kernel-fxtec-pro1x/arch/x86/kvm/mmu.c
Avi Kivity 6bf6a9532f KVM: MMU: Fix oops on guest userspace access to guest pagetable
KVM has a heuristic to unshadow guest pagetables when userspace accesses
them, on the assumption that most guests do not allow userspace to access
pagetables directly. Unfortunately, in addition to unshadowing the pagetables,
it also oopses.

This never triggers on ordinary guests since sane OSes will clear the
pagetables before assigning them to userspace, which will trigger the flood
heuristic, unshadowing the pagetables before the first userspace access. One
particular guest, though (Xenner) will run the kernel in userspace, triggering
the oops.  Since the heuristic is incorrect in this case, we can simply
remove it.

Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-06-24 12:20:12 +03:00

2352 lines
55 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* MMU support
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "vmx.h"
#include "mmu.h"
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/swap.h>
#include <linux/hugetlb.h>
#include <linux/compiler.h>
#include <asm/page.h>
#include <asm/cmpxchg.h>
#include <asm/io.h>
/*
* When setting this variable to true it enables Two-Dimensional-Paging
* where the hardware walks 2 page tables:
* 1. the guest-virtual to guest-physical
* 2. while doing 1. it walks guest-physical to host-physical
* If the hardware supports that we don't need to do shadow paging.
*/
bool tdp_enabled = false;
#undef MMU_DEBUG
#undef AUDIT
#ifdef AUDIT
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
#endif
#ifdef MMU_DEBUG
#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
#endif
#if defined(MMU_DEBUG) || defined(AUDIT)
static int dbg = 1;
#endif
#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
#define ASSERT(x) \
if (!(x)) { \
printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
__FILE__, __LINE__, #x); \
}
#endif
#define PT_FIRST_AVAIL_BITS_SHIFT 9
#define PT64_SECOND_AVAIL_BITS_SHIFT 52
#define VALID_PAGE(x) ((x) != INVALID_PAGE)
#define PT64_LEVEL_BITS 9
#define PT64_LEVEL_SHIFT(level) \
(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
#define PT64_LEVEL_MASK(level) \
(((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
#define PT64_INDEX(address, level)\
(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
#define PT32_LEVEL_BITS 10
#define PT32_LEVEL_SHIFT(level) \
(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
#define PT32_LEVEL_MASK(level) \
(((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
#define PT32_INDEX(address, level)\
(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#define PT64_DIR_BASE_ADDR_MASK \
(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
| PT64_NX_MASK)
#define PFERR_PRESENT_MASK (1U << 0)
#define PFERR_WRITE_MASK (1U << 1)
#define PFERR_USER_MASK (1U << 2)
#define PFERR_FETCH_MASK (1U << 4)
#define PT_DIRECTORY_LEVEL 2
#define PT_PAGE_TABLE_LEVEL 1
#define RMAP_EXT 4
#define ACC_EXEC_MASK 1
#define ACC_WRITE_MASK PT_WRITABLE_MASK
#define ACC_USER_MASK PT_USER_MASK
#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
struct kvm_pv_mmu_op_buffer {
void *ptr;
unsigned len;
unsigned processed;
char buf[512] __aligned(sizeof(long));
};
struct kvm_rmap_desc {
u64 *shadow_ptes[RMAP_EXT];
struct kvm_rmap_desc *more;
};
static struct kmem_cache *pte_chain_cache;
static struct kmem_cache *rmap_desc_cache;
static struct kmem_cache *mmu_page_header_cache;
static u64 __read_mostly shadow_trap_nonpresent_pte;
static u64 __read_mostly shadow_notrap_nonpresent_pte;
static u64 __read_mostly shadow_base_present_pte;
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
{
shadow_trap_nonpresent_pte = trap_pte;
shadow_notrap_nonpresent_pte = notrap_pte;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
void kvm_mmu_set_base_ptes(u64 base_pte)
{
shadow_base_present_pte = base_pte;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
u64 dirty_mask, u64 nx_mask, u64 x_mask)
{
shadow_user_mask = user_mask;
shadow_accessed_mask = accessed_mask;
shadow_dirty_mask = dirty_mask;
shadow_nx_mask = nx_mask;
shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
static int is_write_protection(struct kvm_vcpu *vcpu)
{
return vcpu->arch.cr0 & X86_CR0_WP;
}
static int is_cpuid_PSE36(void)
{
return 1;
}
static int is_nx(struct kvm_vcpu *vcpu)
{
return vcpu->arch.shadow_efer & EFER_NX;
}
static int is_present_pte(unsigned long pte)
{
return pte & PT_PRESENT_MASK;
}
static int is_shadow_present_pte(u64 pte)
{
return pte != shadow_trap_nonpresent_pte
&& pte != shadow_notrap_nonpresent_pte;
}
static int is_large_pte(u64 pte)
{
return pte & PT_PAGE_SIZE_MASK;
}
static int is_writeble_pte(unsigned long pte)
{
return pte & PT_WRITABLE_MASK;
}
static int is_dirty_pte(unsigned long pte)
{
return pte & shadow_dirty_mask;
}
static int is_rmap_pte(u64 pte)
{
return is_shadow_present_pte(pte);
}
static pfn_t spte_to_pfn(u64 pte)
{
return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
}
static gfn_t pse36_gfn_delta(u32 gpte)
{
int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
return (gpte & PT32_DIR_PSE36_MASK) << shift;
}
static void set_shadow_pte(u64 *sptep, u64 spte)
{
#ifdef CONFIG_X86_64
set_64bit((unsigned long *)sptep, spte);
#else
set_64bit((unsigned long long *)sptep, spte);
#endif
}
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
struct kmem_cache *base_cache, int min)
{
void *obj;
if (cache->nobjs >= min)
return 0;
while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
if (!obj)
return -ENOMEM;
cache->objects[cache->nobjs++] = obj;
}
return 0;
}
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
while (mc->nobjs)
kfree(mc->objects[--mc->nobjs]);
}
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
int min)
{
struct page *page;
if (cache->nobjs >= min)
return 0;
while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
page = alloc_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
set_page_private(page, 0);
cache->objects[cache->nobjs++] = page_address(page);
}
return 0;
}
static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
while (mc->nobjs)
free_page((unsigned long)mc->objects[--mc->nobjs]);
}
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
{
int r;
r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
pte_chain_cache, 4);
if (r)
goto out;
r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
rmap_desc_cache, 1);
if (r)
goto out;
r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
if (r)
goto out;
r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
mmu_page_header_cache, 4);
out:
return r;
}
static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
}
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
size_t size)
{
void *p;
BUG_ON(!mc->nobjs);
p = mc->objects[--mc->nobjs];
memset(p, 0, size);
return p;
}
static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
{
return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
sizeof(struct kvm_pte_chain));
}
static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
{
kfree(pc);
}
static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
{
return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
sizeof(struct kvm_rmap_desc));
}
static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
{
kfree(rd);
}
/*
* Return the pointer to the largepage write count for a given
* gfn, handling slots that are not large page aligned.
