kernel-fxtec-pro1x/drivers/target/target_core_device.c
Dan Carpenter 60d645a4e9 target: Fix incorrect strlen() NULL terminator checks
This patch fixes a number of cases in target core using an incorrectly

	if (strlen(foo) > SOME_MAX_SIZE)

As strlen() returns the number of characters in the string not counting
the NULL character at the end.  So if you do something like:

        char buf[10];

        if (strlen("0123456789") > 10)
                return -ETOOLONG;
        snprintf(buf, 10, "0123456789");
        printf("%s\n", buf);

then the last "9" gets chopped off and only "012345678" is printed.

Plus I threw in one small related cleanup.

Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Nicholas Bellinger <nab@linux-iscsi.org>
2011-06-24 00:08:11 +00:00

1644 lines
46 KiB
C

/*******************************************************************************
* Filename: target_core_device.c (based on iscsi_target_device.c)
*
* This file contains the iSCSI Virtual Device and Disk Transport
* agnostic related functions.
*
* Copyright (c) 2003, 2004, 2005 PyX Technologies, Inc.
* Copyright (c) 2005-2006 SBE, Inc. All Rights Reserved.
* Copyright (c) 2007-2010 Rising Tide Systems
* Copyright (c) 2008-2010 Linux-iSCSI.org
*
* Nicholas A. Bellinger <nab@kernel.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
******************************************************************************/
#include <linux/net.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <target/target_core_base.h>
#include <target/target_core_device.h>
#include <target/target_core_tpg.h>
#include <target/target_core_transport.h>
#include <target/target_core_fabric_ops.h>
#include "target_core_alua.h"
#include "target_core_hba.h"
#include "target_core_pr.h"
#include "target_core_ua.h"
static void se_dev_start(struct se_device *dev);
static void se_dev_stop(struct se_device *dev);
int transport_get_lun_for_cmd(
struct se_cmd *se_cmd,
unsigned char *cdb,
u32 unpacked_lun)
{
struct se_dev_entry *deve;
struct se_lun *se_lun = NULL;
struct se_session *se_sess = SE_SESS(se_cmd);
unsigned long flags;
int read_only = 0;
spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
deve = se_cmd->se_deve =
&SE_NODE_ACL(se_sess)->device_list[unpacked_lun];
if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
if (se_cmd) {
deve->total_cmds++;
deve->total_bytes += se_cmd->data_length;
if (se_cmd->data_direction == DMA_TO_DEVICE) {
if (deve->lun_flags &
TRANSPORT_LUNFLAGS_READ_ONLY) {
read_only = 1;
goto out;
}
deve->write_bytes += se_cmd->data_length;
} else if (se_cmd->data_direction ==
DMA_FROM_DEVICE) {
deve->read_bytes += se_cmd->data_length;
}
}
deve->deve_cmds++;
se_lun = se_cmd->se_lun = deve->se_lun;
se_cmd->pr_res_key = deve->pr_res_key;
se_cmd->orig_fe_lun = unpacked_lun;
se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev;
se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD;
}
out:
spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
if (!se_lun) {
if (read_only) {
se_cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
printk("TARGET_CORE[%s]: Detected WRITE_PROTECTED LUN"
" Access for 0x%08x\n",
CMD_TFO(se_cmd)->get_fabric_name(),
unpacked_lun);
return -1;
} else {
/*
* Use the se_portal_group->tpg_virt_lun0 to allow for
* REPORT_LUNS, et al to be returned when no active
* MappedLUN=0 exists for this Initiator Port.
*/
if (unpacked_lun != 0) {
se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN;
se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
printk("TARGET_CORE[%s]: Detected NON_EXISTENT_LUN"
" Access for 0x%08x\n",
CMD_TFO(se_cmd)->get_fabric_name(),
unpacked_lun);
return -1;
}
/*
* Force WRITE PROTECT for virtual LUN 0
*/
if ((se_cmd->data_direction != DMA_FROM_DEVICE) &&
(se_cmd->data_direction != DMA_NONE)) {
se_cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
return -1;
}
#if 0
printk("TARGET_CORE[%s]: Using virtual LUN0! :-)\n",
CMD_TFO(se_cmd)->get_fabric_name());
#endif
se_lun = se_cmd->se_lun = &se_sess->se_tpg->tpg_virt_lun0;
se_cmd->orig_fe_lun = 0;
se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev;
se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD;
}
}
/*
* Determine if the struct se_lun is online.
*/
/* #warning FIXME: Check for LUN_RESET + UNIT Attention */
if (se_dev_check_online(se_lun->lun_se_dev) != 0) {
se_cmd->scsi_sense_reason = TCM_NON_EXISTENT_LUN;
se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
return -1;
}
{
struct se_device *dev = se_lun->lun_se_dev;
spin_lock_irq(&dev->stats_lock);
dev->num_cmds++;
if (se_cmd->data_direction == DMA_TO_DEVICE)
dev->write_bytes += se_cmd->data_length;
else if (se_cmd->data_direction == DMA_FROM_DEVICE)
dev->read_bytes += se_cmd->data_length;
spin_unlock_irq(&dev->stats_lock);
}
/*
* Add the iscsi_cmd_t to the struct se_lun's cmd list. This list is used
* for tracking state of struct se_cmds during LUN shutdown events.
*/
spin_lock_irqsave(&se_lun->lun_cmd_lock, flags);
list_add_tail(&se_cmd->se_lun_list, &se_lun->lun_cmd_list);
atomic_set(&T_TASK(se_cmd)->transport_lun_active, 1);
#if 0
printk(KERN_INFO "Adding ITT: 0x%08x to LUN LIST[%d]\n",
CMD_TFO(se_cmd)->get_task_tag(se_cmd), se_lun->unpacked_lun);
#endif
spin_unlock_irqrestore(&se_lun->lun_cmd_lock, flags);
return 0;
}
EXPORT_SYMBOL(transport_get_lun_for_cmd);
int transport_get_lun_for_tmr(
struct se_cmd *se_cmd,
u32 unpacked_lun)
{
struct se_device *dev = NULL;
struct se_dev_entry *deve;
struct se_lun *se_lun = NULL;
struct se_session *se_sess = SE_SESS(se_cmd);
struct se_tmr_req *se_tmr = se_cmd->se_tmr_req;
spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
deve = se_cmd->se_deve =
&SE_NODE_ACL(se_sess)->device_list[unpacked_lun];
if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
se_lun = se_cmd->se_lun = se_tmr->tmr_lun = deve->se_lun;
dev = se_lun->lun_se_dev;
se_cmd->pr_res_key = deve->pr_res_key;
se_cmd->orig_fe_lun = unpacked_lun;
se_cmd->se_orig_obj_ptr = SE_LUN(se_cmd)->lun_se_dev;
/* se_cmd->se_cmd_flags |= SCF_SE_LUN_CMD; */
}
spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
if (!se_lun) {
printk(KERN_INFO "TARGET_CORE[%s]: Detected NON_EXISTENT_LUN"
" Access for 0x%08x\n",
CMD_TFO(se_cmd)->get_fabric_name(),
unpacked_lun);
se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
return -1;
}
/*
* Determine if the struct se_lun is online.
