kernel-fxtec-pro1x/fs/f2fs/file.c
Jaegeuk Kim bd43df021a f2fs: cover global locks for reserve_new_block
The fill_zero() from fallocate() calls get_new_data_page() in which calls
reserve_new_block().
The reserve_new_block() should be covered by *DATA_NEW*, one of global locks.
And also, before getting the lock, we should check free sections by calling
f2fs_balance_fs().

If we break this rule, f2fs is able to face with out-of-control free space
management and fall into infinite loop like the following scenario as well.

[f2fs_sync_fs()]             [fallocate()]
 - write_checkpoint()        - fill_zero()
  - block_operations()        - get_new_data_page()
   : grab NODE_NEW             - get_dnode_of_data()
                                : get locked dirty node page
    - sync_node_pages()
                                : try to grab NODE_NEW for data allocation
     : trylock and skip the dirty node page
   : call sync_node_pages() repeatedly in order to flush all the dirty node
     pages!

In order to avoid this, we should grab another global lock such as DATA_NEW
before calling get_new_data_page() in fill_zero().

Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-02-12 07:15:00 +09:00

651 lines
15 KiB
C

/*
* fs/f2fs/file.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/stat.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/falloc.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/mount.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include "acl.h"
static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
block_t old_blk_addr;
struct dnode_of_data dn;
int err;
f2fs_balance_fs(sbi);
sb_start_pagefault(inode->i_sb);
mutex_lock_op(sbi, DATA_NEW);
/* block allocation */
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, page->index, 0);
if (err) {
mutex_unlock_op(sbi, DATA_NEW);
goto out;
}
old_blk_addr = dn.data_blkaddr;
if (old_blk_addr == NULL_ADDR) {
err = reserve_new_block(&dn);
if (err) {
f2fs_put_dnode(&dn);
mutex_unlock_op(sbi, DATA_NEW);
goto out;
}
}
f2fs_put_dnode(&dn);
mutex_unlock_op(sbi, DATA_NEW);
lock_page(page);
if (page->mapping != inode->i_mapping ||
page_offset(page) >= i_size_read(inode) ||
!PageUptodate(page)) {
unlock_page(page);
err = -EFAULT;
goto out;
}
/*
* check to see if the page is mapped already (no holes)
*/
if (PageMappedToDisk(page))
goto out;
/* fill the page */
wait_on_page_writeback(page);
/* page is wholly or partially inside EOF */
if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
unsigned offset;
offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
}
set_page_dirty(page);
SetPageUptodate(page);
file_update_time(vma->vm_file);
out:
sb_end_pagefault(inode->i_sb);
return block_page_mkwrite_return(err);
}
static const struct vm_operations_struct f2fs_file_vm_ops = {
.fault = filemap_fault,
.page_mkwrite = f2fs_vm_page_mkwrite,
.remap_pages = generic_file_remap_pages,
};
static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode)
{
struct dentry *dentry;
nid_t pino;
inode = igrab(inode);
dentry = d_find_any_alias(inode);
if (!dentry) {
iput(inode);
return 0;
}
pino = dentry->d_parent->d_inode->i_ino;
dput(dentry);
iput(inode);
return !is_checkpointed_node(sbi, pino);
}
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
unsigned long long cur_version;
int ret = 0;
bool need_cp = false;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
if (inode->i_sb->s_flags & MS_RDONLY)
return 0;
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (ret)
return ret;
/* guarantee free sections for fsync */
f2fs_balance_fs(sbi);
mutex_lock(&inode->i_mutex);
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
