5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
798 lines
20 KiB
C
798 lines
20 KiB
C
/*
|
|
* sparse memory mappings.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
#include "internal.h"
|
|
#include <asm/dma.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
/*
|
|
* Permanent SPARSEMEM data:
|
|
*
|
|
* 1) mem_section - memory sections, mem_map's for valid memory
|
|
*/
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
struct mem_section *mem_section[NR_SECTION_ROOTS]
|
|
____cacheline_internodealigned_in_smp;
|
|
#else
|
|
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
|
|
____cacheline_internodealigned_in_smp;
|
|
#endif
|
|
EXPORT_SYMBOL(mem_section);
|
|
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
/*
|
|
* If we did not store the node number in the page then we have to
|
|
* do a lookup in the section_to_node_table in order to find which
|
|
* node the page belongs to.
|
|
*/
|
|
#if MAX_NUMNODES <= 256
|
|
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
|
#else
|
|
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
|
#endif
|
|
|
|
int page_to_nid(struct page *page)
|
|
{
|
|
return section_to_node_table[page_to_section(page)];
|
|
}
|
|
EXPORT_SYMBOL(page_to_nid);
|
|
|
|
static void set_section_nid(unsigned long section_nr, int nid)
|
|
{
|
|
section_to_node_table[section_nr] = nid;
|
|
}
|
|
#else /* !NODE_NOT_IN_PAGE_FLAGS */
|
|
static inline void set_section_nid(unsigned long section_nr, int nid)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
|
|
{
|
|
struct mem_section *section = NULL;
|
|
unsigned long array_size = SECTIONS_PER_ROOT *
|
|
sizeof(struct mem_section);
|
|
|
|
if (slab_is_available()) {
|
|
if (node_state(nid, N_HIGH_MEMORY))
|
|
section = kmalloc_node(array_size, GFP_KERNEL, nid);
|
|
else
|
|
section = kmalloc(array_size, GFP_KERNEL);
|
|
} else
|
|
section = alloc_bootmem_node(NODE_DATA(nid), array_size);
|
|
|
|
if (section)
|
|
memset(section, 0, array_size);
|
|
|
|
return section;
|
|
}
|
|
|
|
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
|
|
{
|
|
static DEFINE_SPINLOCK(index_init_lock);
|
|
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
|
|
struct mem_section *section;
|
|
int ret = 0;
|
|
|
|
if (mem_section[root])
|
|
return -EEXIST;
|
|
|
|
section = sparse_index_alloc(nid);
|
|
if (!section)
|
|
return -ENOMEM;
|
|
/*
|
|
* This lock keeps two different sections from
|
|
* reallocating for the same index
|
|
*/
|
|
spin_lock(&index_init_lock);
|
|
|
|
if (mem_section[root]) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
mem_section[root] = section;
|
|
out:
|
|
spin_unlock(&index_init_lock);
|
|
return ret;
|
|
}
|
|
#else /* !SPARSEMEM_EXTREME */
|
|
static inline int sparse_index_init(unsigned long section_nr, int nid)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Although written for the SPARSEMEM_EXTREME case, this happens
|
|
* to also work for the flat array case because
|
|
* NR_SECTION_ROOTS==NR_MEM_SECTIONS.
|
|
*/
|
|
int __section_nr(struct mem_section* ms)
|
|
{
|
|
unsigned long root_nr;
|
|
struct mem_section* root;
|
|
|
|
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
|
|
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
|
|
if (!root)
|
|
continue;
|
|
|
|
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
|
|
break;
|
|
}
|
|
|
|
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
|
|
}
|
|
|
|
/*
|
|
* During early boot, before section_mem_map is used for an actual
|
|
* mem_map, we use section_mem_map to store the section's NUMA
|
|
* node. This keeps us from having to use another data structure. The
|
|
* node information is cleared just before we store the real mem_map.
