
.shift = 28,
|
|
.enc = BOOK3E_PAGESZ_256M,
|
|
},
|
|
[MMU_PAGE_1G] = {
|
|
.shift = 30,
|
|
.enc = BOOK3E_PAGESZ_1GB,
|
|
},
|
|
};
|
|
static inline int mmu_get_tsize(int psize)
|
|
{
|
|
return mmu_psize_defs[psize].enc;
|
|
}
|
|
#else
|
|
static inline int mmu_get_tsize(int psize)
|
|
{
|
|
/* This isn't used on !Book3E for now */
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* The variables below are currently only used on 64-bit Book3E
|
|
* though this will probably be made common with other nohash
|
|
* implementations at some point
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
|
|
int mmu_linear_psize; /* Page size used for the linear mapping */
|
|
int mmu_pte_psize; /* Page size used for PTE pages */
|
|
int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
|
|
int book3e_htw_enabled; /* Is HW tablewalk enabled ? */
|
|
unsigned long linear_map_top; /* Top of linear mapping */
|
|
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
/* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
|
|
DEFINE_PER_CPU(int, next_tlbcam_idx);
|
|
EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
|
|
#endif
|
|
|
|
/*
|
|
* Base TLB flushing operations:
|
|
*
|
|
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
|
|
* - flush_tlb_page(vma, vmaddr) flushes one page
|
|
* - flush_tlb_range(vma, start, end) flushes a range of pages
|
|
* - flush_tlb_kernel_range(start, end) flushes kernel pages
|
|
*
|
|
* - local_* variants of page and mm only apply to the current
|
|
* processor
|
|
*/
|
|
|
|
/*
|
|
* These are the base non-SMP variants of page and mm flushing
|
|
*/
|
|
void local_flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
unsigned int pid;
|
|
|
|
preempt_disable();
|
|
pid = mm->context.id;
|
|
if (pid != MMU_NO_CONTEXT)
|
|
_tlbil_pid(pid);
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL(local_flush_tlb_mm);
|
|
|
|
void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
|
|
int tsize, int ind)
|
|
{
|
|
unsigned int pid;
|
|
|
|
preempt_disable();
|
|
pid = mm ? mm->context.id : 0;
|
|
if (pid != MMU_NO_CONTEXT)
|
|
_tlbil_va(vmaddr, pid, tsize, ind);
|
|
preempt_enable();
|
|
}
|
|
|
|
void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
|
|
{
|
|
__local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
|
|
mmu_get_tsize(mmu_virtual_psize), 0);
|
|
}
|
|
EXPORT_SYMBOL(local_flush_tlb_page);
|
|
|
|
/*
|
|
* And here are the SMP non-local implementations
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
|
|
static DEFINE_RAW_SPINLOCK(tlbivax_lock);
|
|
|
|
static int mm_is_core_local(struct mm_struct *mm)
|
|
{
|
|
return cpumask_subset(mm_cpumask(mm),
|
|
topology_thread_cpumask(smp_processor_id()));
|
|
}
|
|
|
|
struct tlb_flush_param {
|
|
unsigned long addr;
|
|
unsigned int pid;
|
|
unsigned int tsize;
|
|
unsigned int ind;
|
|
};
|
|
|
|
static void do_flush_tlb_mm_ipi(void *param)
|
|
{
|
|
struct tlb_flush_param *p = param;
|
|
|
|
_tlbil_pid(p ? p->pid : 0);
|
|
}
|
|
|
|
static void do_flush_tlb_page_ipi(void *param)
|
|
{
|
|
struct tlb_flush_param *p = param;
|
|
|
|
_tlbil_va(p->addr, p->pid, p->tsize, p->ind);
|
|
}
|
|
|
|
|
|
/* Note on invalidations and PID:
|
|
*
|
|
* We snapshot the PID with preempt disabled. At this point, it can still
|
|
* change either because:
|
|
* - our context is being stolen (PID -> NO_CONTEXT) on another CPU
|
|
* - we are invaliating some target that isn't currently running here
|
|
* and is concurrently acquiring a new PID on another CPU
|
|
* - some other CPU is re-acquiring a lost PID for this mm
|
|
* etc...
|
|
*
|
|
* However, this shouldn't be a problem as we only guarantee
|
|
* invalidation of TLB entries present prior to this call, so we
|
|
* don't care about the PID changing, and invalidating a stale PID
|
|
* is generally harmless.