*/
/* #warning FIXME: Check for LUN_RESET + UNIT Attention */
if (se_dev_check_online(se_lun->lun_se_dev) != 0) {
se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
return -1;
}
se_tmr->tmr_dev = dev;
spin_lock(&dev->se_tmr_lock);
list_add_tail(&se_tmr->tmr_list, &dev->dev_tmr_list);
spin_unlock(&dev->se_tmr_lock);
return 0;
}
EXPORT_SYMBOL(transport_get_lun_for_tmr);
/*
* This function is called from core_scsi3_emulate_pro_register_and_move()
* and core_scsi3_decode_spec_i_port(), and will increment &deve->pr_ref_count
* when a matching rtpi is found.
*/
struct se_dev_entry *core_get_se_deve_from_rtpi(
struct se_node_acl *nacl,
u16 rtpi)
{
struct se_dev_entry *deve;
struct se_lun *lun;
struct se_port *port;
struct se_portal_group *tpg = nacl->se_tpg;
u32 i;
spin_lock_irq(&nacl->device_list_lock);
for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
deve = &nacl->device_list[i];
if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
continue;
lun = deve->se_lun;
if (!(lun)) {
printk(KERN_ERR "%s device entries device pointer is"
" NULL, but Initiator has access.\n",
TPG_TFO(tpg)->get_fabric_name());
continue;
}
port = lun->lun_sep;
if (!(port)) {
printk(KERN_ERR "%s device entries device pointer is"
" NULL, but Initiator has access.\n",
TPG_TFO(tpg)->get_fabric_name());
continue;
}
if (port->sep_rtpi != rtpi)
continue;
atomic_inc(&deve->pr_ref_count);
smp_mb__after_atomic_inc();
spin_unlock_irq(&nacl->device_list_lock);
return deve;
}
spin_unlock_irq(&nacl->device_list_lock);
return NULL;
}
int core_free_device_list_for_node(
struct se_node_acl *nacl,
struct se_portal_group *tpg)
{
struct se_dev_entry *deve;
struct se_lun *lun;
u32 i;
if (!nacl->device_list)
return 0;
spin_lock_irq(&nacl->device_list_lock);
for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
deve = &nacl->device_list[i];
if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
continue;
if (!deve->se_lun) {
printk(KERN_ERR "%s device entries device pointer is"
" NULL, but Initiator has access.\n",
TPG_TFO(tpg)->get_fabric_name());
continue;
}
lun = deve->se_lun;
spin_unlock_irq(&nacl->device_list_lock);
core_update_device_list_for_node(lun, NULL, deve->mapped_lun,
TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0);
spin_lock_irq(&nacl->device_list_lock);
}
spin_unlock_irq(&nacl->device_list_lock);
kfree(nacl->device_list);
nacl->device_list = NULL;
return 0;
}
void core_dec_lacl_count(struct se_node_acl *se_nacl, struct se_cmd *se_cmd)
{
struct se_dev_entry *deve;
spin_lock_irq(&se_nacl->device_list_lock);
deve = &se_nacl->device_list[se_cmd->orig_fe_lun];
deve->deve_cmds--;
spin_unlock_irq(&se_nacl->device_list_lock);
return;
}
void core_update_device_list_access(
u32 mapped_lun,
u32 lun_access,
struct se_node_acl *nacl)
{
struct se_dev_entry *deve;
spin_lock_irq(&nacl->device_list_lock);
deve = &nacl->device_list[mapped_lun];
if (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) {
deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_ONLY;
deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_WRITE;
} else {
deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_WRITE;
deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_ONLY;
}
spin_unlock_irq(&nacl->device_list_lock);
return;
}
/* core_update_device_list_for_node():
*
*
*/
int core_update_device_list_for_node(
struct se_lun *lun,
struct se_lun_acl *lun_acl,
u32 mapped_lun,
u32 lun_access,
struct se_node_acl *nacl,
struct se_portal_group *tpg,
int enable)
{
struct se_port *port = lun->lun_sep;
struct se_dev_entry *deve = &nacl->device_list[mapped_lun];
int trans = 0;
/*
* If the MappedLUN entry is being disabled, the entry in
* port->sep_alua_list must be removed now before clearing the
* struct se_dev_entry pointers below as logic in
* core_alua_do_transition_tg_pt() depends on these being present.
*/
if (!(enable)) {
/*
* deve->se_lun_acl will be NULL for demo-mode created LUNs
* that have not been explicitly concerted to MappedLUNs ->
* struct se_lun_acl, but we remove deve->alua_port_list from
* port->sep_alua_list. This also means that active UAs and
* NodeACL context specific PR metadata for demo-mode
* MappedLUN *deve will be released below..
*/
spin_lock_bh(&port->sep_alua_lock);
list_del(&deve->alua_port_list);
spin_unlock_bh(&port->sep_alua_lock);
}
spin_lock_irq(&nacl->device_list_lock);
if (enable) {
/*
* Check if the call is handling demo mode -> explict LUN ACL
* transition. This transition must be for the same struct se_lun
* + mapped_lun that was setup in demo mode..
*/
if (deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS) {
if (deve->se_lun_acl != NULL) {
printk(KERN_ERR "struct se_dev_entry->se_lun_acl"
" already set for demo mode -> explict"
" LUN ACL transition\n");
spin_unlock_irq(&nacl->device_list_lock);
return -1;
}
if (deve->se_lun != lun) {
printk(KERN_ERR "struct se_dev_entry->se_lun does"
" match passed struct se_lun for demo mode"
" -> explict LUN ACL transition\n");
spin_unlock_irq(&nacl->device_list_lock);
return -1;
}
deve->se_lun_acl = lun_acl;
trans = 1;
} else {
deve->se_lun = lun;
deve->se_lun_acl = lun_acl;
deve->mapped_lun = mapped_lun;
deve->lun_flags |= TRANSPORT_LUNFLAGS_INITIATOR_ACCESS;
}
if (lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) {
deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_ONLY;
deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_WRITE;
} else {
deve->lun_flags &= ~TRANSPORT_LUNFLAGS_READ_WRITE;
deve->lun_flags |= TRANSPORT_LUNFLAGS_READ_ONLY;
}
if (trans) {
spin_unlock_irq(&nacl->device_list_lock);
return 0;
}
deve->creation_time = get_jiffies_64();
deve->attach_count++;
spin_unlock_irq(&nacl->device_list_lock);
spin_lock_bh(&port->sep_alua_lock);
list_add_tail(&deve->alua_port_list, &port->sep_alua_list);
spin_unlock_bh(&port->sep_alua_lock);
return 0;
}
/*
* Wait for any in process SPEC_I_PT=1 or REGISTER_AND_MOVE
* PR operation to complete.
