kernel-fxtec-pro1x/arch/x86/include/asm/word-at-a-time.h
Linus Torvalds 36126f8f2e word-at-a-time: make the interfaces truly generic
This changes the interfaces in <asm/word-at-a-time.h> to be a bit more
complicated, but a lot more generic.

In particular, it allows us to really do the operations efficiently on
both little-endian and big-endian machines, pretty much regardless of
machine details.  For example, if you can rely on a fast population
count instruction on your architecture, this will allow you to make your
optimized <asm/word-at-a-time.h> file with that.

NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is
not truly generic, it actually only works on big-endian.  Why? Because
on little-endian the generic algorithms are wasteful, since you can
inevitably do better. The x86 implementation is an example of that.

(The only truly non-generic part of the asm-generic implementation is
the "find_zero()" function, and you could make a little-endian version
of it.  And if the Kbuild infrastructure allowed us to pick a particular
header file, that would be lovely)

The <asm/word-at-a-time.h> functions are as follows:

 - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm
   uses.

 - has_zero(): take a word, and determine if it has a zero byte in it.
   It gets the word, the pointer to the constant pool, and a pointer to
   an intermediate "data" field it can set.

   This is the "quick-and-dirty" zero tester: it's what is run inside
   the hot loops.

 - "prep_zero_mask()": take the word, the data that has_zero() produced,
   and the constant pool, and generate an *exact* mask of which byte had
   the first zero.  This is run directly *outside* the loop, and allows
   the "has_zero()" function to answer the "is there a zero byte"
   question without necessarily getting exactly *which* byte is the
   first one to contain a zero.

   If you do multiple byte lookups concurrently (eg "hash_name()", which
   looks for both NUL and '/' bytes), after you've done the prep_zero_mask()
   phase, the result of those can be or'ed together to get the "either
   or" case.

 - The result from "prep_zero_mask()" can then be fed into "find_zero()"
   (to find the byte offset of the first byte that was zero) or into
   "zero_bytemask()" (to find the bytemask of the bytes preceding the
   zero byte).

   The existence of zero_bytemask() is optional, and is not necessary
   for the normal string routines.  But dentry name hashing needs it, so
   if you enable DENTRY_WORD_AT_A_TIME you need to expose it.

This changes the generic strncpy_from_user() function and the dentry
hashing functions to use these modified word-at-a-time interfaces.  This
gets us back to the optimized state of the x86 strncpy that we lost in
the previous commit when moving over to the generic version.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-26 11:33:40 -07:00

105 lines
2.5 KiB
C

#ifndef _ASM_WORD_AT_A_TIME_H
#define _ASM_WORD_AT_A_TIME_H
#include <linux/kernel.h>
/*
* This is largely generic for little-endian machines, but the
* optimal byte mask counting is probably going to be something
* that is architecture-specific. If you have a reliably fast
* bit count instruction, that might be better than the multiply
* and shift, for example.
*/
struct word_at_a_time {
const unsigned long one_bits, high_bits;
};
#define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0x01), REPEAT_BYTE(0x80) }
#ifdef CONFIG_64BIT
/*
* Jan Achrenius on G+: microoptimized version of
* the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
* that works for the bytemasks without having to
* mask them first.
*/
static inline long count_masked_bytes(unsigned long mask)
{
return mask*0x0001020304050608ul >> 56;
}
#else /* 32-bit case */
/* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
static inline long count_masked_bytes(long mask)
{
/* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
long a = (0x0ff0001+mask) >> 23;
/* Fix the 1 for 00 case */
return a & mask;
}
#endif
/* Return nonzero if it has a zero */
static inline unsigned long has_zero(unsigned long a, unsigned long *bits, const struct word_at_a_time *c)
{
unsigned long mask = ((a - c->one_bits) & ~a) & c->high_bits;
*bits = mask;
return mask;
}
static inline unsigned long prep_zero_mask(unsigned long a, unsigned long bits, const struct word_at_a_time *c)
{
return bits;
}
static inline unsigned long create_zero_mask(unsigned long bits)
{
bits = (bits - 1) & ~bits;
return bits >> 7;
}
/* The mask we created is directly usable as a bytemask */
#define zero_bytemask(mask) (mask)
static inline unsigned long find_zero(unsigned long mask)
{
return count_masked_bytes(mask);
}
/*
* Load an unaligned word from kernel space.
*
* In the (very unlikely) case of the word being a page-crosser
* and the next page not being mapped, take the exception and
* return zeroes in the non-existing part.
*/
static inline unsigned long load_unaligned_zeropad(const void *addr)
{
unsigned long ret, dummy;
asm(
"1:\tmov %2,%0\n"
"2:\n"
".section .fixup,\"ax\"\n"
"3:\t"
"lea %2,%1\n\t"
"and %3,%1\n\t"
"mov (%1),%0\n\t"
"leal %2,%%ecx\n\t"
"andl %4,%%ecx\n\t"
"shll $3,%%ecx\n\t"
"shr %%cl,%0\n\t"
"jmp 2b\n"
".previous\n"
_ASM_EXTABLE(1b, 3b)
:"=&r" (ret),"=&c" (dummy)
:"m" (*(unsigned long *)addr),
"i" (-sizeof(unsigned long)),
"i" (sizeof(unsigned long)-1));
return ret;
}
#endif /* _ASM_WORD_AT_A_TIME_H */