*/
static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
{
unsigned long idx;
idx = (gfn / KVM_PAGES_PER_HPAGE) -
(slot->base_gfn / KVM_PAGES_PER_HPAGE);
return &slot->lpage_info[idx].write_count;
}
static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
int *write_count;
write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
*write_count += 1;
}
static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
int *write_count;
write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
*write_count -= 1;
WARN_ON(*write_count < 0);
}
static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
int *largepage_idx;
if (slot) {
largepage_idx = slot_largepage_idx(gfn, slot);
return *largepage_idx;
}
return 1;
}
static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
{
struct vm_area_struct *vma;
unsigned long addr;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return 0;
vma = find_vma(current->mm, addr);
if (vma && is_vm_hugetlb_page(vma))
return 1;
return 0;
}
static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
struct kvm_memory_slot *slot;
if (has_wrprotected_page(vcpu->kvm, large_gfn))
return 0;
if (!host_largepage_backed(vcpu->kvm, large_gfn))
return 0;
slot = gfn_to_memslot(vcpu->kvm, large_gfn);
if (slot && slot->dirty_bitmap)
return 0;
return 1;
}
/*
* Take gfn and return the reverse mapping to it.
* Note: gfn must be unaliased before this function get called
*/
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
{
struct kvm_memory_slot *slot;
unsigned long idx;
slot = gfn_to_memslot(kvm, gfn);
if (!lpage)
return &slot->rmap[gfn - slot->base_gfn];
idx = (gfn / KVM_PAGES_PER_HPAGE) -
(slot->base_gfn / KVM_PAGES_PER_HPAGE);
return &slot->lpage_info[idx].rmap_pde;
}
/*
* Reverse mapping data structures:
*
* If rmapp bit zero is zero, then rmapp point to the shadw page table entry
* that points to page_address(page).
*
* If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
* containing more mappings.
*/
static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
{
struct kvm_mmu_page *sp;
struct kvm_rmap_desc *desc;
unsigned long *rmapp;
int i;
if (!is_rmap_pte(*spte))
return;
gfn = unalias_gfn(vcpu->kvm, gfn);
sp = page_header(__pa(spte));
sp->gfns[spte - sp->spt] = gfn;
rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
if (!*rmapp) {
rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
*rmapp = (unsigned long)spte;
} else if (!(*rmapp & 1)) {
rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
desc = mmu_alloc_rmap_desc(vcpu);
desc->shadow_ptes[0] = (u64 *)*rmapp;
desc->shadow_ptes[1] = spte;
*rmapp = (unsigned long)desc | 1;
} else {
rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
desc = desc->more;
if (desc->shadow_ptes[RMAP_EXT-1]) {
desc->more = mmu_alloc_rmap_desc(vcpu);
desc = desc->more;
}
for (i = 0; desc->shadow_ptes[i]; ++i)
;
desc->shadow_ptes[i] = spte;
}
}
static void rmap_desc_remove_entry(unsigned long *rmapp,
struct kvm_rmap_desc *desc,
int i,
struct kvm_rmap_desc *prev_desc)
{
int j;
for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
;
desc->shadow_ptes[i] = desc->shadow_ptes[j];
desc->shadow_ptes[j] = NULL;
if (j != 0)
return;
if (!prev_desc && !desc->more)
*rmapp = (unsigned long)desc->shadow_ptes[0];
else
if (prev_desc)
prev_desc->more = desc->more;
else
*rmapp = (unsigned long)desc->more | 1;
mmu_free_rmap_desc(desc);
}
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
struct kvm_rmap_desc *desc;
struct kvm_rmap_desc *prev_desc;
struct kvm_mmu_page *sp;
pfn_t pfn;
unsigned long *rmapp;
int i;
if (!is_rmap_pte(*spte))
return;
sp = page_header(__pa(spte));
pfn = spte_to_pfn(*spte);
if (*spte & shadow_accessed_mask)
kvm_set_pfn_accessed(pfn);
if (is_writeble_pte(*spte))
kvm_release_pfn_dirty(pfn);
else
kvm_release_pfn_clean(pfn);
rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
if (!*rmapp) {
printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
BUG();
} else if (!(*rmapp & 1)) {
rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
if ((u64 *)*rmapp != spte) {
printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
spte, *spte);
BUG();
}
*rmapp = 0;
} else {
rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
prev_desc = NULL;
while (desc) {
for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
if (desc->shadow_ptes[i] == spte) {
rmap_desc_remove_entry(rmapp,
desc, i,
prev_desc);
return;
}
prev_desc = desc;
desc = desc->more;
}
BUG();
}
}
static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
{
struct kvm_rmap_desc *desc;
struct kvm_rmap_desc *prev_desc;
u64 *prev_spte;
int i;
if (!*rmapp)
return NULL;
else if (!(*rmapp & 1)) {
if (!spte)
return (u64 *)*rmapp;
return NULL;
}
desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
prev_desc = NULL;
prev_spte = NULL;
while (desc) {
for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
if (prev_spte == spte)
return desc->shadow_ptes[i];
prev_spte = desc->shadow_ptes[i];
}
desc = desc->more;
}
return NULL;
}
static void rmap_write_protect(struct kvm *kvm, u64 gfn)
{
unsigned long *rmapp;
u64 *spte;
int write_protected = 0;
gfn = unalias_gfn(kvm, gfn);
rmapp = gfn_to_rmap(kvm, gfn, 0);
spte = rmap_next(kvm, rmapp, NULL);
while (spte) {
BUG_ON(!spte);
BUG_ON(!(*spte & PT_PRESENT_MASK));
rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
if (is_writeble_pte(*spte)) {
set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
write_protected = 1;
}
spte = rmap_next(kvm, rmapp, spte);
}
if (write_protected) {
pfn_t pfn;
spte = rmap_next(kvm, rmapp, NULL);
pfn = spte_to_pfn(*spte);
kvm_set_pfn_dirty(pfn);
}
/* check for huge page mappings */
rmapp = gfn_to_rmap(kvm, gfn, 1);
spte = rmap_next(kvm, rmapp, NULL);
while (spte) {
BUG_ON(!spte);
BUG_ON(!(*spte & PT_PRESENT_MASK));
BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
if (is_writeble_pte(*spte)) {
rmap_remove(kvm, spte);
--kvm->stat.lpages;
set_shadow_pte(spte, shadow_trap_nonpresent_pte);
spte = NULL;
write_protected = 1;
}
spte = rmap_next(kvm, rmapp, spte);
}
if (write_protected)
kvm_flush_remote_tlbs(kvm);