|
|
*/
|
|
static inline unsigned long sparse_encode_early_nid(int nid)
|
|
{
|
|
return (nid << SECTION_NID_SHIFT);
|
|
}
|
|
|
|
static inline int sparse_early_nid(struct mem_section *section)
|
|
{
|
|
return (section->section_mem_map >> SECTION_NID_SHIFT);
|
|
}
|
|
|
|
/* Validate the physical addressing limitations of the model */
|
|
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
|
|
unsigned long *end_pfn)
|
|
{
|
|
unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
|
|
|
|
/*
|
|
* Sanity checks - do not allow an architecture to pass
|
|
* in larger pfns than the maximum scope of sparsemem:
|
|
*/
|
|
if (*start_pfn > max_sparsemem_pfn) {
|
|
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
|
|
"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
|
|
*start_pfn, *end_pfn, max_sparsemem_pfn);
|
|
WARN_ON_ONCE(1);
|
|
*start_pfn = max_sparsemem_pfn;
|
|
*end_pfn = max_sparsemem_pfn;
|
|
} else if (*end_pfn > max_sparsemem_pfn) {
|
|
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
|
|
"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
|
|
*start_pfn, *end_pfn, max_sparsemem_pfn);
|
|
WARN_ON_ONCE(1);
|
|
*end_pfn = max_sparsemem_pfn;
|
|
}
|
|
}
|
|
|
|
/* Record a memory area against a node. */
|
|
void __init memory_present(int nid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
start &= PAGE_SECTION_MASK;
|
|
mminit_validate_memmodel_limits(&start, &end);
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section = pfn_to_section_nr(pfn);
|
|
struct mem_section *ms;
|
|
|
|
sparse_index_init(section, nid);
|
|
set_section_nid(section, nid);
|
|
|
|
ms = __nr_to_section(section);
|
|
if (!ms->section_mem_map)
|
|
ms->section_mem_map = sparse_encode_early_nid(nid) |
|
|
SECTION_MARKED_PRESENT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only used by the i386 NUMA architecures, but relatively
|
|
* generic code.
|
|
*/
|
|
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long nr_pages = 0;
|
|
|
|
mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
if (nid != early_pfn_to_nid(pfn))
|
|
continue;
|
|
|
|
if (pfn_present(pfn))
|
|
nr_pages += PAGES_PER_SECTION;
|
|
}
|
|
|
|
return nr_pages * sizeof(struct page);
|
|
}
|
|
|
|
/*
|
|
* Subtle, we encode the real pfn into the mem_map such that
|
|
* the identity pfn - section_mem_map will return the actual
|
|
* physical page frame number.
|
|
*/
|
|
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
|
|
{
|
|
return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
|
|
}
|
|
|
|
/*
|
|
* Decode mem_map from the coded memmap
|
|
*/
|
|
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
|
|
{
|
|
/* mask off the extra low bits of information */
|
|
coded_mem_map &= SECTION_MAP_MASK;
|
|
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
|
|
}
|
|
|
|
static int __meminit sparse_init_one_section(struct mem_section *ms,
|
|
unsigned long pnum, struct page *mem_map,
|
|
unsigned long *pageblock_bitmap)
|
|
{
|
|
if (!present_section(ms))
|
|
return -EINVAL;
|
|
|
|
ms->section_mem_map &= ~SECTION_MAP_MASK;
|
|
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
|
|
SECTION_HAS_MEM_MAP;
|
|
ms->pageblock_flags = pageblock_bitmap;
|
|
|
|
return 1;
|
|
}
|
|
|
|
unsigned long usemap_size(void)
|
|
{
|
|
unsigned long size_bytes;
|
|
size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
|
|
size_bytes = roundup(size_bytes, sizeof(unsigned long));
|
|
return size_bytes;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static unsigned long *__kmalloc_section_usemap(void)
|
|
{
|
|
return kmalloc(usemap_size(), GFP_KERNEL);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static unsigned long * __init
|
|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
|
|
unsigned long count)
|
|
{
|
|
unsigned long section_nr;
|
|
|
|
/*
|
|
* A page may contain usemaps for other sections preventing the
|
|
* page being freed and making a section unremovable while
|
|
* other sections referencing the usemap retmain active. Similarly,
|
|
* a pgdat can prevent a section being removed. If section A
|
|
* contains a pgdat and section B contains the usemap, both
|
|
* sections become inter-dependent. This allocates usemaps
|
|
* from the same section as the pgdat where possible to avoid
|
|
* this problem.
