kernel-fxtec-pro1x/drivers/mtd/onenand/onenand_base.c
Kyungmin Park 34c1060959 OneNAND: Write oob area with aligned size, mtd->oobsize
There's some problem with write oob in serveral platform.
So we write oob with oobsize aligned (16bytes) instead of 3 bytes (from {2,
3})

Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2006-05-12 15:35:47 +01:00

1699 lines
44 KiB
C

/*
* linux/drivers/mtd/onenand/onenand_base.c
*
* Copyright (C) 2005 Samsung Electronics
* Kyungmin Park <kyungmin.park@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/jiffies.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
/**
* onenand_oob_64 - oob info for large (2KB) page
*/
static struct nand_oobinfo onenand_oob_64 = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 20,
.eccpos = {
8, 9, 10, 11, 12,
24, 25, 26, 27, 28,
40, 41, 42, 43, 44,
56, 57, 58, 59, 60,
},
.oobfree = {
{2, 3}, {14, 2}, {18, 3}, {30, 2},
{34, 3}, {46, 2}, {50, 3}, {62, 2}
}
};
/**
* onenand_oob_32 - oob info for middle (1KB) page
*/
static struct nand_oobinfo onenand_oob_32 = {
.useecc = MTD_NANDECC_AUTOPLACE,
.eccbytes = 10,
.eccpos = {
8, 9, 10, 11, 12,
24, 25, 26, 27, 28,
},
.oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
};
static const unsigned char ffchars[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
};
/**
* onenand_readw - [OneNAND Interface] Read OneNAND register
* @param addr address to read
*
* Read OneNAND register
*/
static unsigned short onenand_readw(void __iomem *addr)
{
return readw(addr);
}
/**
* onenand_writew - [OneNAND Interface] Write OneNAND register with value
* @param value value to write
* @param addr address to write
*
* Write OneNAND register with value
*/
static void onenand_writew(unsigned short value, void __iomem *addr)
{
writew(value, addr);
}
/**
* onenand_block_address - [DEFAULT] Get block address
* @param this onenand chip data structure
* @param block the block
* @return translated block address if DDP, otherwise same
*
* Setup Start Address 1 Register (F100h)
*/
static int onenand_block_address(struct onenand_chip *this, int block)
{
if (this->device_id & ONENAND_DEVICE_IS_DDP) {
/* Device Flash Core select, NAND Flash Block Address */
int dfs = 0;
if (block & this->density_mask)
dfs = 1;
return (dfs << ONENAND_DDP_SHIFT) |
(block & (this->density_mask - 1));
}
return block;
}
/**
* onenand_bufferram_address - [DEFAULT] Get bufferram address
* @param this onenand chip data structure
* @param block the block
* @return set DBS value if DDP, otherwise 0
*
* Setup Start Address 2 Register (F101h) for DDP
*/
static int onenand_bufferram_address(struct onenand_chip *this, int block)
{
if (this->device_id & ONENAND_DEVICE_IS_DDP) {
/* Device BufferRAM Select */
int dbs = 0;
if (block & this->density_mask)
dbs = 1;
return (dbs << ONENAND_DDP_SHIFT);
}
return 0;
}
/**
* onenand_page_address - [DEFAULT] Get page address
* @param page the page address
* @param sector the sector address
* @return combined page and sector address
*
* Setup Start Address 8 Register (F107h)
*/
static int onenand_page_address(int page, int sector)
{
/* Flash Page Address, Flash Sector Address */
int fpa, fsa;
fpa = page & ONENAND_FPA_MASK;
fsa = sector & ONENAND_FSA_MASK;
return ((fpa << ONENAND_FPA_SHIFT) | fsa);
}
/**
* onenand_buffer_address - [DEFAULT] Get buffer address
* @param dataram1 DataRAM index
* @param sectors the sector address
* @param count the number of sectors
* @return the start buffer value
*
* Setup Start Buffer Register (F200h)
*/
static int onenand_buffer_address(int dataram1, int sectors, int count)
{
int bsa, bsc;
/* BufferRAM Sector Address */
bsa = sectors & ONENAND_BSA_MASK;
if (dataram1)
bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
else
bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
/* BufferRAM Sector Count */
bsc = count & ONENAND_BSC_MASK;
return ((bsa << ONENAND_BSA_SHIFT) | bsc);
}
/**
* onenand_command - [DEFAULT] Send command to OneNAND device
* @param mtd MTD device structure
* @param cmd the command to be sent
* @param addr offset to read from or write to
* @param len number of bytes to read or write
*
* Send command to OneNAND device. This function is used for middle/large page
* devices (1KB/2KB Bytes per page)
*/
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
{
struct onenand_chip *this = mtd->priv;
int value, readcmd = 0;
int block, page;
/* Now we use page size operation */
int sectors = 4, count = 4;
/* Address translation */
switch (cmd) {
case ONENAND_CMD_UNLOCK:
case ONENAND_CMD_LOCK:
case ONENAND_CMD_LOCK_TIGHT:
block = -1;
page = -1;
break;
case ONENAND_CMD_ERASE:
case ONENAND_CMD_BUFFERRAM:
block = (int) (addr >> this->erase_shift);
page = -1;
break;
default:
block = (int) (addr >> this->erase_shift);
page = (int) (addr >> this->page_shift);