account_shadowed(kvm, gfn);
}
#ifdef MMU_DEBUG
static int is_empty_shadow_page(u64 *spt)
{
u64 *pos;
u64 *end;
for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
if (is_shadow_present_pte(*pos)) {
printk(KERN_ERR "%s: %p %llx\n", __func__,
pos, *pos);
return 0;
}
return 1;
}
#endif
static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
ASSERT(is_empty_shadow_page(sp->spt));
list_del(&sp->link);
__free_page(virt_to_page(sp->spt));
__free_page(virt_to_page(sp->gfns));
kfree(sp);
++kvm->arch.n_free_mmu_pages;
}
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
}
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
u64 *parent_pte)
{
struct kvm_mmu_page *sp;
sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
ASSERT(is_empty_shadow_page(sp->spt));
sp->slot_bitmap = 0;
sp->multimapped = 0;
sp->parent_pte = parent_pte;
--vcpu->kvm->arch.n_free_mmu_pages;
return sp;
}
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, u64 *parent_pte)
{
struct kvm_pte_chain *pte_chain;
struct hlist_node *node;
int i;
if (!parent_pte)
return;
if (!sp->multimapped) {
u64 *old = sp->parent_pte;
if (!old) {
sp->parent_pte = parent_pte;
return;
}
sp->multimapped = 1;
pte_chain = mmu_alloc_pte_chain(vcpu);
INIT_HLIST_HEAD(&sp->parent_ptes);
hlist_add_head(&pte_chain->link, &sp->parent_ptes);
pte_chain->parent_ptes[0] = old;
}
hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
continue;
for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
if (!pte_chain->parent_ptes[i]) {
pte_chain->parent_ptes[i] = parent_pte;
return;
}
}
pte_chain = mmu_alloc_pte_chain(vcpu);
BUG_ON(!pte_chain);
hlist_add_head(&pte_chain->link, &sp->parent_ptes);
pte_chain->parent_ptes[0] = parent_pte;
}
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
u64 *parent_pte)
{
struct kvm_pte_chain *pte_chain;
struct hlist_node *node;
int i;
if (!sp->multimapped) {
BUG_ON(sp->parent_pte != parent_pte);
sp->parent_pte = NULL;
return;
}
hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
if (!pte_chain->parent_ptes[i])
break;
if (pte_chain->parent_ptes[i] != parent_pte)
continue;
while (i + 1 < NR_PTE_CHAIN_ENTRIES
&& pte_chain->parent_ptes[i + 1]) {
pte_chain->parent_ptes[i]
= pte_chain->parent_ptes[i + 1];
++i;
}
pte_chain->parent_ptes[i] = NULL;
if (i == 0) {
hlist_del(&pte_chain->link);
mmu_free_pte_chain(pte_chain);
if (hlist_empty(&sp->parent_ptes)) {
sp->multimapped = 0;
sp->parent_pte = NULL;
}
}
return;
}
BUG();
}
static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
{
unsigned index;
struct hlist_head *bucket;
struct kvm_mmu_page *sp;
struct hlist_node *node;
pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
index = kvm_page_table_hashfn(gfn);
bucket = &kvm->arch.mmu_page_hash[index];
hlist_for_each_entry(sp, node, bucket, hash_link)
if (sp->gfn == gfn && !sp->role.metaphysical
&& !sp->role.invalid) {
pgprintk("%s: found role %x\n",
__func__, sp->role.word);
return sp;
}
return NULL;
}
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
gfn_t gfn,
gva_t gaddr,
unsigned level,
int metaphysical,
unsigned access,
u64 *parent_pte)
{
union kvm_mmu_page_role role;
unsigned index;
unsigned quadrant;
struct hlist_head *bucket;
struct kvm_mmu_page *sp;
struct hlist_node *node;
role.word = 0;
role.glevels = vcpu->arch.mmu.root_level;
role.level = level;
role.metaphysical = metaphysical;
role.access = access;
if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
role.quadrant = quadrant;
}
pgprintk("%s: looking gfn %lx role %x\n", __func__,
gfn, role.word);
index = kvm_page_table_hashfn(gfn);
bucket = &vcpu->kvm->arch.mmu_page_hash[index];
hlist_for_each_entry(sp, node, bucket, hash_link)
if (sp->gfn == gfn && sp->role.word == role.word) {
mmu_page_add_parent_pte(vcpu, sp, parent_pte);
pgprintk("%s: found\n", __func__);
return sp;
}
++vcpu->kvm->stat.mmu_cache_miss;
sp = kvm_mmu_alloc_page(vcpu, parent_pte);
if (!sp)
return sp;
pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
sp->gfn = gfn;
sp->role = role;
hlist_add_head(&sp->hash_link, bucket);
if (!metaphysical)
rmap_write_protect(vcpu->kvm, gfn);
vcpu->arch.mmu.prefetch_page(vcpu, sp);
return sp;
}
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
struct kvm_mmu_page *sp)
{
unsigned i;
u64 *pt;
u64 ent;
pt = sp->spt;
if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
if (is_shadow_present_pte(pt[i]))
rmap_remove(kvm, &pt[i]);
pt[i] = shadow_trap_nonpresent_pte;
}
kvm_flush_remote_tlbs(kvm);
return;
}
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
ent = pt[i];
if (is_shadow_present_pte(ent)) {
if (!is_large_pte(ent)) {
ent &= PT64_BASE_ADDR_MASK;
mmu_page_remove_parent_pte(page_header(ent),
&pt[i]);
} else {
--kvm->stat.lpages;
rmap_remove(kvm, &pt[i]);
}
}
pt[i] = shadow_trap_nonpresent_pte;
}
kvm_flush_remote_tlbs(kvm);
}
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
{
mmu_page_remove_parent_pte(sp, parent_pte);
}
static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
{
int i;
for (i = 0; i < KVM_MAX_VCPUS; ++i)
if (kvm->vcpus[i])
kvm->vcpus[i]->arch.last_pte_updated = NULL;
}
static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
u64 *parent_pte;
++kvm->stat.mmu_shadow_zapped;
while (sp->multimapped || sp->parent_pte) {
if (!sp->multimapped)
parent_pte = sp->parent_pte;
else {
struct kvm_pte_chain *chain;
chain = container_of(sp->parent_ptes.first,
struct kvm_pte_chain, link);
parent_pte = chain->parent_ptes[0];
}
BUG_ON(!parent_pte);
kvm_mmu_put_page(sp, parent_pte);
set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
}
kvm_mmu_page_unlink_children(kvm, sp);
if (!sp->root_count) {
if (!sp->role.metaphysical)
unaccount_shadowed(kvm, sp->gfn);
hlist_del(&sp->hash_link);
kvm_mmu_free_page(kvm, sp);
} else {
list_move(&sp->link, &kvm->arch.active_mmu_pages);
sp->role.invalid = 1;
kvm_reload_remote_mmus(kvm);
}
kvm_mmu_reset_last_pte_updated(kvm);
}
/*
* Changing the number of mmu pages allocated to the vm
* Note: if kvm_nr_mmu_pages is too small, you will get dead lock
*/
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
{
/*