|
|
*/
|
|
section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
|
|
return alloc_bootmem_section(usemap_size() * count, section_nr);
|
|
}
|
|
|
|
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
|
|
{
|
|
unsigned long usemap_snr, pgdat_snr;
|
|
static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
|
|
static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
|
|
struct pglist_data *pgdat = NODE_DATA(nid);
|
|
int usemap_nid;
|
|
|
|
usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
|
|
pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
|
|
if (usemap_snr == pgdat_snr)
|
|
return;
|
|
|
|
if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
|
|
/* skip redundant message */
|
|
return;
|
|
|
|
old_usemap_snr = usemap_snr;
|
|
old_pgdat_snr = pgdat_snr;
|
|
|
|
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
|
|
if (usemap_nid != nid) {
|
|
printk(KERN_INFO
|
|
"node %d must be removed before remove section %ld\n",
|
|
nid, usemap_snr);
|
|
return;
|
|
}
|
|
/*
|
|
* There is a circular dependency.
|
|
* Some platforms allow un-removable section because they will just
|
|
* gather other removable sections for dynamic partitioning.
|
|
* Just notify un-removable section's number here.
|
|
*/
|
|
printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
|
|
pgdat_snr, nid);
|
|
printk(KERN_CONT
|
|
" have a circular dependency on usemap and pgdat allocations\n");
|
|
}
|
|
#else
|
|
static unsigned long * __init
|
|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
|
|
unsigned long count)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
|
|
static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long usemap_count, int nodeid)
|
|
{
|
|
void *usemap;
|
|
unsigned long pnum;
|
|
int size = usemap_size();
|
|
|
|
usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
|
|
usemap_count);
|
|
if (usemap) {
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
usemap_map[pnum] = usemap;
|
|
usemap += size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
|
|
if (usemap) {
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
usemap_map[pnum] = usemap;
|
|
usemap += size;
|
|
check_usemap_section_nr(nodeid, usemap_map[pnum]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
printk(KERN_WARNING "%s: allocation failed\n", __func__);
|
|
}
|
|
|
|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
|
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
|
|
{
|
|
struct page *map;
|
|
|
|
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
|
|
if (map)
|
|
return map;
|
|
|
|
map = alloc_bootmem_pages_node(NODE_DATA(nid),
|
|
PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
|
|
return map;
|
|
}
|
|
void __init sparse_mem_maps_populate_node(struct page **map_map,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count, int nodeid)
|
|
{
|
|
void *map;
|
|
unsigned long pnum;
|
|
unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
|
|
|
|
map = alloc_remap(nodeid, size * map_count);
|
|
if (map) {
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = map;
|
|
map += size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
size = PAGE_ALIGN(size);
|
|
map = alloc_bootmem_pages_node(NODE_DATA(nodeid), size * map_count);
|
|
if (map) {
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = map;
|
|
map += size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* fallback */
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
struct mem_section *ms;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
|
|
if (map_map[pnum])
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
printk(KERN_ERR "%s: sparsemem memory map backing failed "
|
|
"some memory will not be available.\n", __func__);
|
|
ms->section_mem_map = 0;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count, int nodeid)
|
|
{
|
|
sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
|
|
map_count, nodeid);
|
|
}
|
|
#else
|
|
static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
|
|
{
|
|
struct page *map;
|
|
struct mem_section *ms = __nr_to_section(pnum);
|
|
int nid = sparse_early_nid(ms);
|
|
|
|
map = sparse_mem_map_populate(pnum, nid);
|
|
if (map)
|
|
return map;
|
|
|
|
printk(KERN_ERR "%s: sparsemem memory map backing failed "
|
|
"some memory will not be available.\n", __func__);
|
|
ms->section_mem_map = 0;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Allocate the accumulated non-linear sections, allocate a mem_map
|
|
* for each and record the physical to section mapping.