goto out;
mutex_lock(&sbi->cp_mutex);
cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
mutex_unlock(&sbi->cp_mutex);
if (F2FS_I(inode)->data_version != cur_version &&
!(inode->i_state & I_DIRTY))
goto out;
F2FS_I(inode)->data_version--;
if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
need_cp = true;
if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP))
need_cp = true;
if (!space_for_roll_forward(sbi))
need_cp = true;
if (need_to_sync_dir(sbi, inode))
need_cp = true;
if (need_cp) {
/* all the dirty node pages should be flushed for POR */
ret = f2fs_sync_fs(inode->i_sb, 1);
clear_inode_flag(F2FS_I(inode), FI_NEED_CP);
} else {
/* if there is no written node page, write its inode page */
while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
ret = f2fs_write_inode(inode, NULL);
if (ret)
goto out;
}
filemap_fdatawait_range(sbi->node_inode->i_mapping,
0, LONG_MAX);
}
out:
mutex_unlock(&inode->i_mutex);
return ret;
}
static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
file_accessed(file);
vma->vm_ops = &f2fs_file_vm_ops;
return 0;
}
static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
{
int nr_free = 0, ofs = dn->ofs_in_node;
struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
struct f2fs_node *raw_node;
__le32 *addr;
raw_node = page_address(dn->node_page);
addr = blkaddr_in_node(raw_node) + ofs;
for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
block_t blkaddr = le32_to_cpu(*addr);
if (blkaddr == NULL_ADDR)
continue;
update_extent_cache(NULL_ADDR, dn);
invalidate_blocks(sbi, blkaddr);
dec_valid_block_count(sbi, dn->inode, 1);
nr_free++;
}
if (nr_free) {
set_page_dirty(dn->node_page);
sync_inode_page(dn);
}
dn->ofs_in_node = ofs;
return nr_free;
}
void truncate_data_blocks(struct dnode_of_data *dn)
{
truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
}
static void truncate_partial_data_page(struct inode *inode, u64 from)
{
unsigned offset = from & (PAGE_CACHE_SIZE - 1);
struct page *page;
if (!offset)
return;
page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
if (IS_ERR(page))
return;
lock_page(page);
wait_on_page_writeback(page);
zero_user(page, offset, PAGE_CACHE_SIZE - offset);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
static int truncate_blocks(struct inode *inode, u64 from)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
unsigned int blocksize = inode->i_sb->s_blocksize;
struct dnode_of_data dn;
pgoff_t free_from;
int count = 0;
int err;
free_from = (pgoff_t)
((from + blocksize - 1) >> (sbi->log_blocksize));
mutex_lock_op(sbi, DATA_TRUNC);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, free_from, RDONLY_NODE);
if (err) {
if (err == -ENOENT)
goto free_next;
mutex_unlock_op(sbi, DATA_TRUNC);
return err;
}
if (IS_INODE(dn.node_page))
count = ADDRS_PER_INODE;
else
count = ADDRS_PER_BLOCK;
count -= dn.ofs_in_node;
BUG_ON(count < 0);
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
truncate_data_blocks_range(&dn, count);
free_from += count;
}
f2fs_put_dnode(&dn);
free_next:
err = truncate_inode_blocks(inode, free_from);
mutex_unlock_op(sbi, DATA_TRUNC);
/* lastly zero out the first data page */
truncate_partial_data_page(inode, from);
return err;
}
void f2fs_truncate(struct inode *inode)
{
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode)))
return;
if (!truncate_blocks(inode, i_size_read(inode))) {
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
mark_inode_dirty(inode);
}
f2fs_balance_fs(F2FS_SB(inode->i_sb));
}
static int f2fs_getattr(struct vfsmount *mnt,
struct dentry *dentry, struct kstat *stat)
{
struct inode *inode = dentry->d_inode;
generic_fillattr(inode, stat);