page &= this->page_mask;
break;
}
/* NOTE: The setting order of the registers is very important! */
if (cmd == ONENAND_CMD_BUFFERRAM) {
/* Select DataRAM for DDP */
value = onenand_bufferram_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
/* Switch to the next data buffer */
ONENAND_SET_NEXT_BUFFERRAM(this);
return 0;
}
if (block != -1) {
/* Write 'DFS, FBA' of Flash */
value = onenand_block_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
}
if (page != -1) {
int dataram;
switch (cmd) {
case ONENAND_CMD_READ:
case ONENAND_CMD_READOOB:
dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
readcmd = 1;
break;
default:
dataram = ONENAND_CURRENT_BUFFERRAM(this);
break;
}
/* Write 'FPA, FSA' of Flash */
value = onenand_page_address(page, sectors);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
/* Write 'BSA, BSC' of DataRAM */
value = onenand_buffer_address(dataram, sectors, count);
this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
if (readcmd) {
/* Select DataRAM for DDP */
value = onenand_bufferram_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
}
}
/* Interrupt clear */
this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
/* Write command */
this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
return 0;
}
/**
* onenand_wait - [DEFAULT] wait until the command is done
* @param mtd MTD device structure
* @param state state to select the max. timeout value
*
* Wait for command done. This applies to all OneNAND command
* Read can take up to 30us, erase up to 2ms and program up to 350us
* according to general OneNAND specs
*/
static int onenand_wait(struct mtd_info *mtd, int state)
{
struct onenand_chip * this = mtd->priv;
unsigned long timeout;
unsigned int flags = ONENAND_INT_MASTER;
unsigned int interrupt = 0;
unsigned int ctrl, ecc;
/* The 20 msec is enough */
timeout = jiffies + msecs_to_jiffies(20);
while (time_before(jiffies, timeout)) {
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
if (interrupt & flags)
break;
if (state != FL_READING)
cond_resched();
touch_softlockup_watchdog();
}
/* To get correct interrupt status in timeout case */
interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
if (ctrl & ONENAND_CTRL_ERROR) {
/* It maybe occur at initial bad block */
DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
/* Clear other interrupt bits for preventing ECC error */
interrupt &= ONENAND_INT_MASTER;
}
if (ctrl & ONENAND_CTRL_LOCK) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error = 0x%04x\n", ctrl);
return -EACCES;
}
if (interrupt & ONENAND_INT_READ) {
ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
if (ecc & ONENAND_ECC_2BIT_ALL) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
return -EBADMSG;
}
}
return 0;
}
/**
* onenand_bufferram_offset - [DEFAULT] BufferRAM offset
* @param mtd MTD data structure
* @param area BufferRAM area
* @return offset given area
*
* Return BufferRAM offset given area
*/
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
struct onenand_chip *this = mtd->priv;
if (ONENAND_CURRENT_BUFFERRAM(this)) {
if (area == ONENAND_DATARAM)
return mtd->oobblock;
if (area == ONENAND_SPARERAM)
return mtd->oobsize;
}
return 0;
}
/**
* onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
* @param mtd MTD data structure
* @param area BufferRAM area
* @param buffer the databuffer to put/get data
* @param offset offset to read from or write to
* @param count number of bytes to read/write
*
* Read the BufferRAM area
*/
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset, size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
unsigned short word;
/* Align with word(16-bit) size */
count--;
/* Read word and save byte */
word = this->read_word(bufferram + offset + count);
buffer[count] = (word & 0xff);
}
memcpy(buffer, bufferram + offset, count);
return 0;
}
/**
* onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
* @param mtd MTD data structure
* @param area BufferRAM area
* @param buffer the databuffer to put/get data
* @param offset offset to read from or write to
* @param count number of bytes to read/write
*
* Read the BufferRAM area with Sync. Burst Mode
*/
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
unsigned char *buffer, int offset, size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
unsigned short word;
/* Align with word(16-bit) size */
count--;
/* Read word and save byte */
word = this->read_word(bufferram + offset + count);
buffer[count] = (word & 0xff);
}
memcpy(buffer, bufferram + offset, count);
this->mmcontrol(mtd, 0);
return 0;
}
/**
* onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
* @param mtd MTD data structure
* @param area BufferRAM area
* @param buffer the databuffer to put/get data
* @param offset offset to read from or write to
* @param count number of bytes to read/write