|
|
*/
|
|
void __init sparse_init(void)
|
|
{
|
|
unsigned long pnum;
|
|
struct page *map;
|
|
unsigned long *usemap;
|
|
unsigned long **usemap_map;
|
|
int size;
|
|
int nodeid_begin = 0;
|
|
unsigned long pnum_begin = 0;
|
|
unsigned long usemap_count;
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
unsigned long map_count;
|
|
int size2;
|
|
struct page **map_map;
|
|
#endif
|
|
|
|
/*
|
|
* map is using big page (aka 2M in x86 64 bit)
|
|
* usemap is less one page (aka 24 bytes)
|
|
* so alloc 2M (with 2M align) and 24 bytes in turn will
|
|
* make next 2M slip to one more 2M later.
|
|
* then in big system, the memory will have a lot of holes...
|
|
* here try to allocate 2M pages continously.
|
|
*
|
|
* powerpc need to call sparse_init_one_section right after each
|
|
* sparse_early_mem_map_alloc, so allocate usemap_map at first.
|
|
*/
|
|
size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
|
|
usemap_map = alloc_bootmem(size);
|
|
if (!usemap_map)
|
|
panic("can not allocate usemap_map\n");
|
|
|
|
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
|
|
struct mem_section *ms;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
nodeid_begin = sparse_early_nid(ms);
|
|
pnum_begin = pnum;
|
|
break;
|
|
}
|
|
usemap_count = 1;
|
|
for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
|
|
struct mem_section *ms;
|
|
int nodeid;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
nodeid = sparse_early_nid(ms);
|
|
if (nodeid == nodeid_begin) {
|
|
usemap_count++;
|
|
continue;
|
|
}
|
|
/* ok, we need to take cake of from pnum_begin to pnum - 1*/
|
|
sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
|
|
usemap_count, nodeid_begin);
|
|
/* new start, update count etc*/
|
|
nodeid_begin = nodeid;
|
|
pnum_begin = pnum;
|
|
usemap_count = 1;
|
|
}
|
|
/* ok, last chunk */
|
|
sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
|
|
usemap_count, nodeid_begin);
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
|
|
map_map = alloc_bootmem(size2);
|
|
if (!map_map)
|
|
panic("can not allocate map_map\n");
|
|
|
|
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
|
|
struct mem_section *ms;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
nodeid_begin = sparse_early_nid(ms);
|
|
pnum_begin = pnum;
|
|
break;
|
|
}
|
|
map_count = 1;
|
|
for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
|
|
struct mem_section *ms;
|
|
int nodeid;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
nodeid = sparse_early_nid(ms);
|
|
if (nodeid == nodeid_begin) {
|
|
map_count++;
|
|
continue;
|
|
}
|
|
/* ok, we need to take cake of from pnum_begin to pnum - 1*/
|
|
sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
|
|
map_count, nodeid_begin);
|
|
/* new start, update count etc*/
|
|
nodeid_begin = nodeid;
|
|
pnum_begin = pnum;
|
|
map_count = 1;
|
|
}
|
|
/* ok, last chunk */
|
|
sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
|
|
map_count, nodeid_begin);
|
|
#endif
|
|
|
|
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
|
|
usemap = usemap_map[pnum];
|
|
if (!usemap)
|
|
continue;
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
map = map_map[pnum];
|
|
#else
|
|
map = sparse_early_mem_map_alloc(pnum);
|
|
#endif
|
|
if (!map)
|
|
continue;
|
|
|
|
sparse_init_one_section(__nr_to_section(pnum), pnum, map,
|
|
usemap);
|
|
}
|
|
|
|
vmemmap_populate_print_last();
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
free_bootmem(__pa(map_map), size2);
|
|
#endif
|
|
free_bootmem(__pa(usemap_map), size);
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
|
|
unsigned long nr_pages)
|
|
{
|
|
/* This will make the necessary allocations eventually. */
|
|
return sparse_mem_map_populate(pnum, nid);
|
|
}
|
|
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
|
|
{
|
|
return; /* XXX: Not implemented yet */
|
|
}
|
|
static void free_map_bootmem(struct page *page, unsigned long nr_pages)
|
|
{
|
|
}
|
|
#else
|
|
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
|
|
{
|
|
struct page *page, *ret;
|
|
unsigned long memmap_size = sizeof(struct page) * nr_pages;
|
|
|
|
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
|
|
if (page)
|
|
goto got_map_page;
|
|
|
|
ret = vmalloc(memmap_size);
|
|
if (ret)
|
|
goto got_map_ptr;
|
|
|
|
return NULL;
|
|
got_map_page:
|
|
ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
|
|
got_map_ptr:
|
|
memset(ret, 0, memmap_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
|
|
unsigned long nr_pages)
|
|
{
|
|
return __kmalloc_section_memmap(nr_pages);
|
|
}
|
|
|
|
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
|
|
{
|
|
if (is_vmalloc_addr(memmap))
|
|
vfree(memmap);
|
|
else
|
|
free_pages((unsigned long)memmap,
|
|
get_order(sizeof(struct page) * nr_pages));
|
|
}
|
|
|
|
static void free_map_bootmem(struct page *page, unsigned long nr_pages)
|
|
{
|
|
unsigned long maps_section_nr, removing_section_nr, i;
|
|
int magic;
|
|
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
magic = atomic_read(&page->_mapcount);
|
|
|
|
BUG_ON(magic == NODE_INFO);
|
|
|
|
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
|
|
removing_section_nr = page->private;
|
|
|
|
/*
|
|
* When this function is called, the removing section is
|
|
* logical offlined state. This means all pages are isolated
|
|
* from page allocator. If removing section's memmap is placed
|
|
* on the same section, it must not be freed.