stat->blocks <<= 3;
return 0;
}
#ifdef CONFIG_F2FS_FS_POSIX_ACL
static void __setattr_copy(struct inode *inode, const struct iattr *attr)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
unsigned int ia_valid = attr->ia_valid;
if (ia_valid & ATTR_UID)
inode->i_uid = attr->ia_uid;
if (ia_valid & ATTR_GID)
inode->i_gid = attr->ia_gid;
if (ia_valid & ATTR_ATIME)
inode->i_atime = timespec_trunc(attr->ia_atime,
inode->i_sb->s_time_gran);
if (ia_valid & ATTR_MTIME)
inode->i_mtime = timespec_trunc(attr->ia_mtime,
inode->i_sb->s_time_gran);
if (ia_valid & ATTR_CTIME)
inode->i_ctime = timespec_trunc(attr->ia_ctime,
inode->i_sb->s_time_gran);
if (ia_valid & ATTR_MODE) {
umode_t mode = attr->ia_mode;
if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
mode &= ~S_ISGID;
set_acl_inode(fi, mode);
}
}
#else
#define __setattr_copy setattr_copy
#endif
int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = dentry->d_inode;
struct f2fs_inode_info *fi = F2FS_I(inode);
int err;
err = inode_change_ok(inode, attr);
if (err)
return err;
if ((attr->ia_valid & ATTR_SIZE) &&
attr->ia_size != i_size_read(inode)) {
truncate_setsize(inode, attr->ia_size);
f2fs_truncate(inode);
}
__setattr_copy(inode, attr);
if (attr->ia_valid & ATTR_MODE) {
err = f2fs_acl_chmod(inode);
if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
inode->i_mode = fi->i_acl_mode;
clear_inode_flag(fi, FI_ACL_MODE);
}
}
mark_inode_dirty(inode);
return err;
}
const struct inode_operations f2fs_file_inode_operations = {
.getattr = f2fs_getattr,
.setattr = f2fs_setattr,
.get_acl = f2fs_get_acl,
#ifdef CONFIG_F2FS_FS_XATTR
.setxattr = generic_setxattr,
.getxattr = generic_getxattr,
.listxattr = f2fs_listxattr,
.removexattr = generic_removexattr,
#endif
};
static void fill_zero(struct inode *inode, pgoff_t index,
loff_t start, loff_t len)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct page *page;
if (!len)
return;
f2fs_balance_fs(sbi);
mutex_lock_op(sbi, DATA_NEW);
page = get_new_data_page(inode, index, false);
mutex_unlock_op(sbi, DATA_NEW);
if (!IS_ERR(page)) {
wait_on_page_writeback(page);
zero_user(page, start, len);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
}
int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
{
pgoff_t index;
int err;
for (index = pg_start; index < pg_end; index++) {
struct dnode_of_data dn;
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
f2fs_balance_fs(sbi);
mutex_lock_op(sbi, DATA_TRUNC);
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = get_dnode_of_data(&dn, index, RDONLY_NODE);
if (err) {
mutex_unlock_op(sbi, DATA_TRUNC);
if (err == -ENOENT)
continue;
return err;
}
if (dn.data_blkaddr != NULL_ADDR)
truncate_data_blocks_range(&dn, 1);
f2fs_put_dnode(&dn);
mutex_unlock_op(sbi, DATA_TRUNC);
}
return 0;
}
static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
{
pgoff_t pg_start, pg_end;
loff_t off_start, off_end;
int ret = 0;
pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
off_start = offset & (PAGE_CACHE_SIZE - 1);
off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
if (pg_start == pg_end) {
fill_zero(inode, pg_start, off_start,
off_end - off_start);
} else {
if (off_start)
fill_zero(inode, pg_start++, off_start,
PAGE_CACHE_SIZE - off_start);
if (off_end)
fill_zero(inode, pg_end, 0, off_end);
if (pg_start < pg_end) {
struct address_space *mapping = inode->i_mapping;
loff_t blk_start, blk_end;
blk_start = pg_start << PAGE_CACHE_SHIFT;
blk_end = pg_end << PAGE_CACHE_SHIFT;
truncate_inode_pages_range(mapping, blk_start,
blk_end - 1);
ret = truncate_hole(inode, pg_start, pg_end);
}
}
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
