39a112403f
Use the kthread_ API instead of opencoding lots of hairy code for kernel thread creation and teardown. Also switch from semaphore-based thread wakeup to wake_up_process. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-By: Andrew Vasquez <andrew.vasquez@qlogic.com> Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
1660 lines
41 KiB
C
1660 lines
41 KiB
C
/*
|
|
* QLogic Fibre Channel HBA Driver
|
|
* Copyright (c) 2003-2005 QLogic Corporation
|
|
*
|
|
* See LICENSE.qla2xxx for copyright and licensing details.
|
|
*/
|
|
#include "qla_def.h"
|
|
|
|
#include <linux/delay.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
|
|
static void qla2x00_nv_deselect(scsi_qla_host_t *);
|
|
static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
|
|
|
|
/*
|
|
* NVRAM support routines
|
|
*/
|
|
|
|
/**
|
|
* qla2x00_lock_nvram_access() -
|
|
* @ha: HA context
|
|
*/
|
|
void
|
|
qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
|
|
{
|
|
uint16_t data;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
|
|
data = RD_REG_WORD(®->nvram);
|
|
while (data & NVR_BUSY) {
|
|
udelay(100);
|
|
data = RD_REG_WORD(®->nvram);
|
|
}
|
|
|
|
/* Lock resource */
|
|
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1);
|
|
RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
udelay(5);
|
|
data = RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
while ((data & BIT_0) == 0) {
|
|
/* Lock failed */
|
|
udelay(100);
|
|
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0x1);
|
|
RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
udelay(5);
|
|
data = RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* qla2x00_unlock_nvram_access() -
|
|
* @ha: HA context
|
|
*/
|
|
void
|
|
qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
|
|
WRT_REG_WORD(®->u.isp2300.host_semaphore, 0);
|
|
RD_REG_WORD(®->u.isp2300.host_semaphore);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
|
|
* request routine to get the word from NVRAM.
|
|
* @ha: HA context
|
|
* @addr: Address in NVRAM to read
|
|
*
|
|
* Returns the word read from nvram @addr.
|
|
*/
|
|
uint16_t
|
|
qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
|
|
{
|
|
uint16_t data;
|
|
uint32_t nv_cmd;
|
|
|
|
nv_cmd = addr << 16;
|
|
nv_cmd |= NV_READ_OP;
|
|
data = qla2x00_nvram_request(ha, nv_cmd);
|
|
|
|
return (data);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_write_nvram_word() - Write NVRAM data.
|
|
* @ha: HA context
|
|
* @addr: Address in NVRAM to write
|
|
* @data: word to program
|
|
*/
|
|
void
|
|
qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
|
|
{
|
|
int count;
|
|
uint16_t word;
|
|
uint32_t nv_cmd;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, 0);
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Write data */
|
|
nv_cmd = (addr << 16) | NV_WRITE_OP;
|
|
nv_cmd |= data;
|
|
nv_cmd <<= 5;
|
|
for (count = 0; count < 27; count++) {
|
|
if (nv_cmd & BIT_31)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
else
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
nv_cmd <<= 1;
|
|
}
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Wait for NVRAM to become ready */
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
do {
|
|
NVRAM_DELAY();
|
|
word = RD_REG_WORD(®->nvram);
|
|
} while ((word & NVR_DATA_IN) == 0);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Disable writes */
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
for (count = 0; count < 10; count++)
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
}
|
|
|
|
static int
|
|
qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
|
|
uint32_t tmo)
|
|
{
|
|
int ret, count;
|
|
uint16_t word;
|
|
uint32_t nv_cmd;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
ret = QLA_SUCCESS;
|
|
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, 0);
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Write data */
|
|
nv_cmd = (addr << 16) | NV_WRITE_OP;
|
|
nv_cmd |= data;
|
|
nv_cmd <<= 5;
|
|
for (count = 0; count < 27; count++) {
|
|
if (nv_cmd & BIT_31)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
else
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
nv_cmd <<= 1;
|
|
}
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Wait for NVRAM to become ready */
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
do {
|
|
NVRAM_DELAY();
|
|
word = RD_REG_WORD(®->nvram);
|
|
if (!--tmo) {
|
|
ret = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
} while ((word & NVR_DATA_IN) == 0);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Disable writes */
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
for (count = 0; count < 10; count++)
|
|
qla2x00_nv_write(ha, 0);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
|
|
* NVRAM.
|
|
* @ha: HA context
|
|
* @nv_cmd: NVRAM command
|
|
*
|
|
* Bit definitions for NVRAM command:
|
|
*
|
|
* Bit 26 = start bit
|
|
* Bit 25, 24 = opcode
|
|
* Bit 23-16 = address
|
|
* Bit 15-0 = write data
|
|
*
|
|
* Returns the word read from nvram @addr.
|
|
*/
|
|
static uint16_t
|
|
qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
|
|
{
|
|
uint8_t cnt;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
uint16_t data = 0;
|
|
uint16_t reg_data;
|
|
|
|
/* Send command to NVRAM. */
|
|
nv_cmd <<= 5;
|
|
for (cnt = 0; cnt < 11; cnt++) {
|
|
if (nv_cmd & BIT_31)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
else
|
|
qla2x00_nv_write(ha, 0);
|
|
nv_cmd <<= 1;
|
|
}
|
|
|
|
/* Read data from NVRAM. */
|
|
for (cnt = 0; cnt < 16; cnt++) {
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT | NVR_CLOCK);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
data <<= 1;
|
|
reg_data = RD_REG_WORD(®->nvram);
|
|
if (reg_data & NVR_DATA_IN)
|
|
data |= BIT_0;
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
}
|
|
|
|
/* Deselect chip. */
|
|
WRT_REG_WORD(®->nvram, NVR_DESELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
|
|
return (data);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_nv_write() - Clean NVRAM operations.