*
* Write the BufferRAM area
*/
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
const unsigned char *buffer, int offset, size_t count)
{
struct onenand_chip *this = mtd->priv;
void __iomem *bufferram;
bufferram = this->base + area;
bufferram += onenand_bufferram_offset(mtd, area);
if (ONENAND_CHECK_BYTE_ACCESS(count)) {
unsigned short word;
int byte_offset;
/* Align with word(16-bit) size */
count--;
/* Calculate byte access offset */
byte_offset = offset + count;
/* Read word and save byte */
word = this->read_word(bufferram + byte_offset);
word = (word & ~0xff) | buffer[count];
this->write_word(word, bufferram + byte_offset);
}
memcpy(bufferram + offset, buffer, count);
return 0;
}
/**
* onenand_check_bufferram - [GENERIC] Check BufferRAM information
* @param mtd MTD data structure
* @param addr address to check
* @return 1 if there are valid data, otherwise 0
*
* Check bufferram if there is data we required
*/
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
{
struct onenand_chip *this = mtd->priv;
int block, page;
int i;
block = (int) (addr >> this->erase_shift);
page = (int) (addr >> this->page_shift);
page &= this->page_mask;
i = ONENAND_CURRENT_BUFFERRAM(this);
/* Is there valid data? */
if (this->bufferram[i].block == block &&
this->bufferram[i].page == page &&
this->bufferram[i].valid)
return 1;
return 0;
}
/**
* onenand_update_bufferram - [GENERIC] Update BufferRAM information
* @param mtd MTD data structure
* @param addr address to update
* @param valid valid flag
*
* Update BufferRAM information
*/
static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
int valid)
{
struct onenand_chip *this = mtd->priv;
int block, page;
int i;
block = (int) (addr >> this->erase_shift);
page = (int) (addr >> this->page_shift);
page &= this->page_mask;
/* Invalidate BufferRAM */
for (i = 0; i < MAX_BUFFERRAM; i++) {
if (this->bufferram[i].block == block &&
this->bufferram[i].page == page)
this->bufferram[i].valid = 0;
}
/* Update BufferRAM */
i = ONENAND_CURRENT_BUFFERRAM(this);
this->bufferram[i].block = block;
this->bufferram[i].page = page;
this->bufferram[i].valid = valid;
return 0;
}
/**
* onenand_get_device - [GENERIC] Get chip for selected access
* @param mtd MTD device structure
* @param new_state the state which is requested
*
* Get the device and lock it for exclusive access
*/
static int onenand_get_device(struct mtd_info *mtd, int new_state)
{
struct onenand_chip *this = mtd->priv;
DECLARE_WAITQUEUE(wait, current);
/*
* Grab the lock and see if the device is available
*/
while (1) {
spin_lock(&this->chip_lock);
if (this->state == FL_READY) {
this->state = new_state;
spin_unlock(&this->chip_lock);
break;
}
if (new_state == FL_PM_SUSPENDED) {
spin_unlock(&this->chip_lock);
return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
}
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&this->wq, &wait);
spin_unlock(&this->chip_lock);
schedule();
remove_wait_queue(&this->wq, &wait);
}
return 0;
}
/**
* onenand_release_device - [GENERIC] release chip
* @param mtd MTD device structure
*
* Deselect, release chip lock and wake up anyone waiting on the device
*/
static void onenand_release_device(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
/* Release the chip */
spin_lock(&this->chip_lock);
this->state = FL_READY;
wake_up(&this->wq);
spin_unlock(&this->chip_lock);
}
/**
* onenand_read_ecc - [MTD Interface] Read data with ECC
* @param mtd MTD device structure
* @param from offset to read from
* @param len number of bytes to read
* @param retlen pointer to variable to store the number of read bytes
* @param buf the databuffer to put data
* @param oob_buf filesystem supplied oob data buffer
* @param oobsel oob selection structure
*
* OneNAND read with ECC
*/
static int onenand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf,
u_char *oob_buf, struct nand_oobinfo *oobsel)
{
struct onenand_chip *this = mtd->priv;
int read = 0, column;
int thislen;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
/* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_ecc: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_READING);
/* TODO handling oob */
while (read < len) {
thislen = min_t(int, mtd->oobblock, len - read);
column = from & (mtd->oobblock - 1);
if (column + thislen > mtd->oobblock)
thislen = mtd->oobblock - column;
if (!onenand_check_bufferram(mtd, from)) {
this->command(mtd, ONENAND_CMD_READ, from, mtd->oobblock);
ret = this->wait(mtd, FL_READING);
/* First copy data and check return value for ECC handling */
onenand_update_bufferram(mtd, from, 1);
}
this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
read += thislen;
if (read == len)
break;
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_ecc: read failed = %d\n", ret);
goto out;
}
from += thislen;
buf += thislen;
