kernel-fxtec-pro1x/crypto/ansi_cprng.c
Jarod Wilson 505172e11f crypto: ansi_cprng - enforce key != seed in fips mode
Apparently, NIST is tightening up its requirements for FIPS validation
with respect to RNGs. Its always been required that in fips mode, the
ansi cprng not be fed key and seed material that was identical, but
they're now interpreting FIPS 140-2, section AS07.09 as requiring that
the implementation itself must enforce the requirement. Easy fix, we
just do a memcmp of key and seed in fips_cprng_reset and call it a day.

v2: Per Neil's advice, ensure slen is sufficiently long before we
compare key and seed to avoid looking at potentially unallocated mem.

CC: Stephan Mueller <smueller@atsec.com>
CC: Steve Grubb <sgrubb@redhat.com>
Signed-off-by: Jarod Wilson <jarod@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-11-09 12:04:06 +08:00

496 lines
11 KiB
C

/*
* PRNG: Pseudo Random Number Generator
* Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
* AES 128 cipher
*
* (C) Neil Horman <nhorman@tuxdriver.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* any later version.
*
*
*/
#include <crypto/internal/rng.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include "internal.h"
#define DEFAULT_PRNG_KEY "0123456789abcdef"
#define DEFAULT_PRNG_KSZ 16
#define DEFAULT_BLK_SZ 16
#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
/*
* Flags for the prng_context flags field
*/
#define PRNG_FIXED_SIZE 0x1
#define PRNG_NEED_RESET 0x2
/*
* Note: DT is our counter value
* I is our intermediate value
* V is our seed vector
* See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
* for implementation details
*/
struct prng_context {
spinlock_t prng_lock;
unsigned char rand_data[DEFAULT_BLK_SZ];
unsigned char last_rand_data[DEFAULT_BLK_SZ];
unsigned char DT[DEFAULT_BLK_SZ];
unsigned char I[DEFAULT_BLK_SZ];
unsigned char V[DEFAULT_BLK_SZ];
u32 rand_data_valid;
struct crypto_cipher *tfm;
u32 flags;
};
static int dbg;
static void hexdump(char *note, unsigned char *buf, unsigned int len)
{
if (dbg) {
printk(KERN_CRIT "%s", note);
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1,
buf, len, false);
}
}
#define dbgprint(format, args...) do {\
if (dbg)\
printk(format, ##args);\
} while (0)
static void xor_vectors(unsigned char *in1, unsigned char *in2,
unsigned char *out, unsigned int size)
{
int i;
for (i = 0; i < size; i++)
out[i] = in1[i] ^ in2[i];
}
/*
* Returns DEFAULT_BLK_SZ bytes of random data per call
* returns 0 if generation succeeded, <0 if something went wrong
*/
static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
{
int i;
unsigned char tmp[DEFAULT_BLK_SZ];
unsigned char *output = NULL;
dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
ctx);
hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
/*
* This algorithm is a 3 stage state machine
*/
for (i = 0; i < 3; i++) {
switch (i) {
case 0:
/*
* Start by encrypting the counter value
* This gives us an intermediate value I
*/
memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
output = ctx->I;
hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
break;
case 1:
/*
* Next xor I with our secret vector V
* encrypt that result to obtain our
* pseudo random data which we output
*/
xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
output = ctx->rand_data;
break;
case 2:
/*
* First check that we didn't produce the same
* random data that we did last time around through this
*/
if (!memcmp(ctx->rand_data, ctx->last_rand_data,
DEFAULT_BLK_SZ)) {
if (cont_test) {
panic("cprng %p Failed repetition check!\n",
ctx);
}
printk(KERN_ERR
"ctx %p Failed repetition check!\n",
ctx);
ctx->flags |= PRNG_NEED_RESET;
return -EINVAL;
}
memcpy(ctx->last_rand_data, ctx->rand_data,
DEFAULT_BLK_SZ);
/*
* Lastly xor the random data with I
* and encrypt that to obtain a new secret vector V
*/
xor_vectors(ctx->rand_data, ctx->I, tmp,
DEFAULT_BLK_SZ);
output = ctx->V;
hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
break;
}
/* do the encryption */
crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
}
/*
* Now update our DT value
*/
for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
ctx->DT[i] += 1;
if (ctx->DT[i] != 0)
break;
}
dbgprint("Returning new block for context %p\n", ctx);
ctx->rand_data_valid = 0;
hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
return 0;
}
/* Our exported functions */
static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
int do_cont_test)
{
unsigned char *ptr = buf;
unsigned int byte_count = (unsigned int)nbytes;
int err;
spin_lock_bh(&ctx->prng_lock);
err = -EINVAL;
if (ctx->flags & PRNG_NEED_RESET)
goto done;
/*
* If the FIXED_SIZE flag is on, only return whole blocks of
* pseudo random data
*/
err = -EINVAL;
if (ctx->flags & PRNG_FIXED_SIZE) {
if (nbytes < DEFAULT_BLK_SZ)
goto done;
byte_count = DEFAULT_BLK_SZ;
}
err = byte_count;
dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
byte_count, ctx);
remainder:
if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
memset(buf, 0, nbytes);
err = -EINVAL;
goto done;
}
}
/*
* Copy any data less than an entire block
*/
if (byte_count < DEFAULT_BLK_SZ) {
empty_rbuf:
for (; ctx->rand_data_valid < DEFAULT_BLK_SZ;
ctx->rand_data_valid++) {
*ptr = ctx->rand_data[ctx->rand_data_valid];
ptr++;
byte_count--;
if (byte_count == 0)
goto done;
}
}
/*
* Now copy whole blocks