|
|
* @ha: HA context
|
|
*/
|
|
static void
|
|
qla2x00_nv_deselect(scsi_qla_host_t *ha)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
WRT_REG_WORD(®->nvram, NVR_DESELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
}
|
|
|
|
/**
|
|
* qla2x00_nv_write() - Prepare for NVRAM read/write operation.
|
|
* @ha: HA context
|
|
* @data: Serial interface selector
|
|
*/
|
|
static void
|
|
qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
WRT_REG_WORD(®->nvram, data | NVR_SELECT| NVR_CLOCK |
|
|
NVR_WRT_ENABLE);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
WRT_REG_WORD(®->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
NVRAM_DELAY();
|
|
}
|
|
|
|
/**
|
|
* qla2x00_clear_nvram_protection() -
|
|
* @ha: HA context
|
|
*/
|
|
static int
|
|
qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
|
|
{
|
|
int ret, stat;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
uint32_t word;
|
|
uint16_t wprot, wprot_old;
|
|
|
|
/* Clear NVRAM write protection. */
|
|
ret = QLA_FUNCTION_FAILED;
|
|
wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, 0));
|
|
stat = qla2x00_write_nvram_word_tmo(ha, 0,
|
|
__constant_cpu_to_le16(0x1234), 100000);
|
|
wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, 0));
|
|
if (stat != QLA_SUCCESS || wprot != __constant_cpu_to_le16(0x1234)) {
|
|
/* Write enable. */
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, 0);
|
|
qla2x00_nv_write(ha, 0);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Enable protection register. */
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Clear protection register (ffff is cleared). */
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Wait for NVRAM to become ready. */
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
do {
|
|
NVRAM_DELAY();
|
|
word = RD_REG_WORD(®->nvram);
|
|
} while ((word & NVR_DATA_IN) == 0);
|
|
|
|
ret = QLA_SUCCESS;
|
|
} else
|
|
qla2x00_write_nvram_word(ha, 0, wprot_old);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
|
|
{
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
uint32_t word;
|
|
|
|
if (stat != QLA_SUCCESS)
|
|
return;
|
|
|
|
/* Set NVRAM write protection. */
|
|
/* Write enable. */
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, 0);
|
|
qla2x00_nv_write(ha, 0);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Enable protection register. */
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Enable protection register. */
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
|
|
for (word = 0; word < 8; word++)
|
|
qla2x00_nv_write(ha, NVR_PR_ENABLE);
|
|
|
|
qla2x00_nv_deselect(ha);
|
|
|
|
/* Wait for NVRAM to become ready. */
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
do {
|
|
NVRAM_DELAY();
|
|
word = RD_REG_WORD(®->nvram);
|
|
} while ((word & NVR_DATA_IN) == 0);
|
|
}
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Flash Manipulation Routines */
|
|
/*****************************************************************************/
|
|
|
|
static inline uint32_t
|
|
flash_conf_to_access_addr(uint32_t faddr)
|
|
{
|
|
return FARX_ACCESS_FLASH_CONF | faddr;
|
|
}
|
|
|
|
static inline uint32_t
|
|
flash_data_to_access_addr(uint32_t faddr)
|
|
{
|
|
return FARX_ACCESS_FLASH_DATA | faddr;
|
|
}
|
|
|
|
static inline uint32_t
|
|
nvram_conf_to_access_addr(uint32_t naddr)
|
|
{
|
|
return FARX_ACCESS_NVRAM_CONF | naddr;
|
|
}
|
|
|
|
static inline uint32_t
|
|
nvram_data_to_access_addr(uint32_t naddr)
|
|
{
|
|
return FARX_ACCESS_NVRAM_DATA | naddr;
|
|
}
|
|
|
|
uint32_t
|
|
qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
|
|
{
|
|
int rval;
|
|
uint32_t cnt, data;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
WRT_REG_DWORD(®->flash_addr, addr & ~FARX_DATA_FLAG);
|
|
/* Wait for READ cycle to complete. */
|
|
rval = QLA_SUCCESS;
|
|
for (cnt = 3000;
|
|
(RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) == 0 &&
|
|
rval == QLA_SUCCESS; cnt--) {
|
|
if (cnt)
|
|
udelay(10);
|
|
else
|
|
rval = QLA_FUNCTION_TIMEOUT;
|
|
}
|
|
|
|
/* TODO: What happens if we time out? */
|
|
data = 0xDEADDEAD;
|
|
if (rval == QLA_SUCCESS)
|
|
data = RD_REG_DWORD(®->flash_data);
|
|
|
|
return data;
|
|
}
|
|
|
|
uint32_t *
|
|
qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
|
|
uint32_t dwords)
|
|
{
|
|
uint32_t i;
|
|
|
|
/* Dword reads to flash. */
|
|
for (i = 0; i < dwords; i++, faddr++)
|
|
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
|
|
flash_data_to_access_addr(faddr)));
|
|
|
|
return dwptr;
|
|
}
|
|
|
|
int
|
|
qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
|
|
{
|
|