i_size_read(inode) <= (offset + len)) {
i_size_write(inode, offset);
mark_inode_dirty(inode);
}
return ret;
}
static int expand_inode_data(struct inode *inode, loff_t offset,
loff_t len, int mode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
pgoff_t index, pg_start, pg_end;
loff_t new_size = i_size_read(inode);
loff_t off_start, off_end;
int ret = 0;
ret = inode_newsize_ok(inode, (len + offset));
if (ret)
return ret;
pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
off_start = offset & (PAGE_CACHE_SIZE - 1);
off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
for (index = pg_start; index <= pg_end; index++) {
struct dnode_of_data dn;
mutex_lock_op(sbi, DATA_NEW);
set_new_dnode(&dn, inode, NULL, NULL, 0);
ret = get_dnode_of_data(&dn, index, 0);
if (ret) {
mutex_unlock_op(sbi, DATA_NEW);
break;
}
if (dn.data_blkaddr == NULL_ADDR) {
ret = reserve_new_block(&dn);
if (ret) {
f2fs_put_dnode(&dn);
mutex_unlock_op(sbi, DATA_NEW);
break;
}
}
f2fs_put_dnode(&dn);
mutex_unlock_op(sbi, DATA_NEW);
if (pg_start == pg_end)
new_size = offset + len;
else if (index == pg_start && off_start)
new_size = (index + 1) << PAGE_CACHE_SHIFT;
else if (index == pg_end)
new_size = (index << PAGE_CACHE_SHIFT) + off_end;
else
new_size += PAGE_CACHE_SIZE;
}
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
i_size_read(inode) < new_size) {
i_size_write(inode, new_size);
mark_inode_dirty(inode);
}
return ret;
}
static long f2fs_fallocate(struct file *file, int mode,
loff_t offset, loff_t len)
{
struct inode *inode = file->f_path.dentry->d_inode;
long ret;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
if (mode & FALLOC_FL_PUNCH_HOLE)
ret = punch_hole(inode, offset, len, mode);
else
ret = expand_inode_data(inode, offset, len, mode);
if (!ret) {
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
mark_inode_dirty(inode);
}
return ret;
}
#define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
#define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
{
if (S_ISDIR(mode))
return flags;
else if (S_ISREG(mode))
return flags & F2FS_REG_FLMASK;
else
return flags & F2FS_OTHER_FLMASK;
}
long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct inode *inode = filp->f_dentry->d_inode;
struct f2fs_inode_info *fi = F2FS_I(inode);
unsigned int flags;
int ret;
switch (cmd) {
case FS_IOC_GETFLAGS:
flags = fi->i_flags & FS_FL_USER_VISIBLE;
return put_user(flags, (int __user *) arg);
case FS_IOC_SETFLAGS:
{
unsigned int oldflags;
ret = mnt_want_write(filp->f_path.mnt);
if (ret)
return ret;
if (!inode_owner_or_capable(inode)) {
ret = -EACCES;
goto out;
}
if (get_user(flags, (int __user *) arg)) {
ret = -EFAULT;
goto out;
}
flags = f2fs_mask_flags(inode->i_mode, flags);
mutex_lock(&inode->i_mutex);
oldflags = fi->i_flags;
if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
if (!capable(CAP_LINUX_IMMUTABLE)) {
mutex_unlock(&inode->i_mutex);
ret = -EPERM;
goto out;
}
}
flags = flags & FS_FL_USER_MODIFIABLE;
flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
fi->i_flags = flags;
mutex_unlock(&inode->i_mutex);
f2fs_set_inode_flags(inode);
inode->i_ctime = CURRENT_TIME;
mark_inode_dirty(inode);
out:
mnt_drop_write(filp->f_path.mnt);
return ret;
}
default:
return -ENOTTY;
}
}
const struct file_operations f2fs_file_operations = {
.llseek = generic_file_llseek,
.read = do_sync_read,
.write = do_sync_write,
.aio_read = generic_file_aio_read,
.aio_write = generic_file_aio_write,
.open = generic_file_open,
.mmap = f2fs_file_mmap,
.fsync = f2fs_sync_file,
.fallocate = f2fs_fallocate,
.unlocked_ioctl = f2fs_ioctl,
.splice_read = generic_file_splice_read,
.splice_write = generic_file_splice_write,
};