}
out:
/* Deselect and wake up anyone waiting on the device */
onenand_release_device(mtd);
/*
* Return success, if no ECC failures, else -EBADMSG
* fs driver will take care of that, because
* retlen == desired len and result == -EBADMSG
*/
*retlen = read;
return ret;
}
/**
* onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
* @param mtd MTD device structure
* @param from offset to read from
* @param len number of bytes to read
* @param retlen pointer to variable to store the number of read bytes
* @param buf the databuffer to put data
*
* This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
*/
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
return onenand_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
}
/**
* onenand_read_oob - [MTD Interface] OneNAND read out-of-band
* @param mtd MTD device structure
* @param from offset to read from
* @param len number of bytes to read
* @param retlen pointer to variable to store the number of read bytes
* @param buf the databuffer to put data
*
* OneNAND read out-of-band data from the spare area
*/
static int onenand_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct onenand_chip *this = mtd->priv;
int read = 0, thislen, column;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
/* Initialize return length value */
*retlen = 0;
/* Do not allow reads past end of device */
if (unlikely((from + len) > mtd->size)) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_READING);
column = from & (mtd->oobsize - 1);
while (read < len) {
thislen = mtd->oobsize - column;
thislen = min_t(int, thislen, len);
this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
onenand_update_bufferram(mtd, from, 0);
ret = this->wait(mtd, FL_READING);
/* First copy data and check return value for ECC handling */
this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
read += thislen;
if (read == len)
break;
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = %d\n", ret);
goto out;
}
buf += thislen;
/* Read more? */
if (read < len) {
/* Page size */
from += mtd->oobblock;
column = 0;
}
}
out:
/* Deselect and wake up anyone waiting on the device */
onenand_release_device(mtd);
*retlen = read;
return ret;
}
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
/**
* onenand_verify_oob - [GENERIC] verify the oob contents after a write
* @param mtd MTD device structure
* @param buf the databuffer to verify
* @param to offset to read from
* @param len number of bytes to read and compare
*
*/
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to, int len)
{
struct onenand_chip *this = mtd->priv;
char *readp = this->page_buf;
int column = to & (mtd->oobsize - 1);
int status, i;
this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
onenand_update_bufferram(mtd, to, 0);
status = this->wait(mtd, FL_READING);
if (status)
return status;
this->read_bufferram(mtd, ONENAND_SPARERAM, readp, column, len);
for(i = 0; i < len; i++)
if (buf[i] != 0xFF && buf[i] != readp[i])
return -EBADMSG;
return 0;
}
/**
* onenand_verify_page - [GENERIC] verify the chip contents after a write
* @param mtd MTD device structure
* @param buf the databuffer to verify
*
* Check DataRAM area directly
*/
static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr)
{
struct onenand_chip *this = mtd->priv;
void __iomem *dataram0, *dataram1;
int ret = 0;
this->command(mtd, ONENAND_CMD_READ, addr, mtd->oobblock);
ret = this->wait(mtd, FL_READING);
if (ret)
return ret;
onenand_update_bufferram(mtd, addr, 1);
/* Check, if the two dataram areas are same */
dataram0 = this->base + ONENAND_DATARAM;
dataram1 = dataram0 + mtd->oobblock;
if (memcmp(dataram0, dataram1, mtd->oobblock))
return -EBADMSG;
return 0;
}
#else
#define onenand_verify_page(...) (0)
#define onenand_verify_oob(...) (0)
#endif
#define NOTALIGNED(x) ((x & (mtd->oobblock - 1)) != 0)
/**
* onenand_write_ecc - [MTD Interface] OneNAND write with ECC
* @param mtd MTD device structure
* @param to offset to write to
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of written bytes
* @param buf the data to write
* @param eccbuf filesystem supplied oob data buffer
* @param oobsel oob selection structure
*
* OneNAND write with ECC
*/
static int onenand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf,
u_char *eccbuf, struct nand_oobinfo *oobsel)
{
struct onenand_chip *this = mtd->priv;
int written = 0;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
/* Initialize retlen, in case of early exit */
*retlen = 0;
/* Do not allow writes past end of device */
if (unlikely((to + len) > mtd->size)) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: Attempt write to past end of device\n");
return -EINVAL;
}
/* Reject writes, which are not page aligned */
if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_WRITING);
/* Loop until all data write */