*/
spin_unlock_irq(&nacl->device_list_lock);
while (atomic_read(&deve->pr_ref_count) != 0)
cpu_relax();
spin_lock_irq(&nacl->device_list_lock);
/*
* Disable struct se_dev_entry LUN ACL mapping
*/
core_scsi3_ua_release_all(deve);
deve->se_lun = NULL;
deve->se_lun_acl = NULL;
deve->lun_flags = 0;
deve->creation_time = 0;
deve->attach_count--;
spin_unlock_irq(&nacl->device_list_lock);
core_scsi3_free_pr_reg_from_nacl(lun->lun_se_dev, nacl);
return 0;
}
/* core_clear_lun_from_tpg():
*
*
*/
void core_clear_lun_from_tpg(struct se_lun *lun, struct se_portal_group *tpg)
{
struct se_node_acl *nacl;
struct se_dev_entry *deve;
u32 i;
spin_lock_bh(&tpg->acl_node_lock);
list_for_each_entry(nacl, &tpg->acl_node_list, acl_list) {
spin_unlock_bh(&tpg->acl_node_lock);
spin_lock_irq(&nacl->device_list_lock);
for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
deve = &nacl->device_list[i];
if (lun != deve->se_lun)
continue;
spin_unlock_irq(&nacl->device_list_lock);
core_update_device_list_for_node(lun, NULL,
deve->mapped_lun, TRANSPORT_LUNFLAGS_NO_ACCESS,
nacl, tpg, 0);
spin_lock_irq(&nacl->device_list_lock);
}
spin_unlock_irq(&nacl->device_list_lock);
spin_lock_bh(&tpg->acl_node_lock);
}
spin_unlock_bh(&tpg->acl_node_lock);
return;
}
static struct se_port *core_alloc_port(struct se_device *dev)
{
struct se_port *port, *port_tmp;
port = kzalloc(sizeof(struct se_port), GFP_KERNEL);
if (!(port)) {
printk(KERN_ERR "Unable to allocate struct se_port\n");
return NULL;
}
INIT_LIST_HEAD(&port->sep_alua_list);
INIT_LIST_HEAD(&port->sep_list);
atomic_set(&port->sep_tg_pt_secondary_offline, 0);
spin_lock_init(&port->sep_alua_lock);
mutex_init(&port->sep_tg_pt_md_mutex);
spin_lock(&dev->se_port_lock);
if (dev->dev_port_count == 0x0000ffff) {
printk(KERN_WARNING "Reached dev->dev_port_count =="
" 0x0000ffff\n");
spin_unlock(&dev->se_port_lock);
return NULL;
}
again:
/*
* Allocate the next RELATIVE TARGET PORT IDENTIFER for this struct se_device
* Here is the table from spc4r17 section 7.7.3.8.
*
* Table 473 -- RELATIVE TARGET PORT IDENTIFIER field
*
* Code Description
* 0h Reserved
* 1h Relative port 1, historically known as port A
* 2h Relative port 2, historically known as port B
* 3h to FFFFh Relative port 3 through 65 535
*/
port->sep_rtpi = dev->dev_rpti_counter++;
if (!(port->sep_rtpi))
goto again;
list_for_each_entry(port_tmp, &dev->dev_sep_list, sep_list) {
/*
* Make sure RELATIVE TARGET PORT IDENTIFER is unique
* for 16-bit wrap..
*/
if (port->sep_rtpi == port_tmp->sep_rtpi)
goto again;
}
spin_unlock(&dev->se_port_lock);
return port;
}
static void core_export_port(
struct se_device *dev,
struct se_portal_group *tpg,
struct se_port *port,
struct se_lun *lun)
{
struct se_subsystem_dev *su_dev = SU_DEV(dev);
struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem = NULL;
spin_lock(&dev->se_port_lock);
spin_lock(&lun->lun_sep_lock);
port->sep_tpg = tpg;
port->sep_lun = lun;
lun->lun_sep = port;
spin_unlock(&lun->lun_sep_lock);
list_add_tail(&port->sep_list, &dev->dev_sep_list);
spin_unlock(&dev->se_port_lock);
if (T10_ALUA(su_dev)->alua_type == SPC3_ALUA_EMULATED) {
tg_pt_gp_mem = core_alua_allocate_tg_pt_gp_mem(port);
if (IS_ERR(tg_pt_gp_mem) || !tg_pt_gp_mem) {
printk(KERN_ERR "Unable to allocate t10_alua_tg_pt"
"_gp_member_t\n");
return;
}
spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
__core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem,
T10_ALUA(su_dev)->default_tg_pt_gp);
spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
printk(KERN_INFO "%s/%s: Adding to default ALUA Target Port"
" Group: alua/default_tg_pt_gp\n",
TRANSPORT(dev)->name, TPG_TFO(tpg)->get_fabric_name());
}
dev->dev_port_count++;
port->sep_index = port->sep_rtpi; /* RELATIVE TARGET PORT IDENTIFER */
}
/*
* Called with struct se_device->se_port_lock spinlock held.
*/
static void core_release_port(struct se_device *dev, struct se_port *port)
__releases(&dev->se_port_lock) __acquires(&dev->se_port_lock)
{
/*
* Wait for any port reference for PR ALL_TG_PT=1 operation
* to complete in __core_scsi3_alloc_registration()
*/
spin_unlock(&dev->se_port_lock);
if (atomic_read(&port->sep_tg_pt_ref_cnt))
cpu_relax();
spin_lock(&dev->se_port_lock);
core_alua_free_tg_pt_gp_mem(port);
list_del(&port->sep_list);
dev->dev_port_count--;
kfree(port);
return;
}
int core_dev_export(
struct se_device *dev,
struct se_portal_group *tpg,
struct se_lun *lun)
{
struct se_port *port;
port = core_alloc_port(dev);
if (!(port))
return -1;
lun->lun_se_dev = dev;
se_dev_start(dev);
atomic_inc(&dev->dev_export_obj.obj_access_count);
core_export_port(dev, tpg, port, lun);
return 0;
}
void core_dev_unexport(
struct se_device *dev,
struct se_portal_group *tpg,
struct se_lun *lun)
{
struct se_port *port = lun->lun_sep;
spin_lock(&lun->lun_sep_lock);
if (lun->lun_se_dev == NULL) {
spin_unlock(&lun->lun_sep_lock);
return;
}
spin_unlock(&lun->lun_sep_lock);
spin_lock(&dev->se_port_lock);
atomic_dec(&dev->dev_export_obj.obj_access_count);
core_release_port(dev, port);
spin_unlock(&dev->se_port_lock);
se_dev_stop(dev);
lun->lun_se_dev = NULL;
}
int transport_core_report_lun_response(struct se_cmd *se_cmd)
{
struct se_dev_entry *deve;
struct se_lun *se_lun;
struct se_session *se_sess = SE_SESS(se_cmd);
struct se_task *se_task;
unsigned char *buf = (unsigned char *)T_TASK(se_cmd)->t_task_buf;
u32 cdb_offset = 0, lun_count = 0, offset = 8, i;
list_for_each_entry(se_task, &T_TASK(se_cmd)->t_task_list, t_list)
break;
if (!(se_task)) {
printk(KERN_ERR "Unable to locate struct se_task for struct se_cmd\n");
return PYX_TRANSPORT_LU_COMM_FAILURE;
}
/*
* If no struct se_session pointer is present, this struct se_cmd is
* coming via a target_core_mod PASSTHROUGH op, and not through
* a $FABRIC_MOD. In that case, report LUN=0 only.