int rval;
|
|
uint32_t cnt;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
WRT_REG_DWORD(®->flash_data, data);
|
|
RD_REG_DWORD(®->flash_data); /* PCI Posting. */
|
|
WRT_REG_DWORD(®->flash_addr, addr | FARX_DATA_FLAG);
|
|
/* Wait for Write cycle to complete. */
|
|
rval = QLA_SUCCESS;
|
|
for (cnt = 500000; (RD_REG_DWORD(®->flash_addr) & FARX_DATA_FLAG) &&
|
|
rval == QLA_SUCCESS; cnt--) {
|
|
if (cnt)
|
|
udelay(10);
|
|
else
|
|
rval = QLA_FUNCTION_TIMEOUT;
|
|
}
|
|
return rval;
|
|
}
|
|
|
|
void
|
|
qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
|
|
uint8_t *flash_id)
|
|
{
|
|
uint32_t ids;
|
|
|
|
ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
|
|
*man_id = LSB(ids);
|
|
*flash_id = MSB(ids);
|
|
}
|
|
|
|
int
|
|
qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
|
|
uint32_t dwords)
|
|
{
|
|
int ret;
|
|
uint32_t liter;
|
|
uint32_t sec_mask, rest_addr, conf_addr;
|
|
uint32_t fdata;
|
|
uint8_t man_id, flash_id;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
ret = QLA_SUCCESS;
|
|
|
|
qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
|
|
DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__,
|
|
ha->host_no, man_id, flash_id));
|
|
|
|
conf_addr = flash_conf_to_access_addr(0x03d8);
|
|
switch (man_id) {
|
|
case 0xbf: /* STT flash. */
|
|
rest_addr = 0x1fff;
|
|
sec_mask = 0x3e000;
|
|
if (flash_id == 0x80)
|
|
conf_addr = flash_conf_to_access_addr(0x0352);
|
|
break;
|
|
case 0x13: /* ST M25P80. */
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x3c000;
|
|
break;
|
|
default:
|
|
/* Default to 64 kb sector size. */
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x3c000;
|
|
break;
|
|
}
|
|
|
|
/* Enable flash write. */
|
|
WRT_REG_DWORD(®->ctrl_status,
|
|
RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE);
|
|
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
/* Disable flash write-protection. */
|
|
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
|
|
|
|
do { /* Loop once to provide quick error exit. */
|
|
for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
|
|
/* Are we at the beginning of a sector? */
|
|
if ((faddr & rest_addr) == 0) {
|
|
fdata = (faddr & sec_mask) << 2;
|
|
ret = qla24xx_write_flash_dword(ha, conf_addr,
|
|
(fdata & 0xff00) |((fdata << 16) &
|
|
0xff0000) | ((fdata >> 16) & 0xff));
|
|
if (ret != QLA_SUCCESS) {
|
|
DEBUG9(printk("%s(%ld) Unable to flash "
|
|
"sector: address=%x.\n", __func__,
|
|
ha->host_no, faddr));
|
|
break;
|
|
}
|
|
}
|
|
ret = qla24xx_write_flash_dword(ha,
|
|
flash_data_to_access_addr(faddr),
|
|
cpu_to_le32(*dwptr));
|
|
if (ret != QLA_SUCCESS) {
|
|
DEBUG9(printk("%s(%ld) Unable to program flash "
|
|
"address=%x data=%x.\n", __func__,
|
|
ha->host_no, faddr, *dwptr));
|
|
break;
|
|
}
|
|
}
|
|
} while (0);
|
|
|
|
/* Enable flash write-protection. */
|
|
qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c);
|
|
|
|
/* Disable flash write. */
|
|
WRT_REG_DWORD(®->ctrl_status,
|
|
RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE);
|
|
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint8_t *
|
|
qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
uint32_t i;
|
|
uint16_t *wptr;
|
|
|
|
/* Word reads to NVRAM via registers. */
|
|
wptr = (uint16_t *)buf;
|
|
qla2x00_lock_nvram_access(ha);
|
|
for (i = 0; i < bytes >> 1; i++, naddr++)
|
|
wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
|
|
naddr));
|
|
qla2x00_unlock_nvram_access(ha);
|
|
|
|
return buf;
|
|
}
|
|
|
|
uint8_t *
|
|
qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
uint32_t i;
|
|
uint32_t *dwptr;
|
|
|
|
/* Dword reads to flash. */
|
|
dwptr = (uint32_t *)buf;
|
|
for (i = 0; i < bytes >> 2; i++, naddr++)
|
|
dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
|
|
nvram_data_to_access_addr(naddr)));
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
int ret, stat;
|
|
uint32_t i;
|
|
uint16_t *wptr;
|
|
|
|
ret = QLA_SUCCESS;
|
|
|
|
qla2x00_lock_nvram_access(ha);
|
|
|
|
/* Disable NVRAM write-protection. */
|
|
stat = qla2x00_clear_nvram_protection(ha);
|
|
|
|
wptr = (uint16_t *)buf;
|
|
for (i = 0; i < bytes >> 1; i++, naddr++) {
|
|
qla2x00_write_nvram_word(ha, naddr,
|
|
cpu_to_le16(*wptr));
|
|
wptr++;
|
|
}
|
|
|
|
/* Enable NVRAM write-protection. */
|
|
qla2x00_set_nvram_protection(ha, stat);
|
|
|
|
qla2x00_unlock_nvram_access(ha);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
|
|
uint32_t bytes)
|
|
{
|
|
int ret;
|
|
uint32_t i;
|
|
uint32_t *dwptr;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
ret = QLA_SUCCESS;
|
|
|
|