while (written < len) {
int thislen = min_t(int, mtd->oobblock, len - written);
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock);
this->write_bufferram(mtd, ONENAND_DATARAM, buf, 0, thislen);
this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock);
onenand_update_bufferram(mtd, to, 1);
ret = this->wait(mtd, FL_WRITING);
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: write filaed %d\n", ret);
goto out;
}
written += thislen;
/* Only check verify write turn on */
ret = onenand_verify_page(mtd, (u_char *) buf, to);
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_ecc: verify failed %d\n", ret);
goto out;
}
if (written == len)
break;
to += thislen;
buf += thislen;
}
out:
/* Deselect and wake up anyone waiting on the device */
onenand_release_device(mtd);
*retlen = written;
return ret;
}
/**
* onenand_write - [MTD Interface] compability function for onenand_write_ecc
* @param mtd MTD device structure
* @param to offset to write to
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of written bytes
* @param buf the data to write
*
* This function simply calls onenand_write_ecc
* with oob buffer and oobsel = NULL
*/
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
return onenand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL);
}
/**
* onenand_write_oob - [MTD Interface] OneNAND write out-of-band
* @param mtd MTD device structure
* @param to offset to write to
* @param len number of bytes to write
* @param retlen pointer to variable to store the number of written bytes
* @param buf the data to write
*
* OneNAND write out-of-band
*/
static int onenand_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct onenand_chip *this = mtd->priv;
int column, ret = 0;
int written = 0;
DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
/* Initialize retlen, in case of early exit */
*retlen = 0;
/* Do not allow writes past end of device */
if (unlikely((to + len) > mtd->size)) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_WRITING);
/* Loop until all data write */
while (written < len) {
int thislen = min_t(int, mtd->oobsize, len - written);
column = to & (mtd->oobsize - 1);
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
/* We send data to spare ram with oobsize
* to prevent byte access */
memset(this->page_buf, 0xff, mtd->oobsize);
memcpy(this->page_buf + column, buf, thislen);
this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
onenand_update_bufferram(mtd, to, 0);
ret = this->wait(mtd, FL_WRITING);
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write filaed %d\n", ret);
goto out;
}
ret = onenand_verify_oob(mtd, buf, to, thislen);
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
goto out;
}
written += thislen;
if (written == len)
break;
to += thislen;
buf += thislen;
}
out:
/* Deselect and wake up anyone waiting on the device */
onenand_release_device(mtd);
*retlen = written;
return ret;
}
/**
* onenand_writev_ecc - [MTD Interface] write with iovec with ecc
* @param mtd MTD device structure
* @param vecs the iovectors to write
* @param count number of vectors
* @param to offset to write to
* @param retlen pointer to variable to store the number of written bytes
* @param eccbuf filesystem supplied oob data buffer
* @param oobsel oob selection structure
*
* OneNAND write with iovec with ecc
*/
static int onenand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen,
u_char *eccbuf, struct nand_oobinfo *oobsel)
{
struct onenand_chip *this = mtd->priv;
unsigned char *pbuf;
size_t total_len, len;
int i, written = 0;
int ret = 0;
/* Preset written len for early exit */
*retlen = 0;
/* Calculate total length of data */
total_len = 0;
for (i = 0; i < count; i++)
total_len += vecs[i].iov_len;
DEBUG(MTD_DEBUG_LEVEL3, "onenand_writev_ecc: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
/* Do not allow write past end of the device */
if (unlikely((to + total_len) > mtd->size)) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: Attempted write past end of device\n");
return -EINVAL;
}
/* Reject writes, which are not page aligned */
if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(total_len))) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_WRITING);
/* TODO handling oob */
/* Loop until all keve's data has been written */
len = 0;
while (count) {
pbuf = this->page_buf;
/*
* If the given tuple is >= pagesize then
* write it out from the iov
*/
if ((vecs->iov_len - len) >= mtd->oobblock) {
pbuf = vecs->iov_base + len;
len += mtd->oobblock;
/* Check, if we have to switch to the next tuple */
if (len >= (int) vecs->iov_len) {
vecs++;
len = 0;
count--;
}
} else {
int cnt = 0, thislen;
while (cnt < mtd->oobblock) {
thislen = min_t(int, mtd->oobblock - cnt, vecs->iov_len - len);
memcpy(this->page_buf + cnt, vecs->iov_base + len, thislen);