*/
if (!(se_sess)) {
int_to_scsilun(0, (struct scsi_lun *)&buf[offset]);
lun_count = 1;
goto done;
}
spin_lock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
for (i = 0; i < TRANSPORT_MAX_LUNS_PER_TPG; i++) {
deve = &SE_NODE_ACL(se_sess)->device_list[i];
if (!(deve->lun_flags & TRANSPORT_LUNFLAGS_INITIATOR_ACCESS))
continue;
se_lun = deve->se_lun;
/*
* We determine the correct LUN LIST LENGTH even once we
* have reached the initial allocation length.
* See SPC2-R20 7.19.
*/
lun_count++;
if ((cdb_offset + 8) >= se_cmd->data_length)
continue;
int_to_scsilun(deve->mapped_lun, (struct scsi_lun *)&buf[offset]);
offset += 8;
cdb_offset += 8;
}
spin_unlock_irq(&SE_NODE_ACL(se_sess)->device_list_lock);
/*
* See SPC3 r07, page 159.
*/
done:
lun_count *= 8;
buf[0] = ((lun_count >> 24) & 0xff);
buf[1] = ((lun_count >> 16) & 0xff);
buf[2] = ((lun_count >> 8) & 0xff);
buf[3] = (lun_count & 0xff);
return PYX_TRANSPORT_SENT_TO_TRANSPORT;
}
/* se_release_device_for_hba():
*
*
*/
void se_release_device_for_hba(struct se_device *dev)
{
struct se_hba *hba = dev->se_hba;
if ((dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) ||
(dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED) ||
(dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) ||
(dev->dev_status & TRANSPORT_DEVICE_OFFLINE_ACTIVATED) ||
(dev->dev_status & TRANSPORT_DEVICE_OFFLINE_DEACTIVATED))
se_dev_stop(dev);
if (dev->dev_ptr) {
kthread_stop(dev->process_thread);
if (dev->transport->free_device)
dev->transport->free_device(dev->dev_ptr);
}
spin_lock(&hba->device_lock);
list_del(&dev->dev_list);
hba->dev_count--;
spin_unlock(&hba->device_lock);
core_scsi3_free_all_registrations(dev);
se_release_vpd_for_dev(dev);
kfree(dev->dev_status_queue_obj);
kfree(dev->dev_queue_obj);
kfree(dev);
return;
}
void se_release_vpd_for_dev(struct se_device *dev)
{
struct t10_vpd *vpd, *vpd_tmp;
spin_lock(&DEV_T10_WWN(dev)->t10_vpd_lock);
list_for_each_entry_safe(vpd, vpd_tmp,
&DEV_T10_WWN(dev)->t10_vpd_list, vpd_list) {
list_del(&vpd->vpd_list);
kfree(vpd);
}
spin_unlock(&DEV_T10_WWN(dev)->t10_vpd_lock);
return;
}
/* se_free_virtual_device():
*
* Used for IBLOCK, RAMDISK, and FILEIO Transport Drivers.
*/
int se_free_virtual_device(struct se_device *dev, struct se_hba *hba)
{
if (!list_empty(&dev->dev_sep_list))
dump_stack();
core_alua_free_lu_gp_mem(dev);
se_release_device_for_hba(dev);
return 0;
}
static void se_dev_start(struct se_device *dev)
{
struct se_hba *hba = dev->se_hba;
spin_lock(&hba->device_lock);
atomic_inc(&dev->dev_obj.obj_access_count);
if (atomic_read(&dev->dev_obj.obj_access_count) == 1) {
if (dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED) {
dev->dev_status &= ~TRANSPORT_DEVICE_DEACTIVATED;
dev->dev_status |= TRANSPORT_DEVICE_ACTIVATED;
} else if (dev->dev_status &
TRANSPORT_DEVICE_OFFLINE_DEACTIVATED) {
dev->dev_status &=
~TRANSPORT_DEVICE_OFFLINE_DEACTIVATED;
dev->dev_status |= TRANSPORT_DEVICE_OFFLINE_ACTIVATED;
}
}
spin_unlock(&hba->device_lock);
}
static void se_dev_stop(struct se_device *dev)
{
struct se_hba *hba = dev->se_hba;
spin_lock(&hba->device_lock);
atomic_dec(&dev->dev_obj.obj_access_count);
if (atomic_read(&dev->dev_obj.obj_access_count) == 0) {
if (dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) {
dev->dev_status &= ~TRANSPORT_DEVICE_ACTIVATED;
dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
} else if (dev->dev_status &
TRANSPORT_DEVICE_OFFLINE_ACTIVATED) {
dev->dev_status &= ~TRANSPORT_DEVICE_OFFLINE_ACTIVATED;
dev->dev_status |= TRANSPORT_DEVICE_OFFLINE_DEACTIVATED;
}
}
spin_unlock(&hba->device_lock);
}
int se_dev_check_online(struct se_device *dev)
{
int ret;
spin_lock_irq(&dev->dev_status_lock);
ret = ((dev->dev_status & TRANSPORT_DEVICE_ACTIVATED) ||
(dev->dev_status & TRANSPORT_DEVICE_DEACTIVATED)) ? 0 : 1;
spin_unlock_irq(&dev->dev_status_lock);
return ret;
}
int se_dev_check_shutdown(struct se_device *dev)
{
int ret;
spin_lock_irq(&dev->dev_status_lock);
ret = (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN);
spin_unlock_irq(&dev->dev_status_lock);
return ret;
}
void se_dev_set_default_attribs(
struct se_device *dev,
struct se_dev_limits *dev_limits)
{
struct queue_limits *limits = &dev_limits->limits;
DEV_ATTRIB(dev)->emulate_dpo = DA_EMULATE_DPO;
DEV_ATTRIB(dev)->emulate_fua_write = DA_EMULATE_FUA_WRITE;
DEV_ATTRIB(dev)->emulate_fua_read = DA_EMULATE_FUA_READ;
DEV_ATTRIB(dev)->emulate_write_cache = DA_EMULATE_WRITE_CACHE;
DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl = DA_EMULATE_UA_INTLLCK_CTRL;
DEV_ATTRIB(dev)->emulate_tas = DA_EMULATE_TAS;
DEV_ATTRIB(dev)->emulate_tpu = DA_EMULATE_TPU;
DEV_ATTRIB(dev)->emulate_tpws = DA_EMULATE_TPWS;
DEV_ATTRIB(dev)->emulate_reservations = DA_EMULATE_RESERVATIONS;
DEV_ATTRIB(dev)->emulate_alua = DA_EMULATE_ALUA;
DEV_ATTRIB(dev)->enforce_pr_isids = DA_ENFORCE_PR_ISIDS;
/*
* The TPU=1 and TPWS=1 settings will be set in TCM/IBLOCK
* iblock_create_virtdevice() from struct queue_limits values
* if blk_queue_discard()==1
*/
DEV_ATTRIB(dev)->max_unmap_lba_count = DA_MAX_UNMAP_LBA_COUNT;
DEV_ATTRIB(dev)->max_unmap_block_desc_count =
DA_MAX_UNMAP_BLOCK_DESC_COUNT;
DEV_ATTRIB(dev)->unmap_granularity = DA_UNMAP_GRANULARITY_DEFAULT;
DEV_ATTRIB(dev)->unmap_granularity_alignment =
DA_UNMAP_GRANULARITY_ALIGNMENT_DEFAULT;
/*
* block_size is based on subsystem plugin dependent requirements.