/* Enable flash write. */
|
|
WRT_REG_DWORD(®->ctrl_status,
|
|
RD_REG_DWORD(®->ctrl_status) | CSRX_FLASH_ENABLE);
|
|
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
/* Disable NVRAM write-protection. */
|
|
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
|
|
0);
|
|
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
|
|
0);
|
|
|
|
/* Dword writes to flash. */
|
|
dwptr = (uint32_t *)buf;
|
|
for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
|
|
ret = qla24xx_write_flash_dword(ha,
|
|
nvram_data_to_access_addr(naddr),
|
|
cpu_to_le32(*dwptr));
|
|
if (ret != QLA_SUCCESS) {
|
|
DEBUG9(printk("%s(%ld) Unable to program "
|
|
"nvram address=%x data=%x.\n", __func__,
|
|
ha->host_no, naddr, *dwptr));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Enable NVRAM write-protection. */
|
|
qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
|
|
0x8c);
|
|
|
|
/* Disable flash write. */
|
|
WRT_REG_DWORD(®->ctrl_status,
|
|
RD_REG_DWORD(®->ctrl_status) & ~CSRX_FLASH_ENABLE);
|
|
RD_REG_DWORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static inline void
|
|
qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
|
|
{
|
|
if (IS_QLA2322(ha)) {
|
|
/* Flip all colors. */
|
|
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
|
|
/* Turn off. */
|
|
ha->beacon_color_state = 0;
|
|
*pflags = GPIO_LED_ALL_OFF;
|
|
} else {
|
|
/* Turn on. */
|
|
ha->beacon_color_state = QLA_LED_ALL_ON;
|
|
*pflags = GPIO_LED_RGA_ON;
|
|
}
|
|
} else {
|
|
/* Flip green led only. */
|
|
if (ha->beacon_color_state == QLA_LED_GRN_ON) {
|
|
/* Turn off. */
|
|
ha->beacon_color_state = 0;
|
|
*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
|
|
} else {
|
|
/* Turn on. */
|
|
ha->beacon_color_state = QLA_LED_GRN_ON;
|
|
*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
qla2x00_beacon_blink(struct scsi_qla_host *ha)
|
|
{
|
|
uint16_t gpio_enable;
|
|
uint16_t gpio_data;
|
|
uint16_t led_color = 0;
|
|
unsigned long flags;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
if (ha->pio_address)
|
|
reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
|
|
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
|
|
/* Save the Original GPIOE. */
|
|
if (ha->pio_address) {
|
|
gpio_enable = RD_REG_WORD_PIO(®->gpioe);
|
|
gpio_data = RD_REG_WORD_PIO(®->gpiod);
|
|
} else {
|
|
gpio_enable = RD_REG_WORD(®->gpioe);
|
|
gpio_data = RD_REG_WORD(®->gpiod);
|
|
}
|
|
|
|
/* Set the modified gpio_enable values */
|
|
gpio_enable |= GPIO_LED_MASK;
|
|
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(®->gpioe, gpio_enable);
|
|
} else {
|
|
WRT_REG_WORD(®->gpioe, gpio_enable);
|
|
RD_REG_WORD(®->gpioe);
|
|
}
|
|
|
|
qla2x00_flip_colors(ha, &led_color);
|
|
|
|
/* Clear out any previously set LED color. */
|
|
gpio_data &= ~GPIO_LED_MASK;
|
|
|
|
/* Set the new input LED color to GPIOD. */
|
|
gpio_data |= led_color;
|
|
|
|
/* Set the modified gpio_data values */
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(®->gpiod, gpio_data);
|
|
} else {
|
|
WRT_REG_WORD(®->gpiod, gpio_data);
|
|
RD_REG_WORD(®->gpiod);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
}
|
|
|
|
int
|
|
qla2x00_beacon_on(struct scsi_qla_host *ha)
|
|
{
|
|
uint16_t gpio_enable;
|
|
uint16_t gpio_data;
|
|
unsigned long flags;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
|
|
ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
|
|
|
|
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to update fw options (beacon on).\n");
|
|
return QLA_FUNCTION_FAILED;
|
|
}
|
|
|
|
if (ha->pio_address)
|
|
reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
|
|
|
|
/* Turn off LEDs. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
if (ha->pio_address) {
|
|
gpio_enable = RD_REG_WORD_PIO(®->gpioe);
|
|
gpio_data = RD_REG_WORD_PIO(®->gpiod);
|
|
} else {
|
|
gpio_enable = RD_REG_WORD(®->gpioe);
|
|
gpio_data = RD_REG_WORD(®->gpiod);
|
|
}
|
|
gpio_enable |= GPIO_LED_MASK;
|
|
|
|
/* Set the modified gpio_enable values. */
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(®->gpioe, gpio_enable);
|
|
} else {
|
|
WRT_REG_WORD(®->gpioe, gpio_enable);
|
|
RD_REG_WORD(®->gpioe);
|
|
}
|
|
|
|
/* Clear out previously set LED colour. */
|
|
gpio_data &= ~GPIO_LED_MASK;
|
|
if (ha->pio_address) {
|
|
WRT_REG_WORD_PIO(®->gpiod, gpio_data);
|
|
} else {
|
|
WRT_REG_WORD(®->gpiod, gpio_data);
|
|
RD_REG_WORD(®->gpiod);
|
|
}
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
|
|
/*
|
|
* Let the per HBA timer kick off the blinking process based on
|
|
* the following flags. No need to do anything else now.