*/
for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
memset(buf, 0, nbytes);
err = -EINVAL;
goto done;
}
}
if (ctx->rand_data_valid > 0)
goto empty_rbuf;
memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
ctx->rand_data_valid += DEFAULT_BLK_SZ;
ptr += DEFAULT_BLK_SZ;
}
/*
* Now go back and get any remaining partial block
*/
if (byte_count)
goto remainder;
done:
spin_unlock_bh(&ctx->prng_lock);
dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
err, ctx);
return err;
}
static void free_prng_context(struct prng_context *ctx)
{
crypto_free_cipher(ctx->tfm);
}
static int reset_prng_context(struct prng_context *ctx,
unsigned char *key, size_t klen,
unsigned char *V, unsigned char *DT)
{
int ret;
unsigned char *prng_key;
spin_lock_bh(&ctx->prng_lock);
ctx->flags |= PRNG_NEED_RESET;
prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
if (!key)
klen = DEFAULT_PRNG_KSZ;
if (V)
memcpy(ctx->V, V, DEFAULT_BLK_SZ);
else
memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
if (DT)
memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
else
memset(ctx->DT, 0, DEFAULT_BLK_SZ);
memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
ctx->rand_data_valid = DEFAULT_BLK_SZ;
ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
if (ret) {
dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
crypto_cipher_get_flags(ctx->tfm));
goto out;
}
ret = 0;
ctx->flags &= ~PRNG_NEED_RESET;
out:
spin_unlock_bh(&ctx->prng_lock);
return ret;
}
static int cprng_init(struct crypto_tfm *tfm)
{
struct prng_context *ctx = crypto_tfm_ctx(tfm);
spin_lock_init(&ctx->prng_lock);
ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
if (IS_ERR(ctx->tfm)) {
dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
ctx);
return PTR_ERR(ctx->tfm);
}
if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
return -EINVAL;
/*
* after allocation, we should always force the user to reset
* so they don't inadvertently use the insecure default values
* without specifying them intentially
*/
ctx->flags |= PRNG_NEED_RESET;
return 0;
}
static void cprng_exit(struct crypto_tfm *tfm)
{
free_prng_context(crypto_tfm_ctx(tfm));
}
static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
unsigned int dlen)
{
struct prng_context *prng = crypto_rng_ctx(tfm);
return get_prng_bytes(rdata, dlen, prng, 0);
}
/*
* This is the cprng_registered reset method the seed value is
* interpreted as the tuple { V KEY DT}
* V and KEY are required during reset, and DT is optional, detected
* as being present by testing the length of the seed
*/
static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
{
struct prng_context *prng = crypto_rng_ctx(tfm);
u8 *key = seed + DEFAULT_BLK_SZ;
u8 *dt = NULL;
if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
return -EINVAL;
if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
dt = key + DEFAULT_PRNG_KSZ;
reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
if (prng->flags & PRNG_NEED_RESET)
return -EINVAL;
return 0;
}
static struct crypto_alg rng_alg = {
.cra_name = "stdrng",
.cra_driver_name = "ansi_cprng",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_RNG,
.cra_ctxsize = sizeof(struct prng_context),
.cra_type = &crypto_rng_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(rng_alg.cra_list),
.cra_init = cprng_init,
.cra_exit = cprng_exit,
.cra_u = {
.rng = {
.rng_make_random = cprng_get_random,
.rng_reset = cprng_reset,
.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
}
}
};
#ifdef CONFIG_CRYPTO_FIPS
static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
unsigned int dlen)
{
struct prng_context *prng = crypto_rng_ctx(tfm);
return get_prng_bytes(rdata, dlen, prng, 1);
}
static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
{
u8 rdata[DEFAULT_BLK_SZ];
u8 *key = seed + DEFAULT_BLK_SZ;
int rc;
struct prng_context *prng = crypto_rng_ctx(tfm);
if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
return -EINVAL;
/* fips strictly requires seed != key */
if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
return -EINVAL;
rc = cprng_reset(tfm, seed, slen);
if (!rc)
goto out;
/* this primes our continuity test */
rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
prng->rand_data_valid = DEFAULT_BLK_SZ;
out:
return rc;
}
static struct crypto_alg fips_rng_alg = {
.cra_name = "fips(ansi_cprng)",
.cra_driver_name = "fips_ansi_cprng",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_RNG,
.cra_ctxsize = sizeof(struct prng_context),
.cra_type = &crypto_rng_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(rng_alg.cra_list),
.cra_init = cprng_init,
.cra_exit = cprng_exit,
.cra_u = {
.rng = {
.rng_make_random = fips_cprng_get_random,
.rng_reset = fips_cprng_reset,
.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
}
}
};
#endif
/* Module initalization */
static int __init prng_mod_init(void)
{
int rc = 0;
rc = crypto_register_alg(&rng_alg);
#ifdef CONFIG_CRYPTO_FIPS
if (rc)
goto out;
rc = crypto_register_alg(&fips_rng_alg);
out:
#endif
return rc;
}
static void __exit prng_mod_fini(void)
{
crypto_unregister_alg(&rng_alg);
#ifdef CONFIG_CRYPTO_FIPS
crypto_unregister_alg(&fips_rng_alg);
#endif
return;
}
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
module_param(dbg, int, 0);
MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
module_init(prng_mod_init);
module_exit(prng_mod_fini);
MODULE_ALIAS("stdrng");