*/
DEV_ATTRIB(dev)->hw_block_size = limits->logical_block_size;
DEV_ATTRIB(dev)->block_size = limits->logical_block_size;
/*
* max_sectors is based on subsystem plugin dependent requirements.
*/
DEV_ATTRIB(dev)->hw_max_sectors = limits->max_hw_sectors;
DEV_ATTRIB(dev)->max_sectors = limits->max_sectors;
/*
* Set optimal_sectors from max_sectors, which can be lowered via
* configfs.
*/
DEV_ATTRIB(dev)->optimal_sectors = limits->max_sectors;
/*
* queue_depth is based on subsystem plugin dependent requirements.
*/
DEV_ATTRIB(dev)->hw_queue_depth = dev_limits->hw_queue_depth;
DEV_ATTRIB(dev)->queue_depth = dev_limits->queue_depth;
}
int se_dev_set_task_timeout(struct se_device *dev, u32 task_timeout)
{
if (task_timeout > DA_TASK_TIMEOUT_MAX) {
printk(KERN_ERR "dev[%p]: Passed task_timeout: %u larger then"
" DA_TASK_TIMEOUT_MAX\n", dev, task_timeout);
return -1;
} else {
DEV_ATTRIB(dev)->task_timeout = task_timeout;
printk(KERN_INFO "dev[%p]: Set SE Device task_timeout: %u\n",
dev, task_timeout);
}
return 0;
}
int se_dev_set_max_unmap_lba_count(
struct se_device *dev,
u32 max_unmap_lba_count)
{
DEV_ATTRIB(dev)->max_unmap_lba_count = max_unmap_lba_count;
printk(KERN_INFO "dev[%p]: Set max_unmap_lba_count: %u\n",
dev, DEV_ATTRIB(dev)->max_unmap_lba_count);
return 0;
}
int se_dev_set_max_unmap_block_desc_count(
struct se_device *dev,
u32 max_unmap_block_desc_count)
{
DEV_ATTRIB(dev)->max_unmap_block_desc_count = max_unmap_block_desc_count;
printk(KERN_INFO "dev[%p]: Set max_unmap_block_desc_count: %u\n",
dev, DEV_ATTRIB(dev)->max_unmap_block_desc_count);
return 0;
}
int se_dev_set_unmap_granularity(
struct se_device *dev,
u32 unmap_granularity)
{
DEV_ATTRIB(dev)->unmap_granularity = unmap_granularity;
printk(KERN_INFO "dev[%p]: Set unmap_granularity: %u\n",
dev, DEV_ATTRIB(dev)->unmap_granularity);
return 0;
}
int se_dev_set_unmap_granularity_alignment(
struct se_device *dev,
u32 unmap_granularity_alignment)
{
DEV_ATTRIB(dev)->unmap_granularity_alignment = unmap_granularity_alignment;
printk(KERN_INFO "dev[%p]: Set unmap_granularity_alignment: %u\n",
dev, DEV_ATTRIB(dev)->unmap_granularity_alignment);
return 0;
}
int se_dev_set_emulate_dpo(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
if (TRANSPORT(dev)->dpo_emulated == NULL) {
printk(KERN_ERR "TRANSPORT(dev)->dpo_emulated is NULL\n");
return -1;
}
if (TRANSPORT(dev)->dpo_emulated(dev) == 0) {
printk(KERN_ERR "TRANSPORT(dev)->dpo_emulated not supported\n");
return -1;
}
DEV_ATTRIB(dev)->emulate_dpo = flag;
printk(KERN_INFO "dev[%p]: SE Device Page Out (DPO) Emulation"
" bit: %d\n", dev, DEV_ATTRIB(dev)->emulate_dpo);
return 0;
}
int se_dev_set_emulate_fua_write(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
if (TRANSPORT(dev)->fua_write_emulated == NULL) {
printk(KERN_ERR "TRANSPORT(dev)->fua_write_emulated is NULL\n");
return -1;
}
if (TRANSPORT(dev)->fua_write_emulated(dev) == 0) {
printk(KERN_ERR "TRANSPORT(dev)->fua_write_emulated not supported\n");
return -1;
}
DEV_ATTRIB(dev)->emulate_fua_write = flag;
printk(KERN_INFO "dev[%p]: SE Device Forced Unit Access WRITEs: %d\n",
dev, DEV_ATTRIB(dev)->emulate_fua_write);
return 0;
}
int se_dev_set_emulate_fua_read(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
if (TRANSPORT(dev)->fua_read_emulated == NULL) {
printk(KERN_ERR "TRANSPORT(dev)->fua_read_emulated is NULL\n");
return -1;
}
if (TRANSPORT(dev)->fua_read_emulated(dev) == 0) {
printk(KERN_ERR "TRANSPORT(dev)->fua_read_emulated not supported\n");
return -1;
}
DEV_ATTRIB(dev)->emulate_fua_read = flag;
printk(KERN_INFO "dev[%p]: SE Device Forced Unit Access READs: %d\n",
dev, DEV_ATTRIB(dev)->emulate_fua_read);
return 0;
}
int se_dev_set_emulate_write_cache(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
if (TRANSPORT(dev)->write_cache_emulated == NULL) {
printk(KERN_ERR "TRANSPORT(dev)->write_cache_emulated is NULL\n");
return -1;
}
if (TRANSPORT(dev)->write_cache_emulated(dev) == 0) {
printk(KERN_ERR "TRANSPORT(dev)->write_cache_emulated not supported\n");
return -1;
}
DEV_ATTRIB(dev)->emulate_write_cache = flag;
printk(KERN_INFO "dev[%p]: SE Device WRITE_CACHE_EMULATION flag: %d\n",
dev, DEV_ATTRIB(dev)->emulate_write_cache);
return 0;
}
int se_dev_set_emulate_ua_intlck_ctrl(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1) && (flag != 2)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
printk(KERN_ERR "dev[%p]: Unable to change SE Device"
" UA_INTRLCK_CTRL while dev_export_obj: %d count"
" exists\n", dev,
atomic_read(&dev->dev_export_obj.obj_access_count));
return -1;
}
DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl = flag;
printk(KERN_INFO "dev[%p]: SE Device UA_INTRLCK_CTRL flag: %d\n",
dev, DEV_ATTRIB(dev)->emulate_ua_intlck_ctrl);
return 0;
}
int se_dev_set_emulate_tas(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
printk(KERN_ERR "dev[%p]: Unable to change SE Device TAS while"
" dev_export_obj: %d count exists\n", dev,
atomic_read(&dev->dev_export_obj.obj_access_count));
return -1;
}
DEV_ATTRIB(dev)->emulate_tas = flag;
printk(KERN_INFO "dev[%p]: SE Device TASK_ABORTED status bit: %s\n",
dev, (DEV_ATTRIB(dev)->emulate_tas) ? "Enabled" : "Disabled");
return 0;
}
int se_dev_set_emulate_tpu(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
/*
* We expect this value to be non-zero when generic Block Layer
* Discard supported is detected iblock_create_virtdevice().