* If we set the number of mmu pages to be smaller be than the
* number of actived pages , we must to free some mmu pages before we
* change the value
*/
if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
kvm_nr_mmu_pages) {
int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
- kvm->arch.n_free_mmu_pages;
while (n_used_mmu_pages > kvm_nr_mmu_pages) {
struct kvm_mmu_page *page;
page = container_of(kvm->arch.active_mmu_pages.prev,
struct kvm_mmu_page, link);
kvm_mmu_zap_page(kvm, page);
n_used_mmu_pages--;
}
kvm->arch.n_free_mmu_pages = 0;
}
else
kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
- kvm->arch.n_alloc_mmu_pages;
kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
}
static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
{
unsigned index;
struct hlist_head *bucket;
struct kvm_mmu_page *sp;
struct hlist_node *node, *n;
int r;
pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
r = 0;
index = kvm_page_table_hashfn(gfn);
bucket = &kvm->arch.mmu_page_hash[index];
hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
if (sp->gfn == gfn && !sp->role.metaphysical) {
pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
sp->role.word);
kvm_mmu_zap_page(kvm, sp);
r = 1;
}
return r;
}
static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
{
struct kvm_mmu_page *sp;
while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
kvm_mmu_zap_page(kvm, sp);
}
}
static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
{
int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
struct kvm_mmu_page *sp = page_header(__pa(pte));
__set_bit(slot, &sp->slot_bitmap);
}
struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
{
struct page *page;
gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
if (gpa == UNMAPPED_GVA)
return NULL;
down_read(&current->mm->mmap_sem);
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
up_read(&current->mm->mmap_sem);
return page;
}
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
unsigned pt_access, unsigned pte_access,
int user_fault, int write_fault, int dirty,
int *ptwrite, int largepage, gfn_t gfn,
pfn_t pfn, bool speculative)
{
u64 spte;
int was_rmapped = 0;
int was_writeble = is_writeble_pte(*shadow_pte);
pgprintk("%s: spte %llx access %x write_fault %d"
" user_fault %d gfn %lx\n",
__func__, *shadow_pte, pt_access,
write_fault, user_fault, gfn);
if (is_rmap_pte(*shadow_pte)) {
/*
* If we overwrite a PTE page pointer with a 2MB PMD, unlink
* the parent of the now unreachable PTE.
*/
if (largepage && !is_large_pte(*shadow_pte)) {
struct kvm_mmu_page *child;
u64 pte = *shadow_pte;
child = page_header(pte & PT64_BASE_ADDR_MASK);
mmu_page_remove_parent_pte(child, shadow_pte);
} else if (pfn != spte_to_pfn(*shadow_pte)) {
pgprintk("hfn old %lx new %lx\n",
spte_to_pfn(*shadow_pte), pfn);
rmap_remove(vcpu->kvm, shadow_pte);
} else {
if (largepage)
was_rmapped = is_large_pte(*shadow_pte);
else
was_rmapped = 1;
}
}
/*
* We don't set the accessed bit, since we sometimes want to see
* whether the guest actually used the pte (in order to detect
* demand paging).
*/
spte = shadow_base_present_pte | shadow_dirty_mask;
if (!speculative)
pte_access |= PT_ACCESSED_MASK;
if (!dirty)
pte_access &= ~ACC_WRITE_MASK;
if (pte_access & ACC_EXEC_MASK)
spte |= shadow_x_mask;
else
spte |= shadow_nx_mask;
if (pte_access & ACC_USER_MASK)
spte |= shadow_user_mask;
if (largepage)
spte |= PT_PAGE_SIZE_MASK;
spte |= (u64)pfn << PAGE_SHIFT;
if ((pte_access & ACC_WRITE_MASK)
|| (write_fault && !is_write_protection(vcpu) && !user_fault)) {
struct kvm_mmu_page *shadow;
spte |= PT_WRITABLE_MASK;
shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
if (shadow ||
(largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
pgprintk("%s: found shadow page for %lx, marking ro\n",
__func__, gfn);
pte_access &= ~ACC_WRITE_MASK;
if (is_writeble_pte(spte)) {
spte &= ~PT_WRITABLE_MASK;
kvm_x86_ops->tlb_flush(vcpu);
}
if (write_fault)
*ptwrite = 1;
}
}
if (pte_access & ACC_WRITE_MASK)
mark_page_dirty(vcpu->kvm, gfn);
pgprintk("%s: setting spte %llx\n", __func__, spte);
pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
(spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
(spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
set_shadow_pte(shadow_pte, spte);
if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
&& (spte & PT_PRESENT_MASK))
++vcpu->kvm->stat.lpages;
page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
if (!was_rmapped) {
rmap_add(vcpu, shadow_pte, gfn, largepage);
if (!is_rmap_pte(*shadow_pte))
kvm_release_pfn_clean(pfn);
} else {
if (was_writeble)
kvm_release_pfn_dirty(pfn);
else
kvm_release_pfn_clean(pfn);
}
if (!ptwrite || !*ptwrite)
vcpu->arch.last_pte_updated = shadow_pte;
}
static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
{
}
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
int largepage, gfn_t gfn, pfn_t pfn,
int level)
{
hpa_t table_addr = vcpu->arch.mmu.root_hpa;
int pt_write = 0;
for (; ; level--) {
u32 index = PT64_INDEX(v, level);
u64 *table;
ASSERT(VALID_PAGE(table_addr));
table = __va(table_addr);
if (level == 1) {
mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
0, write, 1, &pt_write, 0, gfn, pfn, false);
return pt_write;
}
if (largepage && level == 2) {
mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
0, write, 1, &pt_write, 1, gfn, pfn, false);
return pt_write;
}
if (table[index] == shadow_trap_nonpresent_pte) {
struct kvm_mmu_page *new_table;
gfn_t pseudo_gfn;
pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
>> PAGE_SHIFT;
new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
v, level - 1,
1, ACC_ALL, &table[index]);
if (!new_table) {
pgprintk("nonpaging_map: ENOMEM\n");
kvm_release_pfn_clean(pfn);
return -ENOMEM;
}
table[index] = __pa(new_table->spt)
| PT_PRESENT_MASK | PT_WRITABLE_MASK
| shadow_user_mask | shadow_x_mask;
}
table_addr = table[index] & PT64_BASE_ADDR_MASK;
}
}
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
{
int r;
int largepage = 0;
pfn_t pfn;
down_read(&current->mm->mmap_sem);
