kernel-fxtec-pro1x/include/linux/pm.h
Shaohua Li eb9289eb20 [PATCH] introduce .valid callback for pm_ops
Add pm_ops.valid callback, so only the available pm states show in
/sys/power/state.  And this also makes an earlier states error report at
enter_state before we do actual suspend/resume.

Signed-off-by: Shaohua Li<shaohua.li@intel.com>
Acked-by: Pavel Machek<pavel@suse.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 17:37:15 -08:00

285 lines
7.5 KiB
C

/*
* pm.h - Power management interface
*
* Copyright (C) 2000 Andrew Henroid
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _LINUX_PM_H
#define _LINUX_PM_H
#ifdef __KERNEL__
#include <linux/config.h>
#include <linux/list.h>
#include <asm/atomic.h>
/*
* Power management requests... these are passed to pm_send_all() and friends.
*
* these functions are old and deprecated, see below.
*/
typedef int __bitwise pm_request_t;
#define PM_SUSPEND ((__force pm_request_t) 1) /* enter D1-D3 */
#define PM_RESUME ((__force pm_request_t) 2) /* enter D0 */
/*
* Device types... these are passed to pm_register
*/
typedef int __bitwise pm_dev_t;
#define PM_UNKNOWN_DEV ((__force pm_dev_t) 0) /* generic */
#define PM_SYS_DEV ((__force pm_dev_t) 1) /* system device (fan, KB controller, ...) */
#define PM_PCI_DEV ((__force pm_dev_t) 2) /* PCI device */
#define PM_USB_DEV ((__force pm_dev_t) 3) /* USB device */
#define PM_SCSI_DEV ((__force pm_dev_t) 4) /* SCSI device */
#define PM_ISA_DEV ((__force pm_dev_t) 5) /* ISA device */
#define PM_MTD_DEV ((__force pm_dev_t) 6) /* Memory Technology Device */
/*
* System device hardware ID (PnP) values
*/
enum
{
PM_SYS_UNKNOWN = 0x00000000, /* generic */
PM_SYS_KBC = 0x41d00303, /* keyboard controller */
PM_SYS_COM = 0x41d00500, /* serial port */
PM_SYS_IRDA = 0x41d00510, /* IRDA controller */
PM_SYS_FDC = 0x41d00700, /* floppy controller */
PM_SYS_VGA = 0x41d00900, /* VGA controller */
PM_SYS_PCMCIA = 0x41d00e00, /* PCMCIA controller */
};
/*
* Device identifier
*/
#define PM_PCI_ID(dev) ((dev)->bus->number << 16 | (dev)->devfn)
/*
* Request handler callback
*/
struct pm_dev;
typedef int (*pm_callback)(struct pm_dev *dev, pm_request_t rqst, void *data);
/*
* Dynamic device information
*/
struct pm_dev
{
pm_dev_t type;
unsigned long id;
pm_callback callback;
void *data;
unsigned long flags;
unsigned long state;
unsigned long prev_state;
struct list_head entry;
};
#ifdef CONFIG_PM
extern int pm_active;
#define PM_IS_ACTIVE() (pm_active != 0)
/*
* Register a device with power management
*/
struct pm_dev __deprecated *
pm_register(pm_dev_t type, unsigned long id, pm_callback callback);
/*
* Unregister a device with power management
*/
void __deprecated pm_unregister(struct pm_dev *dev);
/*
* Unregister all devices with matching callback
*/
void __deprecated pm_unregister_all(pm_callback callback);
/*
* Send a request to all devices
*/
int __deprecated pm_send_all(pm_request_t rqst, void *data);
#else /* CONFIG_PM */
#define PM_IS_ACTIVE() 0
static inline struct pm_dev *pm_register(pm_dev_t type,
unsigned long id,
pm_callback callback)
{
return NULL;
}
static inline void pm_unregister(struct pm_dev *dev) {}
static inline void pm_unregister_all(pm_callback callback) {}
static inline int pm_send_all(pm_request_t rqst, void *data)
{
return 0;
}
#endif /* CONFIG_PM */
/* Functions above this comment are list-based old-style power
* managment. Please avoid using them. */
/*
* Callbacks for platform drivers to implement.
*/
extern void (*pm_idle)(void);
extern void (*pm_power_off)(void);
typedef int __bitwise suspend_state_t;
#define PM_SUSPEND_ON ((__force suspend_state_t) 0)
