cba3b64303
On multi-chip boards, the first core on slave SoCs may take much more time to wakeup. Add code to wait for the core to come up before proceeding with the rest of the boot up. Update xlp_wakeup_core to also skip the boot node and the boot CPU initialization which is already complete. Signed-off-by: Jayachandran C <jchandra@broadcom.com> Patchwork: http://patchwork.linux-mips.org/patch/4783/ Signed-off-by: John Crispin <blogic@openwrt.org>
144 lines
4.2 KiB
C
144 lines
4.2 KiB
C
/*
|
|
* Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
|
|
* reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the NetLogic
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
|
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/threads.h>
|
|
|
|
#include <asm/asm.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/addrspace.h>
|
|
#include <asm/string.h>
|
|
|
|
#include <asm/netlogic/haldefs.h>
|
|
#include <asm/netlogic/common.h>
|
|
#include <asm/netlogic/mips-extns.h>
|
|
|
|
#include <asm/netlogic/xlp-hal/iomap.h>
|
|
#include <asm/netlogic/xlp-hal/pic.h>
|
|
#include <asm/netlogic/xlp-hal/xlp.h>
|
|
#include <asm/netlogic/xlp-hal/sys.h>
|
|
|
|
static int xlp_wakeup_core(uint64_t sysbase, int node, int core)
|
|
{
|
|
uint32_t coremask, value;
|
|
int count;
|
|
|
|
coremask = (1 << core);
|
|
|
|
/* Enable CPU clock */
|
|
value = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIS_CTRL);
|
|
value &= ~coremask;
|
|
nlm_write_sys_reg(sysbase, SYS_CORE_DFS_DIS_CTRL, value);
|
|
|
|
/* Remove CPU Reset */
|
|
value = nlm_read_sys_reg(sysbase, SYS_CPU_RESET);
|
|
value &= ~coremask;
|
|
nlm_write_sys_reg(sysbase, SYS_CPU_RESET, value);
|
|
|
|
/* Poll for CPU to mark itself coherent */
|
|
count = 100000;
|
|
do {
|
|
value = nlm_read_sys_reg(sysbase, SYS_CPU_NONCOHERENT_MODE);
|
|
} while ((value & coremask) != 0 && --count > 0);
|
|
|
|
return count != 0;
|
|
}
|
|
|
|
static void xlp_enable_secondary_cores(const cpumask_t *wakeup_mask)
|
|
{
|
|
struct nlm_soc_info *nodep;
|
|
uint64_t syspcibase;
|
|
uint32_t syscoremask;
|
|
int core, n, cpu, count, val;
|
|
|
|
for (n = 0; n < NLM_NR_NODES; n++) {
|
|
syspcibase = nlm_get_sys_pcibase(n);
|
|
if (nlm_read_reg(syspcibase, 0) == 0xffffffff)
|
|
break;
|
|
|
|
/* read cores in reset from SYS */
|
|
if (n != 0)
|
|
nlm_node_init(n);
|
|
nodep = nlm_get_node(n);
|
|
syscoremask = nlm_read_sys_reg(nodep->sysbase, SYS_CPU_RESET);
|
|
/* The boot cpu */
|
|
if (n == 0) {
|
|
syscoremask |= 1;
|
|
nodep->coremask = 1;
|
|
}
|
|
|
|
for (core = 0; core < NLM_CORES_PER_NODE; core++) {
|
|
/* we will be on node 0 core 0 */
|
|
if (n == 0 && core == 0)
|
|
continue;
|
|
|
|
/* see if the core exists */
|
|
if ((syscoremask & (1 << core)) == 0)
|
|
continue;
|
|
|
|
/* see if at least the first hw thread is enabled */
|
|
cpu = (n * NLM_CORES_PER_NODE + core)
|
|
* NLM_THREADS_PER_CORE;
|
|
if (!cpumask_test_cpu(cpu, wakeup_mask))
|
|
continue;
|
|
|
|
/* wake up the core */
|
|
if (!xlp_wakeup_core(nodep->sysbase, n, core))
|
|
continue;
|
|
|
|
/* core is up */
|
|
nodep->coremask |= 1u << core;
|
|
|
|
/* spin until the first hw thread sets its ready */
|
|
count = 0x20000000;
|
|
do {
|
|
val = *(volatile int *)&nlm_cpu_ready[cpu];
|
|
} while (val == 0 && --count > 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void xlp_wakeup_secondary_cpus()
|
|
{
|
|
/*
|
|
* In case of u-boot, the secondaries are in reset
|
|
* first wakeup core 0 threads
|
|
*/
|
|
xlp_boot_core0_siblings();
|
|
|
|
/* now get other cores out of reset */
|
|
xlp_enable_secondary_cores(&nlm_cpumask);
|
|
}
|