if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
gfn &= ~(KVM_PAGES_PER_HPAGE-1);
largepage = 1;
}
pfn = gfn_to_pfn(vcpu->kvm, gfn);
up_read(&current->mm->mmap_sem);
/* mmio */
if (is_error_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
return 1;
}
spin_lock(&vcpu->kvm->mmu_lock);
kvm_mmu_free_some_pages(vcpu);
r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
PT32E_ROOT_LEVEL);
spin_unlock(&vcpu->kvm->mmu_lock);
return r;
}
static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp)
{
int i;
for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
sp->spt[i] = shadow_trap_nonpresent_pte;
}
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_mmu_page *sp;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return;
spin_lock(&vcpu->kvm->mmu_lock);
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
hpa_t root = vcpu->arch.mmu.root_hpa;
sp = page_header(root);
--sp->root_count;
if (!sp->root_count && sp->role.invalid)
kvm_mmu_zap_page(vcpu->kvm, sp);
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
spin_unlock(&vcpu->kvm->mmu_lock);
return;
}
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
if (root) {
root &= PT64_BASE_ADDR_MASK;
sp = page_header(root);
--sp->root_count;
if (!sp->root_count && sp->role.invalid)
kvm_mmu_zap_page(vcpu->kvm, sp);
}
vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
}
spin_unlock(&vcpu->kvm->mmu_lock);
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
}
static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
int i;
gfn_t root_gfn;
struct kvm_mmu_page *sp;
int metaphysical = 0;
root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
hpa_t root = vcpu->arch.mmu.root_hpa;
ASSERT(!VALID_PAGE(root));
if (tdp_enabled)
metaphysical = 1;
sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
PT64_ROOT_LEVEL, metaphysical,
ACC_ALL, NULL);
root = __pa(sp->spt);
++sp->root_count;
vcpu->arch.mmu.root_hpa = root;
return;
}
metaphysical = !is_paging(vcpu);
if (tdp_enabled)
metaphysical = 1;
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu.pae_root[i];
ASSERT(!VALID_PAGE(root));
if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
if (!is_present_pte(vcpu->arch.pdptrs[i])) {
vcpu->arch.mmu.pae_root[i] = 0;
continue;
}
root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
} else if (vcpu->arch.mmu.root_level == 0)
root_gfn = 0;
sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
PT32_ROOT_LEVEL, metaphysical,
ACC_ALL, NULL);
root = __pa(sp->spt);
++sp->root_count;
vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
}
vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
}
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
{
return vaddr;
}
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
u32 error_code)
{
gfn_t gfn;
int r;
pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
ASSERT(vcpu);
ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
gfn = gva >> PAGE_SHIFT;
return nonpaging_map(vcpu, gva & PAGE_MASK,
error_code & PFERR_WRITE_MASK, gfn);
}
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
u32 error_code)
{
pfn_t pfn;
int r;
int largepage = 0;
gfn_t gfn = gpa >> PAGE_SHIFT;
ASSERT(vcpu);
ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
down_read(&current->mm->mmap_sem);
if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
gfn &= ~(KVM_PAGES_PER_HPAGE-1);
largepage = 1;
}
pfn = gfn_to_pfn(vcpu->kvm, gfn);
up_read(&current->mm->mmap_sem);
if (is_error_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
return 1;
}
spin_lock(&vcpu->kvm->mmu_lock);
kvm_mmu_free_some_pages(vcpu);
r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
spin_unlock(&vcpu->kvm->mmu_lock);
return r;
}
static void nonpaging_free(struct kvm_vcpu *vcpu)
{
mmu_free_roots(vcpu);
}
static int nonpaging_init_context(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
context->new_cr3 = nonpaging_new_cr3;
context->page_fault = nonpaging_page_fault;
context->gva_to_gpa = nonpaging_gva_to_gpa;
context->free = nonpaging_free;
context->prefetch_page = nonpaging_prefetch_page;
context->root_level = 0;
context->shadow_root_level = PT32E_ROOT_LEVEL;
context->root_hpa = INVALID_PAGE;
return 0;
}
void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
{
++vcpu->stat.tlb_flush;
kvm_x86_ops->tlb_flush(vcpu);
}
static void paging_new_cr3(struct kvm_vcpu *vcpu)
{
pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
mmu_free_roots(vcpu);
}
static void inject_page_fault(struct kvm_vcpu *vcpu,
u64 addr,
u32 err_code)
{
kvm_inject_page_fault(vcpu, addr, err_code);
}
static void paging_free(struct kvm_vcpu *vcpu)
{
nonpaging_free(vcpu);
}
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE
#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE
static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
ASSERT(is_pae(vcpu));
context->new_cr3 = paging_new_cr3;
context->page_fault = paging64_page_fault;
context->gva_to_gpa = paging64_gva_to_gpa;
context->prefetch_page = paging64_prefetch_page;
context->free = paging_free;
context->root_level = level;
context->shadow_root_level = level;
context->root_hpa = INVALID_PAGE;
return 0;
}
static int paging64_init_context(struct kvm_vcpu *vcpu)
{
return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
}
static int paging32_init_context(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
context->new_cr3 = paging_new_cr3;
context->page_fault = paging32_page_fault;
context->gva_to_gpa = paging32_gva_to_gpa;
context->free = paging_free;
context->prefetch_page = paging32_prefetch_page;
context->root_level = PT32_ROOT_LEVEL;
context->shadow_root_level = PT32E_ROOT_LEVEL;
context->root_hpa = INVALID_PAGE;
return 0;
}
static int paging32E_init_context(struct kvm_vcpu *vcpu)
{
return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
}
static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *context = &vcpu->arch.mmu;
context->new_cr3 = nonpaging_new_cr3;
context->page_fault = tdp_page_fault;
context->free = nonpaging_free;
context->prefetch_page = nonpaging_prefetch_page;
context->shadow_root_level = kvm_x86_ops->get_tdp_level();