cnt += thislen;
len += thislen;
/* Check, if we have to switch to the next tuple */
if (len >= (int) vecs->iov_len) {
vecs++;
len = 0;
count--;
}
}
}
this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobblock);
this->write_bufferram(mtd, ONENAND_DATARAM, pbuf, 0, mtd->oobblock);
this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
this->command(mtd, ONENAND_CMD_PROG, to, mtd->oobblock);
onenand_update_bufferram(mtd, to, 1);
ret = this->wait(mtd, FL_WRITING);
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: write failed %d\n", ret);
goto out;
}
/* Only check verify write turn on */
ret = onenand_verify_page(mtd, (u_char *) pbuf, to);
if (ret) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_writev_ecc: verify failed %d\n", ret);
goto out;
}
written += mtd->oobblock;
to += mtd->oobblock;
}
out:
/* Deselect and wakt up anyone waiting on the device */
onenand_release_device(mtd);
*retlen = written;
return 0;
}
/**
* onenand_writev - [MTD Interface] compabilty function for onenand_writev_ecc
* @param mtd MTD device structure
* @param vecs the iovectors to write
* @param count number of vectors
* @param to offset to write to
* @param retlen pointer to variable to store the number of written bytes
*
* OneNAND write with kvec. This just calls the ecc function
*/
static int onenand_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
return onenand_writev_ecc(mtd, vecs, count, to, retlen, NULL, NULL);
}
/**
* onenand_block_checkbad - [GENERIC] Check if a block is marked bad
* @param mtd MTD device structure
* @param ofs offset from device start
* @param getchip 0, if the chip is already selected
* @param allowbbt 1, if its allowed to access the bbt area
*
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
{
struct onenand_chip *this = mtd->priv;
struct bbm_info *bbm = this->bbm;
/* Return info from the table */
return bbm->isbad_bbt(mtd, ofs, allowbbt);
}
/**
* onenand_erase - [MTD Interface] erase block(s)
* @param mtd MTD device structure
* @param instr erase instruction
*
* Erase one ore more blocks
*/
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct onenand_chip *this = mtd->priv;
unsigned int block_size;
loff_t addr;
int len;
int ret = 0;
DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
block_size = (1 << this->erase_shift);
/* Start address must align on block boundary */
if (unlikely(instr->addr & (block_size - 1))) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
return -EINVAL;
}
/* Length must align on block boundary */
if (unlikely(instr->len & (block_size - 1))) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
return -EINVAL;
}
/* Do not allow erase past end of device */
if (unlikely((instr->len + instr->addr) > mtd->size)) {
DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
return -EINVAL;
}
instr->fail_addr = 0xffffffff;
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_ERASING);
/* Loop throught the pages */
len = instr->len;
addr = instr->addr;
instr->state = MTD_ERASING;
while (len) {
/* Check if we have a bad block, we do not erase bad blocks */
if (onenand_block_checkbad(mtd, addr, 0, 0)) {
printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
instr->state = MTD_ERASE_FAILED;
goto erase_exit;
}
this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
ret = this->wait(mtd, FL_ERASING);
/* Check, if it is write protected */
if (ret) {
if (ret == -EPERM)
DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Device is write protected!!!\n");
else
DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
instr->state = MTD_ERASE_FAILED;
instr->fail_addr = addr;
goto erase_exit;
}
len -= block_size;
addr += block_size;
}
instr->state = MTD_ERASE_DONE;
erase_exit:
ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
/* Do call back function */
if (!ret)
mtd_erase_callback(instr);
/* Deselect and wake up anyone waiting on the device */
onenand_release_device(mtd);
return ret;
}
/**
* onenand_sync - [MTD Interface] sync
* @param mtd MTD device structure
*
* Sync is actually a wait for chip ready function
*/
static void onenand_sync(struct mtd_info *mtd)
{
DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_SYNCING);
/* Release it and go back */
onenand_release_device(mtd);
}
/**
* onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
* @param mtd MTD device structure
* @param ofs offset relative to mtd start
*
* Check whether the block is bad
*/
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
/* Check for invalid offset */
if (ofs > mtd->size)
return -EINVAL;
return onenand_block_checkbad(mtd, ofs, 1, 0);
}
/**
* onenand_default_block_markbad - [DEFAULT] mark a block bad
* @param mtd MTD device structure
* @param ofs offset from device start
*
* This is the default implementation, which can be overridden by
* a hardware specific driver.