#define PM_SUSPEND_STANDBY ((__force suspend_state_t) 1)
#define PM_SUSPEND_MEM ((__force suspend_state_t) 3)
#define PM_SUSPEND_DISK ((__force suspend_state_t) 4)
#define PM_SUSPEND_MAX ((__force suspend_state_t) 5)
typedef int __bitwise suspend_disk_method_t;
#define PM_DISK_FIRMWARE ((__force suspend_disk_method_t) 1)
#define PM_DISK_PLATFORM ((__force suspend_disk_method_t) 2)
#define PM_DISK_SHUTDOWN ((__force suspend_disk_method_t) 3)
#define PM_DISK_REBOOT ((__force suspend_disk_method_t) 4)
#define PM_DISK_MAX ((__force suspend_disk_method_t) 5)
struct pm_ops {
suspend_disk_method_t pm_disk_mode;
int (*valid)(suspend_state_t state);
int (*prepare)(suspend_state_t state);
int (*enter)(suspend_state_t state);
int (*finish)(suspend_state_t state);
};
extern void pm_set_ops(struct pm_ops *);
extern struct pm_ops *pm_ops;
extern int pm_suspend(suspend_state_t state);
/*
* Device power management
*/
struct device;
typedef struct pm_message {
int event;
} pm_message_t;
/*
* There are 4 important states driver can be in:
* ON -- driver is working
* FREEZE -- stop operations and apply whatever policy is applicable to a
* suspended driver of that class, freeze queues for block like IDE
* does, drop packets for ethernet, etc... stop DMA engine too etc...
* so a consistent image can be saved; but do not power any hardware
* down.
* SUSPEND - like FREEZE, but hardware is doing as much powersaving as
* possible. Roughly pci D3.
*
* Unfortunately, current drivers only recognize numeric values 0 (ON) and 3
* (SUSPEND). We'll need to fix the drivers. So yes, putting 3 to all different
* defines is intentional, and will go away as soon as drivers are fixed. Also
* note that typedef is neccessary, we'll probably want to switch to
* typedef struct pm_message_t { int event; int flags; } pm_message_t
* or something similar soon.
*/
#define PM_EVENT_ON 0
#define PM_EVENT_FREEZE 1
#define PM_EVENT_SUSPEND 2
#define PMSG_FREEZE ((struct pm_message){ .event = PM_EVENT_FREEZE, })
#define PMSG_SUSPEND ((struct pm_message){ .event = PM_EVENT_SUSPEND, })
#define PMSG_ON ((struct pm_message){ .event = PM_EVENT_ON, })
struct dev_pm_info {
pm_message_t power_state;
unsigned can_wakeup:1;
#ifdef CONFIG_PM
unsigned should_wakeup:1;
pm_message_t prev_state;
void * saved_state;
struct device * pm_parent;
struct list_head entry;
#endif
};
extern void device_pm_set_parent(struct device * dev, struct device * parent);
extern int device_power_down(pm_message_t state);
extern void device_power_up(void);
extern void device_resume(void);
#ifdef CONFIG_PM
extern int device_suspend(pm_message_t state);
#define device_set_wakeup_enable(dev,val) \
((dev)->power.should_wakeup = !!(val))
#define device_may_wakeup(dev) \
(device_can_wakeup(dev) && (dev)->power.should_wakeup)
extern int dpm_runtime_suspend(struct device *, pm_message_t);
extern void dpm_runtime_resume(struct device *);
#else /* !CONFIG_PM */
static inline int device_suspend(pm_message_t state)
{
return 0;
}
#define device_set_wakeup_enable(dev,val) do{}while(0)
#define device_may_wakeup(dev) (0)
static inline int dpm_runtime_suspend(struct device * dev, pm_message_t state)
{
return 0;
}
static inline void dpm_runtime_resume(struct device * dev)
{
}
#endif
/* changes to device_may_wakeup take effect on the next pm state change.
* by default, devices should wakeup if they can.
*/
#define device_can_wakeup(dev) \
((dev)->power.can_wakeup)
#define device_init_wakeup(dev,val) \
do { \
device_can_wakeup(dev) = !!(val); \
device_set_wakeup_enable(dev,val); \
} while(0)
#endif /* __KERNEL__ */
#endif /* _LINUX_PM_H */