context->root_hpa = INVALID_PAGE;
if (!is_paging(vcpu)) {
context->gva_to_gpa = nonpaging_gva_to_gpa;
context->root_level = 0;
} else if (is_long_mode(vcpu)) {
context->gva_to_gpa = paging64_gva_to_gpa;
context->root_level = PT64_ROOT_LEVEL;
} else if (is_pae(vcpu)) {
context->gva_to_gpa = paging64_gva_to_gpa;
context->root_level = PT32E_ROOT_LEVEL;
} else {
context->gva_to_gpa = paging32_gva_to_gpa;
context->root_level = PT32_ROOT_LEVEL;
}
return 0;
}
static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
ASSERT(vcpu);
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
if (!is_paging(vcpu))
return nonpaging_init_context(vcpu);
else if (is_long_mode(vcpu))
return paging64_init_context(vcpu);
else if (is_pae(vcpu))
return paging32E_init_context(vcpu);
else
return paging32_init_context(vcpu);
}
static int init_kvm_mmu(struct kvm_vcpu *vcpu)
{
vcpu->arch.update_pte.pfn = bad_pfn;
if (tdp_enabled)
return init_kvm_tdp_mmu(vcpu);
else
return init_kvm_softmmu(vcpu);
}
static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
{
ASSERT(vcpu);
if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
vcpu->arch.mmu.free(vcpu);
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
}
}
int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
{
destroy_kvm_mmu(vcpu);
return init_kvm_mmu(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
int kvm_mmu_load(struct kvm_vcpu *vcpu)
{
int r;
r = mmu_topup_memory_caches(vcpu);
if (r)
goto out;
spin_lock(&vcpu->kvm->mmu_lock);
kvm_mmu_free_some_pages(vcpu);
mmu_alloc_roots(vcpu);
spin_unlock(&vcpu->kvm->mmu_lock);
kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
kvm_mmu_flush_tlb(vcpu);
out:
return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_load);
void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
mmu_free_roots(vcpu);
}
static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp,
u64 *spte)
{
u64 pte;
struct kvm_mmu_page *child;
pte = *spte;
if (is_shadow_present_pte(pte)) {
if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
is_large_pte(pte))
rmap_remove(vcpu->kvm, spte);
else {
child = page_header(pte & PT64_BASE_ADDR_MASK);
mmu_page_remove_parent_pte(child, spte);
}
}
set_shadow_pte(spte, shadow_trap_nonpresent_pte);
if (is_large_pte(pte))
--vcpu->kvm->stat.lpages;
}
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp,
u64 *spte,
const void *new)
{
if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
if (!vcpu->arch.update_pte.largepage ||
sp->role.glevels == PT32_ROOT_LEVEL) {
++vcpu->kvm->stat.mmu_pde_zapped;
return;
}
}
++vcpu->kvm->stat.mmu_pte_updated;
if (sp->role.glevels == PT32_ROOT_LEVEL)
paging32_update_pte(vcpu, sp, spte, new);
else
paging64_update_pte(vcpu, sp, spte, new);
}
static bool need_remote_flush(u64 old, u64 new)
{
if (!is_shadow_present_pte(old))
return false;
if (!is_shadow_present_pte(new))
return true;
if ((old ^ new) & PT64_BASE_ADDR_MASK)
return true;
old ^= PT64_NX_MASK;
new ^= PT64_NX_MASK;
return (old & ~new & PT64_PERM_MASK) != 0;
}
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
{
if (need_remote_flush(old, new))
kvm_flush_remote_tlbs(vcpu->kvm);
else
kvm_mmu_flush_tlb(vcpu);
}
static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
{
u64 *spte = vcpu->arch.last_pte_updated;
return !!(spte && (*spte & shadow_accessed_mask));
}
static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *new, int bytes)
{
gfn_t gfn;
int r;
u64 gpte = 0;
pfn_t pfn;
vcpu->arch.update_pte.largepage = 0;
if (bytes != 4 && bytes != 8)
return;
/*
* Assume that the pte write on a page table of the same type
* as the current vcpu paging mode. This is nearly always true
* (might be false while changing modes). Note it is verified later
* by update_pte().
*/
if (is_pae(vcpu)) {
/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
if ((bytes == 4) && (gpa % 4 == 0)) {
r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
if (r)
return;
memcpy((void *)&gpte + (gpa % 8), new, 4);
} else if ((bytes == 8) && (gpa % 8 == 0)) {
memcpy((void *)&gpte, new, 8);
}
} else {
if ((bytes == 4) && (gpa % 4 == 0))
memcpy((void *)&gpte, new, 4);
}
if (!is_present_pte(gpte))
return;
gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
down_read(&current->mm->mmap_sem);
if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
gfn &= ~(KVM_PAGES_PER_HPAGE-1);
vcpu->arch.update_pte.largepage = 1;
}
pfn = gfn_to_pfn(vcpu->kvm, gfn);
up_read(&current->mm->mmap_sem);
if (is_error_pfn(pfn)) {
kvm_release_pfn_clean(pfn);
return;
}
vcpu->arch.update_pte.gfn = gfn;
vcpu->arch.update_pte.pfn = pfn;
}
void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *new, int bytes)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
struct kvm_mmu_page *sp;
struct hlist_node *node, *n;
struct hlist_head *bucket;
unsigned index;
u64 entry, gentry;
u64 *spte;
unsigned offset = offset_in_page(gpa);
unsigned pte_size;
unsigned page_offset;
unsigned misaligned;
unsigned quadrant;
int level;
int flooded = 0;
int npte;
int r;
pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
spin_lock(&vcpu->kvm->mmu_lock);
kvm_mmu_free_some_pages(vcpu);
++vcpu->kvm->stat.mmu_pte_write;
kvm_mmu_audit(vcpu, "pre pte write");
if (gfn == vcpu->arch.last_pt_write_gfn
&& !last_updated_pte_accessed(vcpu)) {
++vcpu->arch.last_pt_write_count;
if (vcpu->arch.last_pt_write_count >= 3)
flooded = 1;
} else {
vcpu->arch.last_pt_write_gfn = gfn;
vcpu->arch.last_pt_write_count = 1;
vcpu->arch.last_pte_updated = NULL;
}
index = kvm_page_table_hashfn(gfn);
bucket = &vcpu->kvm->arch.mmu_page_hash[index];
hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
if (sp->gfn != gfn || sp->role.metaphysical)
continue;
pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
misaligned |= bytes < 4;
if (misaligned || flooded) {
/*
* Misaligned accesses are too much trouble to fix
* up; also, they usually indicate a page is not used
* as a page table.
*
* If we're seeing too many writes to a page,
* it may no longer be a page table, or we may be
* forking, in which case it is better to unmap the
* page.