|
|
*/
|
|
|
|
void flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
unsigned int pid;
|
|
|
|
preempt_disable();
|
|
pid = mm->context.id;
|
|
if (unlikely(pid == MMU_NO_CONTEXT))
|
|
goto no_context;
|
|
if (!mm_is_core_local(mm)) {
|
|
struct tlb_flush_param p = { .pid = pid };
|
|
/* Ignores smp_processor_id() even if set. */
|
|
smp_call_function_many(mm_cpumask(mm),
|
|
do_flush_tlb_mm_ipi, &p, 1);
|
|
}
|
|
_tlbil_pid(pid);
|
|
no_context:
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL(flush_tlb_mm);
|
|
|
|
void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
|
|
int tsize, int ind)
|
|
{
|
|
struct cpumask *cpu_mask;
|
|
unsigned int pid;
|
|
|
|
preempt_disable();
|
|
pid = mm ? mm->context.id : 0;
|
|
if (unlikely(pid == MMU_NO_CONTEXT))
|
|
goto bail;
|
|
cpu_mask = mm_cpumask(mm);
|
|
if (!mm_is_core_local(mm)) {
|
|
/* If broadcast tlbivax is supported, use it */
|
|
if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
|
|
int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
|
|
if (lock)
|
|
raw_spin_lock(&tlbivax_lock);
|
|
_tlbivax_bcast(vmaddr, pid, tsize, ind);
|
|
if (lock)
|
|
raw_spin_unlock(&tlbivax_lock);
|
|
goto bail;
|
|
} else {
|
|
struct tlb_flush_param p = {
|
|
.pid = pid,
|
|
.addr = vmaddr,
|
|
.tsize = tsize,
|
|
.ind = ind,
|
|
};
|
|
/* Ignores smp_processor_id() even if set in cpu_mask */
|
|
smp_call_function_many(cpu_mask,
|
|
do_flush_tlb_page_ipi, &p, 1);
|
|
}
|
|
}
|
|
_tlbil_va(vmaddr, pid, tsize, ind);
|
|
bail:
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
|
|
{
|
|
__flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
|
|
mmu_get_tsize(mmu_virtual_psize), 0);
|
|
}
|
|
EXPORT_SYMBOL(flush_tlb_page);
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_PPC_47x
|
|
void __init early_init_mmu_47x(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned long root = of_get_flat_dt_root();
|
|
if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
|
|
mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
#endif /* CONFIG_PPC_47x */
|
|
|
|
/*
|
|
* Flush kernel TLB entries in the given range
|
|
*/
|
|
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
preempt_disable();
|
|
smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
|
|
_tlbil_pid(0);
|
|
preempt_enable();
|
|
#else
|
|
_tlbil_pid(0);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(flush_tlb_kernel_range);
|
|
|
|
/*
|
|
* Currently, for range flushing, we just do a full mm flush. This should
|
|
* be optimized based on a threshold on the size of the range, since
|
|
* some implementation can stack multiple tlbivax before a tlbsync but
|
|
* for now, we keep it that way
|
|
*/
|
|
void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end)
|
|
|
|
{
|
|
flush_tlb_mm(vma->vm_mm);
|
|
}
|
|
EXPORT_SYMBOL(flush_tlb_range);
|
|
|
|
void tlb_flush(struct mmu_gather *tlb)
|
|
{
|
|
flush_tlb_mm(tlb->mm);
|
|
}
|
|
|
|
/*
|
|
* Below are functions specific to the 64-bit variant of Book3E though that
|
|
* may change in the future
|
|
*/
|
|
|
|
#ifdef CONFIG_PPC64
|
|
|
|
/*
|
|
* Handling of virtual linear page tables or indirect TLB entries
|
|
* flushing when PTE pages are freed
|
|
*/
|
|
void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
|
|
{
|
|
int tsize = mmu_psize_defs[mmu_pte_psize].enc;
|
|
|
|
if (book3e_htw_enabled) {
|
|
unsigned long start = address & PMD_MASK;
|
|
unsigned long end = address + PMD_SIZE;
|
|
unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
|
|
|
|
/* This isn't the most optimal, ideally we would factor out the
|
|
* while preempt & CPU mask mucking around, or even the IPI but
|
|
* it will do for now
|
|
*/
|
|
while (start < end) {
|
|
__flush_tlb_page(tlb->mm, start, tsize, 1);
|
|
start += size;
|
|
}
|
|
} else {
|
|
unsigned long rmask = 0xf000000000000000ul;