|
|
* If it is freed, page allocator may allocate it which will
|
|
* be removed physically soon.
|
|
*/
|
|
if (maps_section_nr != removing_section_nr)
|
|
put_page_bootmem(page);
|
|
}
|
|
}
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
|
|
{
|
|
struct page *usemap_page;
|
|
unsigned long nr_pages;
|
|
|
|
if (!usemap)
|
|
return;
|
|
|
|
usemap_page = virt_to_page(usemap);
|
|
/*
|
|
* Check to see if allocation came from hot-plug-add
|
|
*/
|
|
if (PageSlab(usemap_page)) {
|
|
kfree(usemap);
|
|
if (memmap)
|
|
__kfree_section_memmap(memmap, PAGES_PER_SECTION);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The usemap came from bootmem. This is packed with other usemaps
|
|
* on the section which has pgdat at boot time. Just keep it as is now.
|
|
*/
|
|
|
|
if (memmap) {
|
|
struct page *memmap_page;
|
|
memmap_page = virt_to_page(memmap);
|
|
|
|
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
|
|
>> PAGE_SHIFT;
|
|
|
|
free_map_bootmem(memmap_page, nr_pages);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* returns the number of sections whose mem_maps were properly
|
|
* set. If this is <=0, then that means that the passed-in
|
|
* map was not consumed and must be freed.
|
|
*/
|
|
int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
|
|
int nr_pages)
|
|
{
|
|
unsigned long section_nr = pfn_to_section_nr(start_pfn);
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
struct mem_section *ms;
|
|
struct page *memmap;
|
|
unsigned long *usemap;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/*
|
|
* no locking for this, because it does its own
|
|
* plus, it does a kmalloc
|
|
*/
|
|
ret = sparse_index_init(section_nr, pgdat->node_id);
|
|
if (ret < 0 && ret != -EEXIST)
|
|
return ret;
|
|
memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
|
|
if (!memmap)
|
|
return -ENOMEM;
|
|
usemap = __kmalloc_section_usemap();
|
|
if (!usemap) {
|
|
__kfree_section_memmap(memmap, nr_pages);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
|
|
ms = __pfn_to_section(start_pfn);
|
|
if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
ms->section_mem_map |= SECTION_MARKED_PRESENT;
|
|
|
|
ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
|
|
|
|
out:
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
if (ret <= 0) {
|
|
kfree(usemap);
|
|
__kfree_section_memmap(memmap, nr_pages);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
|
|
{
|
|
struct page *memmap = NULL;
|
|
unsigned long *usemap = NULL;
|
|
|
|
if (ms->section_mem_map) {
|
|
usemap = ms->pageblock_flags;
|
|
memmap = sparse_decode_mem_map(ms->section_mem_map,
|
|
__section_nr(ms));
|
|
ms->section_mem_map = 0;
|
|
ms->pageblock_flags = NULL;
|
|
}
|
|
|
|
free_section_usemap(memmap, usemap);
|
|
}
|
|
#endif
|