*/
pgprintk("misaligned: gpa %llx bytes %d role %x\n",
gpa, bytes, sp->role.word);
kvm_mmu_zap_page(vcpu->kvm, sp);
++vcpu->kvm->stat.mmu_flooded;
continue;
}
page_offset = offset;
level = sp->role.level;
npte = 1;
if (sp->role.glevels == PT32_ROOT_LEVEL) {
page_offset <<= 1; /* 32->64 */
/*
* A 32-bit pde maps 4MB while the shadow pdes map
* only 2MB. So we need to double the offset again
* and zap two pdes instead of one.
*/
if (level == PT32_ROOT_LEVEL) {
page_offset &= ~7; /* kill rounding error */
page_offset <<= 1;
npte = 2;
}
quadrant = page_offset >> PAGE_SHIFT;
page_offset &= ~PAGE_MASK;
if (quadrant != sp->role.quadrant)
continue;
}
spte = &sp->spt[page_offset / sizeof(*spte)];
if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
gentry = 0;
r = kvm_read_guest_atomic(vcpu->kvm,
gpa & ~(u64)(pte_size - 1),
&gentry, pte_size);
new = (const void *)&gentry;
if (r < 0)
new = NULL;
}
while (npte--) {
entry = *spte;
mmu_pte_write_zap_pte(vcpu, sp, spte);
if (new)
mmu_pte_write_new_pte(vcpu, sp, spte, new);
mmu_pte_write_flush_tlb(vcpu, entry, *spte);
++spte;
}
}
kvm_mmu_audit(vcpu, "post pte write");
spin_unlock(&vcpu->kvm->mmu_lock);
if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
vcpu->arch.update_pte.pfn = bad_pfn;
}
}
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
gpa_t gpa;
int r;
gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
spin_lock(&vcpu->kvm->mmu_lock);
r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
spin_unlock(&vcpu->kvm->mmu_lock);
return r;
}
void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
{
while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
struct kvm_mmu_page *sp;
sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
struct kvm_mmu_page, link);
kvm_mmu_zap_page(vcpu->kvm, sp);
++vcpu->kvm->stat.mmu_recycled;
}
}
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
{
int r;
enum emulation_result er;
r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
if (r < 0)
goto out;
if (!r) {
r = 1;
goto out;
}
r = mmu_topup_memory_caches(vcpu);
if (r)
goto out;
er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
switch (er) {
case EMULATE_DONE:
return 1;
case EMULATE_DO_MMIO:
++vcpu->stat.mmio_exits;
return 0;
case EMULATE_FAIL:
kvm_report_emulation_failure(vcpu, "pagetable");
return 1;
default:
BUG();
}
out:
return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
void kvm_enable_tdp(void)
{
tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
struct kvm_mmu_page *sp;
while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
struct kvm_mmu_page, link);
kvm_mmu_zap_page(vcpu->kvm, sp);
cond_resched();
}
free_page((unsigned long)vcpu->arch.mmu.pae_root);
}
static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
struct page *page;
int i;
ASSERT(vcpu);
if (vcpu->kvm->arch.n_requested_mmu_pages)
vcpu->kvm->arch.n_free_mmu_pages =
vcpu->kvm->arch.n_requested_mmu_pages;
else
vcpu->kvm->arch.n_free_mmu_pages =
vcpu->kvm->arch.n_alloc_mmu_pages;
/*
* When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
* Therefore we need to allocate shadow page tables in the first
* 4GB of memory, which happens to fit the DMA32 zone.
*/
page = alloc_page(GFP_KERNEL | __GFP_DMA32);
if (!page)
goto error_1;
vcpu->arch.mmu.pae_root = page_address(page);
for (i = 0; i < 4; ++i)
vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
return 0;
error_1:
free_mmu_pages(vcpu);
return -ENOMEM;
}
int kvm_mmu_create(struct kvm_vcpu *vcpu)
{
ASSERT(vcpu);
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
return alloc_mmu_pages(vcpu);
}
int kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
ASSERT(vcpu);
ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
return init_kvm_mmu(vcpu);
}
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
ASSERT(vcpu);
destroy_kvm_mmu(vcpu);
free_mmu_pages(vcpu);
mmu_free_memory_caches(vcpu);
}
void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
{
struct kvm_mmu_page *sp;
list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
int i;
u64 *pt;
if (!test_bit(slot, &sp->slot_bitmap))
continue;
pt = sp->spt;
for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
/* avoid RMW */
if (pt[i] & PT_WRITABLE_MASK)
pt[i] &= ~PT_WRITABLE_MASK;
}
}
void kvm_mmu_zap_all(struct kvm *kvm)
{
struct kvm_mmu_page *sp, *node;
spin_lock(&kvm->mmu_lock);
list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
kvm_mmu_zap_page(kvm, sp);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm);
}
void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
{
struct kvm_mmu_page *page;
page = container_of(kvm->arch.active_mmu_pages.prev,
struct kvm_mmu_page, link);
kvm_mmu_zap_page(kvm, page);
}
static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
{
struct kvm *kvm;
struct kvm *kvm_freed = NULL;
int cache_count = 0;
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
int npages;
spin_lock(&kvm->mmu_lock);
npages = kvm->arch.n_alloc_mmu_pages -
kvm->arch.n_free_mmu_pages;
cache_count += npages;
if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
kvm_mmu_remove_one_alloc_mmu_page(kvm);
cache_count--;
kvm_freed = kvm;
}
nr_to_scan--;
spin_unlock(&kvm->mmu_lock);
}
if (kvm_freed)
list_move_tail(&kvm_freed->vm_list, &vm_list);
spin_unlock(&kvm_lock);
return cache_count;
}
static struct shrinker mmu_shrinker = {
.shrink = mmu_shrink,
.seeks = DEFAULT_SEEKS * 10,
};
static void mmu_destroy_caches(void)
{
if (pte_chain_cache)
kmem_cache_destroy(pte_chain_cache);
if (rmap_desc_cache)
kmem_cache_destroy(rmap_desc_cache);
if (mmu_page_header_cache)
kmem_cache_destroy(mmu_page_header_cache);
}
void kvm_mmu_module_exit(void)
{
mmu_destroy_caches();
unregister_shrinker(&mmu_shrinker);
}
int kvm_mmu_module_init(void)
{
pte_chain_cache = kmem_cache_create("kvm_pte_chain",
sizeof(struct kvm_pte_chain),
0, 0, NULL);
if (!pte_chain_cache)
goto nomem;
rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
sizeof(struct kvm_rmap_desc),
0, 0, NULL);
if (!rmap_desc_cache)
goto nomem;
mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
sizeof(struct kvm_mmu_page),
0, 0, NULL);
if (!mmu_page_header_cache)
goto nomem;
register_shrinker(&mmu_shrinker);
return 0;
nomem:
mmu_destroy_caches();
return -ENOMEM;
}
/*
* Caculate mmu pages needed for kvm.