|
|
unsigned long rid = (address & rmask) | 0x1000000000000000ul;
|
|
unsigned long vpte = address & ~rmask;
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
|
|
#else
|
|
vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
|
|
#endif
|
|
vpte |= rid;
|
|
__flush_tlb_page(tlb->mm, vpte, tsize, 0);
|
|
}
|
|
}
|
|
|
|
static void setup_page_sizes(void)
|
|
{
|
|
unsigned int tlb0cfg;
|
|
unsigned int tlb0ps;
|
|
unsigned int eptcfg;
|
|
int i, psize;
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
unsigned int mmucfg = mfspr(SPRN_MMUCFG);
|
|
|
|
if (((mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) &&
|
|
(mmu_has_feature(MMU_FTR_TYPE_FSL_E))) {
|
|
unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
|
|
unsigned int min_pg, max_pg;
|
|
|
|
min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
|
|
max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
struct mmu_psize_def *def;
|
|
unsigned int shift;
|
|
|
|
def = &mmu_psize_defs[psize];
|
|
shift = def->shift;
|
|
|
|
if (shift == 0)
|
|
continue;
|
|
|
|
/* adjust to be in terms of 4^shift Kb */
|
|
shift = (shift - 10) >> 1;
|
|
|
|
if ((shift >= min_pg) && (shift <= max_pg))
|
|
def->flags |= MMU_PAGE_SIZE_DIRECT;
|
|
}
|
|
|
|
goto no_indirect;
|
|
}
|
|
#endif
|
|
|
|
tlb0cfg = mfspr(SPRN_TLB0CFG);
|
|
tlb0ps = mfspr(SPRN_TLB0PS);
|
|
eptcfg = mfspr(SPRN_EPTCFG);
|
|
|
|
/* Look for supported direct sizes */
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
struct mmu_psize_def *def = &mmu_psize_defs[psize];
|
|
|
|
if (tlb0ps & (1U << (def->shift - 10)))
|
|
def->flags |= MMU_PAGE_SIZE_DIRECT;
|
|
}
|
|
|
|
/* Indirect page sizes supported ? */
|
|
if ((tlb0cfg & TLBnCFG_IND) == 0)
|
|
goto no_indirect;
|
|
|
|
/* Now, we only deal with one IND page size for each
|
|
* direct size. Hopefully all implementations today are
|
|
* unambiguous, but we might want to be careful in the
|
|
* future.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
unsigned int ps, sps;
|
|
|
|
sps = eptcfg & 0x1f;
|
|
eptcfg >>= 5;
|
|
ps = eptcfg & 0x1f;
|
|
eptcfg >>= 5;
|
|
if (!ps || !sps)
|
|
continue;
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
|
|
struct mmu_psize_def *def = &mmu_psize_defs[psize];
|
|
|
|
if (ps == (def->shift - 10))
|
|
def->flags |= MMU_PAGE_SIZE_INDIRECT;
|
|
if (sps == (def->shift - 10))
|
|
def->ind = ps + 10;
|
|
}
|
|
}
|
|
no_indirect:
|
|
|
|
/* Cleanup array and print summary */
|
|
pr_info("MMU: Supported page sizes\n");
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
struct mmu_psize_def *def = &mmu_psize_defs[psize];
|
|
const char *__page_type_names[] = {
|
|
"unsupported",
|
|
"direct",
|
|
"indirect",
|
|
"direct & indirect"
|
|
};
|
|
if (def->flags == 0) {
|
|
def->shift = 0;
|
|
continue;
|
|
}
|
|
pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
|
|
__page_type_names[def->flags & 0x3]);
|
|
}
|
|
}
|
|
|
|
static void __patch_exception(int exc, unsigned long addr)
|
|
{
|
|
extern unsigned int interrupt_base_book3e;
|
|
unsigned int *ibase = &interrupt_base_book3e;
|
|
|
|
/* Our exceptions vectors start with a NOP and -then- a branch
|
|
* to deal with single stepping from userspace which stops on
|
|
* the second instruction. Thus we need to patch the second
|
|
* instruction of the exception, not the first one
|
|
*/
|
|
|
|
patch_branch(ibase + (exc / 4) + 1, addr, 0);
|
|
}
|
|
|
|
#define patch_exception(exc, name) do { \
|
|
extern unsigned int name; \
|
|
__patch_exception((exc), (unsigned long)&name); \
|
|
} while (0)
|
|
|
|
static void setup_mmu_htw(void)
|
|
{
|
|
/* Check if HW tablewalk is present, and if yes, enable it by:
|
|
*
|
|
* - patching the TLB miss handlers to branch to the
|
|
* one dedicates to it
|
|
*
|
|
* - setting the global book3e_htw_enabled
|
|
*/
|
|
unsigned int tlb0cfg = mfspr(SPRN_TLB0CFG);