*/
if (!(DEV_ATTRIB(dev)->max_unmap_block_desc_count)) {
printk(KERN_ERR "Generic Block Discard not supported\n");
return -ENOSYS;
}
DEV_ATTRIB(dev)->emulate_tpu = flag;
printk(KERN_INFO "dev[%p]: SE Device Thin Provisioning UNMAP bit: %d\n",
dev, flag);
return 0;
}
int se_dev_set_emulate_tpws(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
/*
* We expect this value to be non-zero when generic Block Layer
* Discard supported is detected iblock_create_virtdevice().
*/
if (!(DEV_ATTRIB(dev)->max_unmap_block_desc_count)) {
printk(KERN_ERR "Generic Block Discard not supported\n");
return -ENOSYS;
}
DEV_ATTRIB(dev)->emulate_tpws = flag;
printk(KERN_INFO "dev[%p]: SE Device Thin Provisioning WRITE_SAME: %d\n",
dev, flag);
return 0;
}
int se_dev_set_enforce_pr_isids(struct se_device *dev, int flag)
{
if ((flag != 0) && (flag != 1)) {
printk(KERN_ERR "Illegal value %d\n", flag);
return -1;
}
DEV_ATTRIB(dev)->enforce_pr_isids = flag;
printk(KERN_INFO "dev[%p]: SE Device enforce_pr_isids bit: %s\n", dev,
(DEV_ATTRIB(dev)->enforce_pr_isids) ? "Enabled" : "Disabled");
return 0;
}
/*
* Note, this can only be called on unexported SE Device Object.
*/
int se_dev_set_queue_depth(struct se_device *dev, u32 queue_depth)
{
u32 orig_queue_depth = dev->queue_depth;
if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
printk(KERN_ERR "dev[%p]: Unable to change SE Device TCQ while"
" dev_export_obj: %d count exists\n", dev,
atomic_read(&dev->dev_export_obj.obj_access_count));
return -1;
}
if (!(queue_depth)) {
printk(KERN_ERR "dev[%p]: Illegal ZERO value for queue"
"_depth\n", dev);
return -1;
}
if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
if (queue_depth > DEV_ATTRIB(dev)->hw_queue_depth) {
printk(KERN_ERR "dev[%p]: Passed queue_depth: %u"
" exceeds TCM/SE_Device TCQ: %u\n",
dev, queue_depth,
DEV_ATTRIB(dev)->hw_queue_depth);
return -1;
}
} else {
if (queue_depth > DEV_ATTRIB(dev)->queue_depth) {
if (queue_depth > DEV_ATTRIB(dev)->hw_queue_depth) {
printk(KERN_ERR "dev[%p]: Passed queue_depth:"
" %u exceeds TCM/SE_Device MAX"
" TCQ: %u\n", dev, queue_depth,
DEV_ATTRIB(dev)->hw_queue_depth);
return -1;
}
}
}
DEV_ATTRIB(dev)->queue_depth = dev->queue_depth = queue_depth;
if (queue_depth > orig_queue_depth)
atomic_add(queue_depth - orig_queue_depth, &dev->depth_left);
else if (queue_depth < orig_queue_depth)
atomic_sub(orig_queue_depth - queue_depth, &dev->depth_left);
printk(KERN_INFO "dev[%p]: SE Device TCQ Depth changed to: %u\n",
dev, queue_depth);
return 0;
}
int se_dev_set_max_sectors(struct se_device *dev, u32 max_sectors)
{
int force = 0; /* Force setting for VDEVS */
if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
printk(KERN_ERR "dev[%p]: Unable to change SE Device"
" max_sectors while dev_export_obj: %d count exists\n",
dev, atomic_read(&dev->dev_export_obj.obj_access_count));
return -1;
}
if (!(max_sectors)) {
printk(KERN_ERR "dev[%p]: Illegal ZERO value for"
" max_sectors\n", dev);
return -1;
}
if (max_sectors < DA_STATUS_MAX_SECTORS_MIN) {
printk(KERN_ERR "dev[%p]: Passed max_sectors: %u less than"
" DA_STATUS_MAX_SECTORS_MIN: %u\n", dev, max_sectors,
DA_STATUS_MAX_SECTORS_MIN);
return -1;
}
if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
if (max_sectors > DEV_ATTRIB(dev)->hw_max_sectors) {
printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
" greater than TCM/SE_Device max_sectors:"
" %u\n", dev, max_sectors,
DEV_ATTRIB(dev)->hw_max_sectors);
return -1;
}
} else {
if (!(force) && (max_sectors >
DEV_ATTRIB(dev)->hw_max_sectors)) {
printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
" greater than TCM/SE_Device max_sectors"
": %u, use force=1 to override.\n", dev,
max_sectors, DEV_ATTRIB(dev)->hw_max_sectors);
return -1;
}
if (max_sectors > DA_STATUS_MAX_SECTORS_MAX) {
printk(KERN_ERR "dev[%p]: Passed max_sectors: %u"
" greater than DA_STATUS_MAX_SECTORS_MAX:"
" %u\n", dev, max_sectors,
DA_STATUS_MAX_SECTORS_MAX);
return -1;
}
}
DEV_ATTRIB(dev)->max_sectors = max_sectors;
printk("dev[%p]: SE Device max_sectors changed to %u\n",
dev, max_sectors);
return 0;
}
int se_dev_set_optimal_sectors(struct se_device *dev, u32 optimal_sectors)
{
if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
printk(KERN_ERR "dev[%p]: Unable to change SE Device"
" optimal_sectors while dev_export_obj: %d count exists\n",
dev, atomic_read(&dev->dev_export_obj.obj_access_count));
return -EINVAL;
}
if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