|
|
*/
|
|
ha->beacon_blink_led = 1;
|
|
ha->beacon_color_state = 0;
|
|
|
|
return QLA_SUCCESS;
|
|
}
|
|
|
|
int
|
|
qla2x00_beacon_off(struct scsi_qla_host *ha)
|
|
{
|
|
int rval = QLA_SUCCESS;
|
|
|
|
ha->beacon_blink_led = 0;
|
|
|
|
/* Set the on flag so when it gets flipped it will be off. */
|
|
if (IS_QLA2322(ha))
|
|
ha->beacon_color_state = QLA_LED_ALL_ON;
|
|
else
|
|
ha->beacon_color_state = QLA_LED_GRN_ON;
|
|
|
|
ha->isp_ops.beacon_blink(ha); /* This turns green LED off */
|
|
|
|
ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
|
|
ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
|
|
|
|
rval = qla2x00_set_fw_options(ha, ha->fw_options);
|
|
if (rval != QLA_SUCCESS)
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to update fw options (beacon off).\n");
|
|
return rval;
|
|
}
|
|
|
|
|
|
static inline void
|
|
qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
|
|
{
|
|
/* Flip all colors. */
|
|
if (ha->beacon_color_state == QLA_LED_ALL_ON) {
|
|
/* Turn off. */
|
|
ha->beacon_color_state = 0;
|
|
*pflags = 0;
|
|
} else {
|
|
/* Turn on. */
|
|
ha->beacon_color_state = QLA_LED_ALL_ON;
|
|
*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
|
|
}
|
|
}
|
|
|
|
void
|
|
qla24xx_beacon_blink(struct scsi_qla_host *ha)
|
|
{
|
|
uint16_t led_color = 0;
|
|
uint32_t gpio_data;
|
|
unsigned long flags;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
/* Save the Original GPIOD. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
|
|
/* Enable the gpio_data reg for update. */
|
|
gpio_data |= GPDX_LED_UPDATE_MASK;
|
|
|
|
WRT_REG_DWORD(®->gpiod, gpio_data);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
|
|
/* Set the color bits. */
|
|
qla24xx_flip_colors(ha, &led_color);
|
|
|
|
/* Clear out any previously set LED color. */
|
|
gpio_data &= ~GPDX_LED_COLOR_MASK;
|
|
|
|
/* Set the new input LED color to GPIOD. */
|
|
gpio_data |= led_color;
|
|
|
|
/* Set the modified gpio_data values. */
|
|
WRT_REG_DWORD(®->gpiod, gpio_data);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
}
|
|
|
|
int
|
|
qla24xx_beacon_on(struct scsi_qla_host *ha)
|
|
{
|
|
uint32_t gpio_data;
|
|
unsigned long flags;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
if (ha->beacon_blink_led == 0) {
|
|
/* Enable firmware for update */
|
|
ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
|
|
|
|
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
|
|
return QLA_FUNCTION_FAILED;
|
|
|
|
if (qla2x00_get_fw_options(ha, ha->fw_options) !=
|
|
QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to update fw options (beacon on).\n");
|
|
return QLA_FUNCTION_FAILED;
|
|
}
|
|
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
|
|
/* Enable the gpio_data reg for update. */
|
|
gpio_data |= GPDX_LED_UPDATE_MASK;
|
|
WRT_REG_DWORD(®->gpiod, gpio_data);
|
|
RD_REG_DWORD(®->gpiod);
|
|
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
}
|
|
|
|
/* So all colors blink together. */
|
|
ha->beacon_color_state = 0;
|
|
|
|
/* Let the per HBA timer kick off the blinking process. */
|
|
ha->beacon_blink_led = 1;
|
|
|
|
return QLA_SUCCESS;
|
|
}
|
|
|
|
int
|
|
qla24xx_beacon_off(struct scsi_qla_host *ha)
|
|
{
|
|
uint32_t gpio_data;
|
|
unsigned long flags;
|
|
struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
|
|
|
|
ha->beacon_blink_led = 0;
|
|
ha->beacon_color_state = QLA_LED_ALL_ON;
|
|
|
|
ha->isp_ops.beacon_blink(ha); /* Will flip to all off. */
|
|
|
|
/* Give control back to firmware. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
gpio_data = RD_REG_DWORD(®->gpiod);
|
|
|
|
/* Disable the gpio_data reg for update. */
|
|
gpio_data &= ~GPDX_LED_UPDATE_MASK;
|
|
WRT_REG_DWORD(®->gpiod, gpio_data);
|
|
RD_REG_DWORD(®->gpiod);
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
|
|
ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
|
|
|
|
if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to update fw options (beacon off).\n");
|
|
return QLA_FUNCTION_FAILED;
|
|
}
|
|
|
|
if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
|
|
qla_printk(KERN_WARNING, ha,
|
|
"Unable to get fw options (beacon off).\n");
|
|
return QLA_FUNCTION_FAILED;
|
|
}
|
|
|
|
return QLA_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Flash support routines
|
|
*/
|
|
|
|
/**
|
|
* qla2x00_flash_enable() - Setup flash for reading and writing.
|
|
* @ha: HA context
|
|
*/
|
|
static void
|
|
qla2x00_flash_enable(scsi_qla_host_t *ha)
|
|
{
|
|
uint16_t data;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
data = RD_REG_WORD(®->ctrl_status);
|
|
data |= CSR_FLASH_ENABLE;
|
|
WRT_REG_WORD(®->ctrl_status, data);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
|
|
/**
|
|
* qla2x00_flash_disable() - Disable flash and allow RISC to run.
|
|
* @ha: HA context
|
|
*/
|
|
static void
|
|
qla2x00_flash_disable(scsi_qla_host_t *ha)
|
|
{
|
|
uint16_t data;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
data = RD_REG_WORD(®->ctrl_status);
|
|
data &= ~(CSR_FLASH_ENABLE);
|
|
WRT_REG_WORD(®->ctrl_status, data);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
|
|
/**
|
|
* qla2x00_read_flash_byte() - Reads a byte from flash
|
|
* @ha: HA context
|
|
* @addr: Address in flash to read
|
|
*
|
|
* A word is read from the chip, but, only the lower byte is valid.
|
|
*
|
|
* Returns the byte read from flash @addr.