|
|
|
|
if ((tlb0cfg & TLBnCFG_IND) &&
|
|
(tlb0cfg & TLBnCFG_PT)) {
|
|
patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
|
|
patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
|
|
book3e_htw_enabled = 1;
|
|
}
|
|
pr_info("MMU: Book3E HW tablewalk %s\n",
|
|
book3e_htw_enabled ? "enabled" : "not supported");
|
|
}
|
|
|
|
/*
|
|
* Early initialization of the MMU TLB code
|
|
*/
|
|
static void __early_init_mmu(int boot_cpu)
|
|
{
|
|
unsigned int mas4;
|
|
|
|
/* XXX This will have to be decided at runtime, but right
|
|
* now our boot and TLB miss code hard wires it. Ideally
|
|
* we should find out a suitable page size and patch the
|
|
* TLB miss code (either that or use the PACA to store
|
|
* the value we want)
|
|
*/
|
|
mmu_linear_psize = MMU_PAGE_1G;
|
|
|
|
/* XXX This should be decided at runtime based on supported
|
|
* page sizes in the TLB, but for now let's assume 16M is
|
|
* always there and a good fit (which it probably is)
|
|
*/
|
|
mmu_vmemmap_psize = MMU_PAGE_16M;
|
|
|
|
/* XXX This code only checks for TLB 0 capabilities and doesn't
|
|
* check what page size combos are supported by the HW. It
|
|
* also doesn't handle the case where a separate array holds
|
|
* the IND entries from the array loaded by the PT.
|
|
*/
|
|
if (boot_cpu) {
|
|
/* Look for supported page sizes */
|
|
setup_page_sizes();
|
|
|
|
/* Look for HW tablewalk support */
|
|
setup_mmu_htw();
|
|
}
|
|
|
|
/* Set MAS4 based on page table setting */
|
|
|
|
mas4 = 0x4 << MAS4_WIMGED_SHIFT;
|
|
if (book3e_htw_enabled) {
|
|
mas4 |= mas4 | MAS4_INDD;
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
|
|
mmu_pte_psize = MMU_PAGE_256M;
|
|
#else
|
|
mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
|
|
mmu_pte_psize = MMU_PAGE_1M;
|
|
#endif
|
|
} else {
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
|
|
#else
|
|
mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
|
|
#endif
|
|
mmu_pte_psize = mmu_virtual_psize;
|
|
}
|
|
mtspr(SPRN_MAS4, mas4);
|
|
|
|
/* Set the global containing the top of the linear mapping
|
|
* for use by the TLB miss code
|
|
*/
|
|
linear_map_top = memblock_end_of_DRAM();
|
|
|
|
#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
|
|
unsigned int num_cams;
|
|
|
|
/* use a quarter of the TLBCAM for bolted linear map */
|
|
num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
|
|
linear_map_top = map_mem_in_cams(linear_map_top, num_cams);
|
|
|
|
/* limit memory so we dont have linear faults */
|
|
memblock_enforce_memory_limit(linear_map_top);
|
|
memblock_analyze();
|
|
|
|
patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
|
|
patch_exception(0x1e0, exc_instruction_tlb_miss_bolted_book3e);
|
|
}
|
|
#endif
|
|
|
|
/* A sync won't hurt us after mucking around with
|
|
* the MMU configuration
|
|
*/
|
|
mb();
|
|
|
|
memblock_set_current_limit(linear_map_top);
|
|
}
|
|
|
|
void __init early_init_mmu(void)
|
|
{
|
|
__early_init_mmu(1);
|
|
}
|
|
|
|
void __cpuinit early_init_mmu_secondary(void)
|
|
{
|
|
__early_init_mmu(0);
|
|
}
|
|
|
|
void setup_initial_memory_limit(phys_addr_t first_memblock_base,
|
|
phys_addr_t first_memblock_size)
|
|
{
|
|
/* On Embedded 64-bit, we adjust the RMA size to match
|
|
* the bolted TLB entry. We know for now that only 1G
|
|
* entries are supported though that may eventually
|
|
* change. We crop it to the size of the first MEMBLOCK to
|
|
* avoid going over total available memory just in case...
|
|
*/
|
|
ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
|
|
|
|
/* Finally limit subsequent allocations */
|
|
memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
|
|
}
|
|
#else /* ! CONFIG_PPC64 */
|
|
void __init early_init_mmu(void)
|
|
{
|
|
#ifdef CONFIG_PPC_47x
|
|
early_init_mmu_47x();
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|