printk(KERN_ERR "dev[%p]: Passed optimal_sectors cannot be"
" changed for TCM/pSCSI\n", dev);
return -EINVAL;
}
if (optimal_sectors > DEV_ATTRIB(dev)->max_sectors) {
printk(KERN_ERR "dev[%p]: Passed optimal_sectors %u cannot be"
" greater than max_sectors: %u\n", dev,
optimal_sectors, DEV_ATTRIB(dev)->max_sectors);
return -EINVAL;
}
DEV_ATTRIB(dev)->optimal_sectors = optimal_sectors;
printk(KERN_INFO "dev[%p]: SE Device optimal_sectors changed to %u\n",
dev, optimal_sectors);
return 0;
}
int se_dev_set_block_size(struct se_device *dev, u32 block_size)
{
if (atomic_read(&dev->dev_export_obj.obj_access_count)) {
printk(KERN_ERR "dev[%p]: Unable to change SE Device block_size"
" while dev_export_obj: %d count exists\n", dev,
atomic_read(&dev->dev_export_obj.obj_access_count));
return -1;
}
if ((block_size != 512) &&
(block_size != 1024) &&
(block_size != 2048) &&
(block_size != 4096)) {
printk(KERN_ERR "dev[%p]: Illegal value for block_device: %u"
" for SE device, must be 512, 1024, 2048 or 4096\n",
dev, block_size);
return -1;
}
if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
printk(KERN_ERR "dev[%p]: Not allowed to change block_size for"
" Physical Device, use for Linux/SCSI to change"
" block_size for underlying hardware\n", dev);
return -1;
}
DEV_ATTRIB(dev)->block_size = block_size;
printk(KERN_INFO "dev[%p]: SE Device block_size changed to %u\n",
dev, block_size);
return 0;
}
struct se_lun *core_dev_add_lun(
struct se_portal_group *tpg,
struct se_hba *hba,
struct se_device *dev,
u32 lun)
{
struct se_lun *lun_p;
u32 lun_access = 0;
if (atomic_read(&dev->dev_access_obj.obj_access_count) != 0) {
printk(KERN_ERR "Unable to export struct se_device while dev_access_obj: %d\n",
atomic_read(&dev->dev_access_obj.obj_access_count));
return NULL;
}
lun_p = core_tpg_pre_addlun(tpg, lun);
if ((IS_ERR(lun_p)) || !(lun_p))
return NULL;
if (dev->dev_flags & DF_READ_ONLY)
lun_access = TRANSPORT_LUNFLAGS_READ_ONLY;
else
lun_access = TRANSPORT_LUNFLAGS_READ_WRITE;
if (core_tpg_post_addlun(tpg, lun_p, lun_access, dev) < 0)
return NULL;
printk(KERN_INFO "%s_TPG[%u]_LUN[%u] - Activated %s Logical Unit from"
" CORE HBA: %u\n", TPG_TFO(tpg)->get_fabric_name(),
TPG_TFO(tpg)->tpg_get_tag(tpg), lun_p->unpacked_lun,
TPG_TFO(tpg)->get_fabric_name(), hba->hba_id);
/*
* Update LUN maps for dynamically added initiators when
* generate_node_acl is enabled.
*/
if (TPG_TFO(tpg)->tpg_check_demo_mode(tpg)) {
struct se_node_acl *acl;
spin_lock_bh(&tpg->acl_node_lock);
list_for_each_entry(acl, &tpg->acl_node_list, acl_list) {
if (acl->dynamic_node_acl) {
spin_unlock_bh(&tpg->acl_node_lock);
core_tpg_add_node_to_devs(acl, tpg);
spin_lock_bh(&tpg->acl_node_lock);
}
}
spin_unlock_bh(&tpg->acl_node_lock);
}
return lun_p;
}
/* core_dev_del_lun():
*
*
*/
int core_dev_del_lun(
struct se_portal_group *tpg,
u32 unpacked_lun)
{
struct se_lun *lun;
int ret = 0;
lun = core_tpg_pre_dellun(tpg, unpacked_lun, &ret);
if (!(lun))
return ret;
core_tpg_post_dellun(tpg, lun);
printk(KERN_INFO "%s_TPG[%u]_LUN[%u] - Deactivated %s Logical Unit from"
" device object\n", TPG_TFO(tpg)->get_fabric_name(),
TPG_TFO(tpg)->tpg_get_tag(tpg), unpacked_lun,
TPG_TFO(tpg)->get_fabric_name());
return 0;
}
struct se_lun *core_get_lun_from_tpg(struct se_portal_group *tpg, u32 unpacked_lun)
{
struct se_lun *lun;
spin_lock(&tpg->tpg_lun_lock);
if (unpacked_lun > (TRANSPORT_MAX_LUNS_PER_TPG-1)) {
printk(KERN_ERR "%s LUN: %u exceeds TRANSPORT_MAX_LUNS"
"_PER_TPG-1: %u for Target Portal Group: %hu\n",
TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
TRANSPORT_MAX_LUNS_PER_TPG-1,
TPG_TFO(tpg)->tpg_get_tag(tpg));
spin_unlock(&tpg->tpg_lun_lock);
return NULL;
}
lun = &tpg->tpg_lun_list[unpacked_lun];
if (lun->lun_status != TRANSPORT_LUN_STATUS_FREE) {
printk(KERN_ERR "%s Logical Unit Number: %u is not free on"
" Target Portal Group: %hu, ignoring request.\n",
TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
TPG_TFO(tpg)->tpg_get_tag(tpg));
spin_unlock(&tpg->tpg_lun_lock);
return NULL;
}
spin_unlock(&tpg->tpg_lun_lock);
return lun;
}
/* core_dev_get_lun():
*
*
*/
static struct se_lun *core_dev_get_lun(struct se_portal_group *tpg, u32 unpacked_lun)
{
struct se_lun *lun;
spin_lock(&tpg->tpg_lun_lock);
if (unpacked_lun > (TRANSPORT_MAX_LUNS_PER_TPG-1)) {
printk(KERN_ERR "%s LUN: %u exceeds TRANSPORT_MAX_LUNS_PER"
"_TPG-1: %u for Target Portal Group: %hu\n",
TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
TRANSPORT_MAX_LUNS_PER_TPG-1,
TPG_TFO(tpg)->tpg_get_tag(tpg));