|
|
*/
|
|
static uint8_t
|
|
qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
|
|
{
|
|
uint16_t data;
|
|
uint16_t bank_select;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
bank_select = RD_REG_WORD(®->ctrl_status);
|
|
|
|
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
|
|
/* Specify 64K address range: */
|
|
/* clear out Module Select and Flash Address bits [19:16]. */
|
|
bank_select &= ~0xf8;
|
|
bank_select |= addr >> 12 & 0xf0;
|
|
bank_select |= CSR_FLASH_64K_BANK;
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
|
|
data = RD_REG_WORD(®->flash_data);
|
|
|
|
return (uint8_t)data;
|
|
}
|
|
|
|
/* Setup bit 16 of flash address. */
|
|
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
|
|
bank_select |= CSR_FLASH_64K_BANK;
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
} else if (((addr & BIT_16) == 0) &&
|
|
(bank_select & CSR_FLASH_64K_BANK)) {
|
|
bank_select &= ~(CSR_FLASH_64K_BANK);
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
|
|
/* Always perform IO mapped accesses to the FLASH registers. */
|
|
if (ha->pio_address) {
|
|
uint16_t data2;
|
|
|
|
reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
|
|
WRT_REG_WORD_PIO(®->flash_address, (uint16_t)addr);
|
|
do {
|
|
data = RD_REG_WORD_PIO(®->flash_data);
|
|
barrier();
|
|
cpu_relax();
|
|
data2 = RD_REG_WORD_PIO(®->flash_data);
|
|
} while (data != data2);
|
|
} else {
|
|
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
|
|
data = qla2x00_debounce_register(®->flash_data);
|
|
}
|
|
|
|
return (uint8_t)data;
|
|
}
|
|
|
|
/**
|
|
* qla2x00_write_flash_byte() - Write a byte to flash
|
|
* @ha: HA context
|
|
* @addr: Address in flash to write
|
|
* @data: Data to write
|
|
*/
|
|
static void
|
|
qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
|
|
{
|
|
uint16_t bank_select;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
bank_select = RD_REG_WORD(®->ctrl_status);
|
|
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
|
|
/* Specify 64K address range: */
|
|
/* clear out Module Select and Flash Address bits [19:16]. */
|
|
bank_select &= ~0xf8;
|
|
bank_select |= addr >> 12 & 0xf0;
|
|
bank_select |= CSR_FLASH_64K_BANK;
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
WRT_REG_WORD(®->flash_data, (uint16_t)data);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
|
|
return;
|
|
}
|
|
|
|
/* Setup bit 16 of flash address. */
|
|
if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
|
|
bank_select |= CSR_FLASH_64K_BANK;
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
} else if (((addr & BIT_16) == 0) &&
|
|
(bank_select & CSR_FLASH_64K_BANK)) {
|
|
bank_select &= ~(CSR_FLASH_64K_BANK);
|
|
WRT_REG_WORD(®->ctrl_status, bank_select);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
|
|
/* Always perform IO mapped accesses to the FLASH registers. */
|
|
if (ha->pio_address) {
|
|
reg = (struct device_reg_2xxx __iomem *)ha->pio_address;
|
|
WRT_REG_WORD_PIO(®->flash_address, (uint16_t)addr);
|
|
WRT_REG_WORD_PIO(®->flash_data, (uint16_t)data);
|
|
} else {
|
|
WRT_REG_WORD(®->flash_address, (uint16_t)addr);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
WRT_REG_WORD(®->flash_data, (uint16_t)data);
|
|
RD_REG_WORD(®->ctrl_status); /* PCI Posting. */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* qla2x00_poll_flash() - Polls flash for completion.
|
|
* @ha: HA context
|
|
* @addr: Address in flash to poll
|
|
* @poll_data: Data to be polled
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*
|
|
* This function polls the device until bit 7 of what is read matches data
|
|
* bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
|
|
* out (a fatal error). The flash book recommeds reading bit 7 again after
|
|
* reading bit 5 as a 1.
|
|
*
|
|
* Returns 0 on success, else non-zero.
|
|
*/
|
|
static int
|
|
qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
|
|
uint8_t man_id, uint8_t flash_id)
|
|
{
|
|
int status;
|
|
uint8_t flash_data;
|
|
uint32_t cnt;
|
|
|
|
status = 1;
|
|
|
|
/* Wait for 30 seconds for command to finish. */
|
|
poll_data &= BIT_7;
|
|
for (cnt = 3000000; cnt; cnt--) {
|
|
flash_data = qla2x00_read_flash_byte(ha, addr);
|
|
if ((flash_data & BIT_7) == poll_data) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
|
|
if (man_id != 0x40 && man_id != 0xda) {
|
|
if ((flash_data & BIT_5) && cnt > 2)
|
|
cnt = 2;
|
|
}
|
|
udelay(10);
|
|
barrier();
|
|
}
|
|
return status;
|
|
}
|
|
|
|
#define IS_OEM_001(ha) \
|
|
((ha)->pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2322 && \
|
|
(ha)->pdev->subsystem_vendor == 0x1028 && \
|
|
(ha)->pdev->subsystem_device == 0x0170)
|
|
|
|
/**
|
|
* qla2x00_program_flash_address() - Programs a flash address
|
|
* @ha: HA context
|
|
* @addr: Address in flash to program
|
|
* @data: Data to be written in flash
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*
|
|
* Returns 0 on success, else non-zero.
|
|
*/
|
|
static int
|
|
qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
|
|
uint8_t man_id, uint8_t flash_id)
|
|
{
|
|
/* Write Program Command Sequence. */
|
|
if (IS_OEM_001(ha)) {
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x555, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
|
|
qla2x00_write_flash_byte(ha, addr, data);
|
|
} else {
|
|
if (man_id == 0xda && flash_id == 0xc1) {
|
|
qla2x00_write_flash_byte(ha, addr, data);
|
|
if (addr & 0x7e)
|
|
return 0;
|
|
} else {
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
|
|
qla2x00_write_flash_byte(ha, addr, data);
|
|
}
|
|
}
|
|
|
|
udelay(150);
|
|
|
|
/* Wait for write to complete. */
|
|
return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_erase_flash() - Erase the flash.
|
|
* @ha: HA context
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*
|
|
* Returns 0 on success, else non-zero.