*/
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
int i;
unsigned int nr_mmu_pages;
unsigned int nr_pages = 0;
for (i = 0; i < kvm->nmemslots; i++)
nr_pages += kvm->memslots[i].npages;
nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
nr_mmu_pages = max(nr_mmu_pages,
(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
return nr_mmu_pages;
}
static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
unsigned len)
{
if (len > buffer->len)
return NULL;
return buffer->ptr;
}
static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
unsigned len)
{
void *ret;
ret = pv_mmu_peek_buffer(buffer, len);
if (!ret)
return ret;
buffer->ptr += len;
buffer->len -= len;
buffer->processed += len;
return ret;
}
static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
gpa_t addr, gpa_t value)
{
int bytes = 8;
int r;
if (!is_long_mode(vcpu) && !is_pae(vcpu))
bytes = 4;
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
if (!emulator_write_phys(vcpu, addr, &value, bytes))
return -EFAULT;
return 1;
}
static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
{
kvm_x86_ops->tlb_flush(vcpu);
return 1;
}
static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
{
spin_lock(&vcpu->kvm->mmu_lock);
mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
spin_unlock(&vcpu->kvm->mmu_lock);
return 1;
}
static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
struct kvm_pv_mmu_op_buffer *buffer)
{
struct kvm_mmu_op_header *header;
header = pv_mmu_peek_buffer(buffer, sizeof *header);
if (!header)
return 0;
switch (header->op) {
case KVM_MMU_OP_WRITE_PTE: {
struct kvm_mmu_op_write_pte *wpte;
wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
if (!wpte)
return 0;
return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
wpte->pte_val);
}
case KVM_MMU_OP_FLUSH_TLB: {
struct kvm_mmu_op_flush_tlb *ftlb;
ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
if (!ftlb)
return 0;
return kvm_pv_mmu_flush_tlb(vcpu);
}
case KVM_MMU_OP_RELEASE_PT: {
struct kvm_mmu_op_release_pt *rpt;
rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
if (!rpt)
return 0;
return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
}
default: return 0;
}
}
int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
gpa_t addr, unsigned long *ret)
{
int r;
struct kvm_pv_mmu_op_buffer buffer;
buffer.ptr = buffer.buf;
buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
buffer.processed = 0;
r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
if (r)
goto out;
while (buffer.len) {
r = kvm_pv_mmu_op_one(vcpu, &buffer);
if (r < 0)
goto out;
if (r == 0)
break;
}
r = 1;
out:
*ret = buffer.processed;
return r;
}
#ifdef AUDIT
static const char *audit_msg;
static gva_t canonicalize(gva_t gva)
{
#ifdef CONFIG_X86_64
gva = (long long)(gva << 16) >> 16;
#endif
return gva;
}
static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
gva_t va, int level)
{
u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
int i;
gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
u64 ent = pt[i];
if (ent == shadow_trap_nonpresent_pte)
continue;
va = canonicalize(va);
if (level > 1) {
if (ent == shadow_notrap_nonpresent_pte)
printk(KERN_ERR "audit: (%s) nontrapping pte"
" in nonleaf level: levels %d gva %lx"
" level %d pte %llx\n", audit_msg,
vcpu->arch.mmu.root_level, va, level, ent);
audit_mappings_page(vcpu, ent, va, level - 1);
} else {
gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
if (is_shadow_present_pte(ent)
&& (ent & PT64_BASE_ADDR_MASK) != hpa)
printk(KERN_ERR "xx audit error: (%s) levels %d"
" gva %lx gpa %llx hpa %llx ent %llx %d\n",
audit_msg, vcpu->arch.mmu.root_level,
va, gpa, hpa, ent,
is_shadow_present_pte(ent));
else if (ent == shadow_notrap_nonpresent_pte
&& !is_error_hpa(hpa))
printk(KERN_ERR "audit: (%s) notrap shadow,"
" valid guest gva %lx\n", audit_msg, va);
kvm_release_pfn_clean(pfn);
}
}
}
static void audit_mappings(struct kvm_vcpu *vcpu)
{
unsigned i;
if (vcpu->arch.mmu.root_level == 4)
audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
else
for (i = 0; i < 4; ++i)
if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
audit_mappings_page(vcpu,
vcpu->arch.mmu.pae_root[i],
i << 30,
2);
}
static int count_rmaps(struct kvm_vcpu *vcpu)
{
int nmaps = 0;
int i, j, k;
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
struct kvm_rmap_desc *d;
for (j = 0; j < m->npages; ++j) {
unsigned long *rmapp = &m->rmap[j];
if (!*rmapp)
continue;
if (!(*rmapp & 1)) {
++nmaps;
continue;
}
d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
while (d) {
for (k = 0; k < RMAP_EXT; ++k)
if (d->shadow_ptes[k])
++nmaps;
else
break;
d = d->more;
}
}
}
return nmaps;
}
static int count_writable_mappings(struct kvm_vcpu *vcpu)
{
int nmaps = 0;
struct kvm_mmu_page *sp;
int i;
list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
u64 *pt = sp->spt;
if (sp->role.level != PT_PAGE_TABLE_LEVEL)
continue;
for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
u64 ent = pt[i];
if (!(ent & PT_PRESENT_MASK))
continue;
if (!(ent & PT_WRITABLE_MASK))
continue;
++nmaps;
}
}
return nmaps;
}
static void audit_rmap(struct kvm_vcpu *vcpu)
{
int n_rmap = count_rmaps(vcpu);
int n_actual = count_writable_mappings(vcpu);
if (n_rmap != n_actual)
printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
__func__, audit_msg, n_rmap, n_actual);
}
static void audit_write_protection(struct kvm_vcpu *vcpu)
{
struct kvm_mmu_page *sp;
struct kvm_memory_slot *slot;
unsigned long *rmapp;
gfn_t gfn;
list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
if (sp->role.metaphysical)
continue;
slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
gfn = unalias_gfn(vcpu->kvm, sp->gfn);
rmapp = &slot->rmap[gfn - slot->base_gfn];
if (*rmapp)
printk(KERN_ERR "%s: (%s) shadow page has writable"
" mappings: gfn %lx role %x\n",
__func__, audit_msg, sp->gfn,
sp->role.word);
}
}
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
{
int olddbg = dbg;
dbg = 0;
audit_msg = msg;
audit_rmap(vcpu);
audit_write_protection(vcpu);
audit_mappings(vcpu);
dbg = olddbg;
}
#endif