*/
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct onenand_chip *this = mtd->priv;
struct bbm_info *bbm = this->bbm;
u_char buf[2] = {0, 0};
size_t retlen;
int block;
/* Get block number */
block = ((int) ofs) >> bbm->bbt_erase_shift;
if (bbm->bbt)
bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/* We write two bytes, so we dont have to mess with 16 bit access */
ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
return mtd->write_oob(mtd, ofs , 2, &retlen, buf);
}
/**
* onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
* @param mtd MTD device structure
* @param ofs offset relative to mtd start
*
* Mark the block as bad
*/
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct onenand_chip *this = mtd->priv;
int ret;
ret = onenand_block_isbad(mtd, ofs);
if (ret) {
/* If it was bad already, return success and do nothing */
if (ret > 0)
return 0;
return ret;
}
return this->block_markbad(mtd, ofs);
}
/**
* onenand_unlock - [MTD Interface] Unlock block(s)
* @param mtd MTD device structure
* @param ofs offset relative to mtd start
* @param len number of bytes to unlock
*
* Unlock one or more blocks
*/
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
struct onenand_chip *this = mtd->priv;
int start, end, block, value, status;
start = ofs >> this->erase_shift;
end = len >> this->erase_shift;
/* Continuous lock scheme */
if (this->options & ONENAND_CONT_LOCK) {
/* Set start block address */
this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
/* Set end block address */
this->write_word(end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
/* Write unlock command */
this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
/* There's no return value */
this->wait(mtd, FL_UNLOCKING);
/* Sanity check */
while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
& ONENAND_CTRL_ONGO)
continue;
/* Check lock status */
status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
if (!(status & ONENAND_WP_US))
printk(KERN_ERR "wp status = 0x%x\n", status);
return 0;
}
/* Block lock scheme */
for (block = start; block < end; block++) {
/* Set block address */
value = onenand_block_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
/* Select DataRAM for DDP */
value = onenand_bufferram_address(this, block);
this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
/* Set start block address */
this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
/* Write unlock command */
this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
/* There's no return value */
this->wait(mtd, FL_UNLOCKING);
/* Sanity check */
while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
& ONENAND_CTRL_ONGO)
continue;
/* Check lock status */
status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
if (!(status & ONENAND_WP_US))
printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
}
return 0;
}
/**
* onenand_print_device_info - Print device ID
* @param device device ID
*
* Print device ID
*/
static void onenand_print_device_info(int device)
{
int vcc, demuxed, ddp, density;
vcc = device & ONENAND_DEVICE_VCC_MASK;
demuxed = device & ONENAND_DEVICE_IS_DEMUX;
ddp = device & ONENAND_DEVICE_IS_DDP;
density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
demuxed ? "" : "Muxed ",
ddp ? "(DDP)" : "",
(16 << density),
vcc ? "2.65/3.3" : "1.8",
device);
}
static const struct onenand_manufacturers onenand_manuf_ids[] = {
{ONENAND_MFR_SAMSUNG, "Samsung"},
};
/**
* onenand_check_maf - Check manufacturer ID
* @param manuf manufacturer ID
*
* Check manufacturer ID
*/
static int onenand_check_maf(int manuf)
{
int size = ARRAY_SIZE(onenand_manuf_ids);
char *name;
int i;
for (i = 0; i < size; i++)
if (manuf == onenand_manuf_ids[i].id)
break;
if (i < size)
name = onenand_manuf_ids[i].name;
else
name = "Unknown";
printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
return (i == size);
}
/**
* onenand_probe - [OneNAND Interface] Probe the OneNAND device
* @param mtd MTD device structure
*
* OneNAND detection method:
* Compare the the values from command with ones from register
*/
static int onenand_probe(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
int bram_maf_id, bram_dev_id, maf_id, dev_id;
int version_id;
int density;
/* Send the command for reading device ID from BootRAM */
this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
/* Read manufacturer and device IDs from BootRAM */
bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
/* Check manufacturer ID */
if (onenand_check_maf(bram_maf_id))
return -ENXIO;
/* Reset OneNAND to read default register values */
this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
/* Read manufacturer and device IDs from Register */
maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
/* Check OneNAND device */
if (maf_id != bram_maf_id || dev_id != bram_dev_id)
return -ENXIO;
/* Flash device information */
onenand_print_device_info(dev_id);
this->device_id = dev_id;
density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
this->chipsize = (16 << density) << 20;
/* Set density mask. it is used for DDP */
this->density_mask = (1 << (density + 6));
/* OneNAND page size & block size */
/* The data buffer size is equal to page size */
mtd->oobblock = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
mtd->oobsize = mtd->oobblock >> 5;
/* Pagers per block is always 64 in OneNAND */
mtd->erasesize = mtd->oobblock << 6;
this->erase_shift = ffs(mtd->erasesize) - 1;
this->page_shift = ffs(mtd->oobblock) - 1;
this->ppb_shift = (this->erase_shift - this->page_shift);
this->page_mask = (mtd->erasesize / mtd->oobblock) - 1;
/* REVIST: Multichip handling */
mtd->size = this->chipsize;
/* Version ID */
version_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version_id);
/* Lock scheme */
if (density <= ONENAND_DEVICE_DENSITY_512Mb &&
!(version_id >> ONENAND_VERSION_PROCESS_SHIFT)) {
printk(KERN_INFO "Lock scheme is Continues Lock\n");
this->options |= ONENAND_CONT_LOCK;
}
return 0;
}
/**
* onenand_suspend - [MTD Interface] Suspend the OneNAND flash
* @param mtd MTD device structure
*/
static int onenand_suspend(struct mtd_info *mtd)
{
return onenand_get_device(mtd, FL_PM_SUSPENDED);
}
/**
* onenand_resume - [MTD Interface] Resume the OneNAND flash
* @param mtd MTD device structure
*/
static void onenand_resume(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
if (this->state == FL_PM_SUSPENDED)
onenand_release_device(mtd);
else
printk(KERN_ERR "resume() called for the chip which is not"
"in suspended state\n");
}
/**
* onenand_scan - [OneNAND Interface] Scan for the OneNAND device
* @param mtd MTD device structure
* @param maxchips Number of chips to scan for
*
* This fills out all the not initialized function pointers
* with the defaults.