|
|
*/
|
|
static int
|
|
qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
|
|
{
|
|
/* Individual Sector Erase Command Sequence */
|
|
if (IS_OEM_001(ha)) {
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x555, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x555, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
|
|
} else {
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0x10);
|
|
}
|
|
|
|
udelay(150);
|
|
|
|
/* Wait for erase to complete. */
|
|
return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_erase_flash_sector() - Erase a flash sector.
|
|
* @ha: HA context
|
|
* @addr: Flash sector to erase
|
|
* @sec_mask: Sector address mask
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*
|
|
* Returns 0 on success, else non-zero.
|
|
*/
|
|
static int
|
|
qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
|
|
uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
|
|
{
|
|
/* Individual Sector Erase Command Sequence */
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0x80);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
if (man_id == 0x1f && flash_id == 0x13)
|
|
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
|
|
else
|
|
qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
|
|
|
|
udelay(150);
|
|
|
|
/* Wait for erase to complete. */
|
|
return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
|
|
}
|
|
|
|
/**
|
|
* qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
|
|
* @man_id: Flash manufacturer ID
|
|
* @flash_id: Flash ID
|
|
*/
|
|
static void
|
|
qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
|
|
uint8_t *flash_id)
|
|
{
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0x90);
|
|
*man_id = qla2x00_read_flash_byte(ha, 0x0000);
|
|
*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
|
|
}
|
|
|
|
|
|
static inline void
|
|
qla2x00_suspend_hba(struct scsi_qla_host *ha)
|
|
{
|
|
int cnt;
|
|
unsigned long flags;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
/* Suspend HBA. */
|
|
scsi_block_requests(ha->host);
|
|
ha->isp_ops.disable_intrs(ha);
|
|
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
|
|
/* Pause RISC. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC);
|
|
RD_REG_WORD(®->hccr);
|
|
if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
|
|
for (cnt = 0; cnt < 30000; cnt++) {
|
|
if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0)
|
|
break;
|
|
udelay(100);
|
|
}
|
|
} else {
|
|
udelay(10);
|
|
}
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
}
|
|
|
|
static inline void
|
|
qla2x00_resume_hba(struct scsi_qla_host *ha)
|
|
{
|
|
/* Resume HBA. */
|
|
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
|
|
qla2xxx_wake_dpc(ha);
|
|
qla2x00_wait_for_hba_online(ha);
|
|
scsi_unblock_requests(ha->host);
|
|
}
|
|
|
|
uint8_t *
|
|
qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
unsigned long flags;
|
|
uint32_t addr, midpoint;
|
|
uint8_t *data;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
/* Suspend HBA. */
|
|
qla2x00_suspend_hba(ha);
|
|
|
|
/* Go with read. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
midpoint = ha->optrom_size / 2;
|
|
|
|
qla2x00_flash_enable(ha);
|
|
WRT_REG_WORD(®->nvram, 0);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
for (addr = offset, data = buf; addr < length; addr++, data++) {
|
|
if (addr == midpoint) {
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram); /* PCI Posting. */
|
|
}
|
|
|
|
*data = qla2x00_read_flash_byte(ha, addr);
|
|
}
|
|
qla2x00_flash_disable(ha);
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
|
|
/* Resume HBA. */
|
|
qla2x00_resume_hba(ha);
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
|
|
int rval;
|
|
unsigned long flags;
|
|
uint8_t man_id, flash_id, sec_number, data;
|
|
uint16_t wd;
|
|
uint32_t addr, liter, sec_mask, rest_addr;
|
|
struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
|
|
|
|
/* Suspend HBA. */
|
|
qla2x00_suspend_hba(ha);
|
|
|
|
rval = QLA_SUCCESS;
|
|
sec_number = 0;
|
|
|
|
/* Reset ISP chip. */
|
|
spin_lock_irqsave(&ha->hardware_lock, flags);
|
|
WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET);
|
|
pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
|
|
|
|
/* Go with write. */
|
|
qla2x00_flash_enable(ha);
|
|
do { /* Loop once to provide quick error exit */
|
|
/* Structure of flash memory based on manufacturer */
|
|
if (IS_OEM_001(ha)) {
|
|
/* OEM variant with special flash part. */
|
|
man_id = flash_id = 0;
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
goto update_flash;
|
|
}
|
|
qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
|
|
switch (man_id) {
|
|
case 0x20: /* ST flash. */
|
|
if (flash_id == 0xd2 || flash_id == 0xe3) {
|
|
/*
|
|
* ST m29w008at part - 64kb sector size with
|
|
* 32kb,8kb,8kb,16kb sectors at memory address
|
|
* 0xf0000.
|
|
*/
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
break;
|
|
}
|
|
/*
|
|
* ST m29w010b part - 16kb sector size
|
|
* Default to 16kb sectors
|
|
*/
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x1c000;
|
|
break;
|
|
case 0x40: /* Mostel flash. */
|
|
/* Mostel v29c51001 part - 512 byte sector size. */
|
|
rest_addr = 0x1ff;
|
|
sec_mask = 0x1fe00;
|
|
break;
|
|
case 0xbf: /* SST flash. */
|
|
/* SST39sf10 part - 4kb sector size. */
|
|
rest_addr = 0xfff;
|
|
sec_mask = 0x1f000;
|
|
break;
|
|
case 0xda: /* Winbond flash. */
|
|
/* Winbond W29EE011 part - 256 byte sector size. */
|
|
rest_addr = 0x7f;
|
|
sec_mask = 0x1ff80;
|
|
break;
|
|
case 0xc2: /* Macronix flash. */
|
|
/* 64k sector size. */
|
|
if (flash_id == 0x38 || flash_id == 0x4f) {
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
break;
|
|
}
|
|
/* Fall through... */
|
|
|
|
case 0x1f: /* Atmel flash. */
|
|
/* 512k sector size. */
|
|
if (flash_id == 0x13) {
|
|
rest_addr = 0x7fffffff;
|
|
sec_mask = 0x80000000;
|
|
break;
|
|
}
|
|
/* Fall through... */
|
|
|
|
case 0x01: /* AMD flash. */
|
|
if (flash_id == 0x38 || flash_id == 0x40 ||
|
|
flash_id == 0x4f) {
|
|
/* Am29LV081 part - 64kb sector size. */
|
|
/* Am29LV002BT part - 64kb sector size. */
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
break;
|
|
} else if (flash_id == 0x3e) {
|
|
/*
|
|
* Am29LV008b part - 64kb sector size with
|
|
* 32kb,8kb,8kb,16kb sector at memory address
|
|
* h0xf0000.