* The flash ID is read and the mtd/chip structures are
* filled with the appropriate values.
*/
int onenand_scan(struct mtd_info *mtd, int maxchips)
{
struct onenand_chip *this = mtd->priv;
if (!this->read_word)
this->read_word = onenand_readw;
if (!this->write_word)
this->write_word = onenand_writew;
if (!this->command)
this->command = onenand_command;
if (!this->wait)
this->wait = onenand_wait;
if (!this->read_bufferram)
this->read_bufferram = onenand_read_bufferram;
if (!this->write_bufferram)
this->write_bufferram = onenand_write_bufferram;
if (!this->block_markbad)
this->block_markbad = onenand_default_block_markbad;
if (!this->scan_bbt)
this->scan_bbt = onenand_default_bbt;
if (onenand_probe(mtd))
return -ENXIO;
/* Set Sync. Burst Read after probing */
if (this->mmcontrol) {
printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
this->read_bufferram = onenand_sync_read_bufferram;
}
/* Allocate buffers, if necessary */
if (!this->page_buf) {
size_t len;
len = mtd->oobblock + mtd->oobsize;
this->page_buf = kmalloc(len, GFP_KERNEL);
if (!this->page_buf) {
printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
return -ENOMEM;
}
this->options |= ONENAND_PAGEBUF_ALLOC;
}
this->state = FL_READY;
init_waitqueue_head(&this->wq);
spin_lock_init(&this->chip_lock);
switch (mtd->oobsize) {
case 64:
this->autooob = &onenand_oob_64;
break;
case 32:
this->autooob = &onenand_oob_32;
break;
default:
printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
mtd->oobsize);
/* To prevent kernel oops */
this->autooob = &onenand_oob_32;
break;
}
memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
/* Fill in remaining MTD driver data */
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
mtd->ecctype = MTD_ECC_SW;
mtd->erase = onenand_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = onenand_read;
mtd->write = onenand_write;
mtd->read_ecc = onenand_read_ecc;
mtd->write_ecc = onenand_write_ecc;
mtd->read_oob = onenand_read_oob;
mtd->write_oob = onenand_write_oob;
mtd->readv = NULL;
mtd->readv_ecc = NULL;
mtd->writev = onenand_writev;
mtd->writev_ecc = onenand_writev_ecc;
mtd->sync = onenand_sync;
mtd->lock = NULL;
mtd->unlock = onenand_unlock;
mtd->suspend = onenand_suspend;
mtd->resume = onenand_resume;
mtd->block_isbad = onenand_block_isbad;
mtd->block_markbad = onenand_block_markbad;
mtd->owner = THIS_MODULE;
/* Unlock whole block */
mtd->unlock(mtd, 0x0, this->chipsize);
return this->scan_bbt(mtd);
}
/**
* onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
* @param mtd MTD device structure
*/
void onenand_release(struct mtd_info *mtd)
{
struct onenand_chip *this = mtd->priv;
#ifdef CONFIG_MTD_PARTITIONS
/* Deregister partitions */
del_mtd_partitions (mtd);
#endif
/* Deregister the device */
del_mtd_device (mtd);
/* Free bad block table memory, if allocated */
if (this->bbm)
kfree(this->bbm);
/* Buffer allocated by onenand_scan */
if (this->options & ONENAND_PAGEBUF_ALLOC)
kfree(this->page_buf);
}
EXPORT_SYMBOL_GPL(onenand_scan);
EXPORT_SYMBOL_GPL(onenand_release);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Generic OneNAND flash driver code");