|
|
*/
|
|
rest_addr = 0xffff;
|
|
sec_mask = 0x10000;
|
|
break;
|
|
} else if (flash_id == 0x20 || flash_id == 0x6e) {
|
|
/*
|
|
* Am29LV010 part or AM29f010 - 16kb sector
|
|
* size.
|
|
*/
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x1c000;
|
|
break;
|
|
} else if (flash_id == 0x6d) {
|
|
/* Am29LV001 part - 8kb sector size. */
|
|
rest_addr = 0x1fff;
|
|
sec_mask = 0x1e000;
|
|
break;
|
|
}
|
|
default:
|
|
/* Default to 16 kb sector size. */
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x1c000;
|
|
break;
|
|
}
|
|
|
|
update_flash:
|
|
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
|
|
if (qla2x00_erase_flash(ha, man_id, flash_id)) {
|
|
rval = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (addr = offset, liter = 0; liter < length; liter++,
|
|
addr++) {
|
|
data = buf[liter];
|
|
/* Are we at the beginning of a sector? */
|
|
if ((addr & rest_addr) == 0) {
|
|
if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
|
|
if (addr >= 0x10000UL) {
|
|
if (((addr >> 12) & 0xf0) &&
|
|
((man_id == 0x01 &&
|
|
flash_id == 0x3e) ||
|
|
(man_id == 0x20 &&
|
|
flash_id == 0xd2))) {
|
|
sec_number++;
|
|
if (sec_number == 1) {
|
|
rest_addr =
|
|
0x7fff;
|
|
sec_mask =
|
|
0x18000;
|
|
} else if (
|
|
sec_number == 2 ||
|
|
sec_number == 3) {
|
|
rest_addr =
|
|
0x1fff;
|
|
sec_mask =
|
|
0x1e000;
|
|
} else if (
|
|
sec_number == 4) {
|
|
rest_addr =
|
|
0x3fff;
|
|
sec_mask =
|
|
0x1c000;
|
|
}
|
|
}
|
|
}
|
|
} else if (addr == ha->optrom_size / 2) {
|
|
WRT_REG_WORD(®->nvram, NVR_SELECT);
|
|
RD_REG_WORD(®->nvram);
|
|
}
|
|
|
|
if (flash_id == 0xda && man_id == 0xc1) {
|
|
qla2x00_write_flash_byte(ha, 0x5555,
|
|
0xaa);
|
|
qla2x00_write_flash_byte(ha, 0x2aaa,
|
|
0x55);
|
|
qla2x00_write_flash_byte(ha, 0x5555,
|
|
0xa0);
|
|
} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
|
|
/* Then erase it */
|
|
if (qla2x00_erase_flash_sector(ha,
|
|
addr, sec_mask, man_id,
|
|
flash_id)) {
|
|
rval = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
if (man_id == 0x01 && flash_id == 0x6d)
|
|
sec_number++;
|
|
}
|
|
}
|
|
|
|
if (man_id == 0x01 && flash_id == 0x6d) {
|
|
if (sec_number == 1 &&
|
|
addr == (rest_addr - 1)) {
|
|
rest_addr = 0x0fff;
|
|
sec_mask = 0x1f000;
|
|
} else if (sec_number == 3 && (addr & 0x7ffe)) {
|
|
rest_addr = 0x3fff;
|
|
sec_mask = 0x1c000;
|
|
}
|
|
}
|
|
|
|
if (qla2x00_program_flash_address(ha, addr, data,
|
|
man_id, flash_id)) {
|
|
rval = QLA_FUNCTION_FAILED;
|
|
break;
|
|
}
|
|
}
|
|
} while (0);
|
|
qla2x00_flash_disable(ha);
|
|
spin_unlock_irqrestore(&ha->hardware_lock, flags);
|
|
|
|
/* Resume HBA. */
|
|
qla2x00_resume_hba(ha);
|
|
|
|
return rval;
|
|
}
|
|
|
|
uint8_t *
|
|
qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
/* Suspend HBA. */
|
|
scsi_block_requests(ha->host);
|
|
ha->isp_ops.disable_intrs(ha);
|
|
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
|
|
/* Go with read. */
|
|
qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
|
|
|
|
/* Resume HBA. */
|
|
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
ha->isp_ops.enable_intrs(ha);
|
|
scsi_unblock_requests(ha->host);
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
|
|
uint32_t offset, uint32_t length)
|
|
{
|
|
int rval;
|
|
|
|
/* Suspend HBA. */
|
|
scsi_block_requests(ha->host);
|
|
ha->isp_ops.disable_intrs(ha);
|
|
set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
|
|
/* Go with write. */
|
|
rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
|
|
length >> 2);
|
|
|
|
/* Resume HBA -- RISC reset needed. */
|
|
clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
|
|
set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
|
|
qla2xxx_wake_dpc(ha);
|
|
qla2x00_wait_for_hba_online(ha);
|
|
scsi_unblock_requests(ha->host);
|
|
|
|
return rval;
|
|
}
|