spin_unlock(&tpg->tpg_lun_lock);
return NULL;
}
lun = &tpg->tpg_lun_list[unpacked_lun];
if (lun->lun_status != TRANSPORT_LUN_STATUS_ACTIVE) {
printk(KERN_ERR "%s Logical Unit Number: %u is not active on"
" Target Portal Group: %hu, ignoring request.\n",
TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
TPG_TFO(tpg)->tpg_get_tag(tpg));
spin_unlock(&tpg->tpg_lun_lock);
return NULL;
}
spin_unlock(&tpg->tpg_lun_lock);
return lun;
}
struct se_lun_acl *core_dev_init_initiator_node_lun_acl(
struct se_portal_group *tpg,
u32 mapped_lun,
char *initiatorname,
int *ret)
{
struct se_lun_acl *lacl;
struct se_node_acl *nacl;
if (strlen(initiatorname) >= TRANSPORT_IQN_LEN) {
printk(KERN_ERR "%s InitiatorName exceeds maximum size.\n",
TPG_TFO(tpg)->get_fabric_name());
*ret = -EOVERFLOW;
return NULL;
}
nacl = core_tpg_get_initiator_node_acl(tpg, initiatorname);
if (!(nacl)) {
*ret = -EINVAL;
return NULL;
}
lacl = kzalloc(sizeof(struct se_lun_acl), GFP_KERNEL);
if (!(lacl)) {
printk(KERN_ERR "Unable to allocate memory for struct se_lun_acl.\n");
*ret = -ENOMEM;
return NULL;
}
INIT_LIST_HEAD(&lacl->lacl_list);
lacl->mapped_lun = mapped_lun;
lacl->se_lun_nacl = nacl;
snprintf(lacl->initiatorname, TRANSPORT_IQN_LEN, "%s", initiatorname);
return lacl;
}
int core_dev_add_initiator_node_lun_acl(
struct se_portal_group *tpg,
struct se_lun_acl *lacl,
u32 unpacked_lun,
u32 lun_access)
{
struct se_lun *lun;
struct se_node_acl *nacl;
lun = core_dev_get_lun(tpg, unpacked_lun);
if (!(lun)) {
printk(KERN_ERR "%s Logical Unit Number: %u is not active on"
" Target Portal Group: %hu, ignoring request.\n",
TPG_TFO(tpg)->get_fabric_name(), unpacked_lun,
TPG_TFO(tpg)->tpg_get_tag(tpg));
return -EINVAL;
}
nacl = lacl->se_lun_nacl;
if (!(nacl))
return -EINVAL;
if ((lun->lun_access & TRANSPORT_LUNFLAGS_READ_ONLY) &&
(lun_access & TRANSPORT_LUNFLAGS_READ_WRITE))
lun_access = TRANSPORT_LUNFLAGS_READ_ONLY;
lacl->se_lun = lun;
if (core_update_device_list_for_node(lun, lacl, lacl->mapped_lun,
lun_access, nacl, tpg, 1) < 0)
return -EINVAL;
spin_lock(&lun->lun_acl_lock);
list_add_tail(&lacl->lacl_list, &lun->lun_acl_list);
atomic_inc(&lun->lun_acl_count);
smp_mb__after_atomic_inc();
spin_unlock(&lun->lun_acl_lock);
printk(KERN_INFO "%s_TPG[%hu]_LUN[%u->%u] - Added %s ACL for "
" InitiatorNode: %s\n", TPG_TFO(tpg)->get_fabric_name(),
TPG_TFO(tpg)->tpg_get_tag(tpg), unpacked_lun, lacl->mapped_lun,
(lun_access & TRANSPORT_LUNFLAGS_READ_WRITE) ? "RW" : "RO",
lacl->initiatorname);
/*
* Check to see if there are any existing persistent reservation APTPL
* pre-registrations that need to be enabled for this LUN ACL..
*/
core_scsi3_check_aptpl_registration(lun->lun_se_dev, tpg, lun, lacl);
return 0;
}
/* core_dev_del_initiator_node_lun_acl():
*
*
*/
int core_dev_del_initiator_node_lun_acl(
struct se_portal_group *tpg,
struct se_lun *lun,
struct se_lun_acl *lacl)
{
struct se_node_acl *nacl;
nacl = lacl->se_lun_nacl;
if (!(nacl))
return -EINVAL;
spin_lock(&lun->lun_acl_lock);
list_del(&lacl->lacl_list);
atomic_dec(&lun->lun_acl_count);
smp_mb__after_atomic_dec();
spin_unlock(&lun->lun_acl_lock);
core_update_device_list_for_node(lun, NULL, lacl->mapped_lun,
TRANSPORT_LUNFLAGS_NO_ACCESS, nacl, tpg, 0);
lacl->se_lun = NULL;
printk(KERN_INFO "%s_TPG[%hu]_LUN[%u] - Removed ACL for"
" InitiatorNode: %s Mapped LUN: %u\n",
TPG_TFO(tpg)->get_fabric_name(),
TPG_TFO(tpg)->tpg_get_tag(tpg), lun->unpacked_lun,
lacl->initiatorname, lacl->mapped_lun);
return 0;
}
void core_dev_free_initiator_node_lun_acl(
struct se_portal_group *tpg,
struct se_lun_acl *lacl)
{
printk("%s_TPG[%hu] - Freeing ACL for %s InitiatorNode: %s"
" Mapped LUN: %u\n", TPG_TFO(tpg)->get_fabric_name(),
TPG_TFO(tpg)->tpg_get_tag(tpg),
TPG_TFO(tpg)->get_fabric_name(),
lacl->initiatorname, lacl->mapped_lun);
kfree(lacl);
}
int core_dev_setup_virtual_lun0(void)
{
struct se_hba *hba;
struct se_device *dev;
struct se_subsystem_dev *se_dev = NULL;
struct se_subsystem_api *t;
char buf[16];
int ret;
hba = core_alloc_hba("rd_dr", 0, HBA_FLAGS_INTERNAL_USE);
if (IS_ERR(hba))
return PTR_ERR(hba);
se_global->g_lun0_hba = hba;
t = hba->transport;
se_dev = kzalloc(sizeof(struct se_subsystem_dev), GFP_KERNEL);
if (!(se_dev)) {
printk(KERN_ERR "Unable to allocate memory for"
" struct se_subsystem_dev\n");
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&se_dev->g_se_dev_list);
INIT_LIST_HEAD(&se_dev->t10_wwn.t10_vpd_list);
spin_lock_init(&se_dev->t10_wwn.t10_vpd_lock);
INIT_LIST_HEAD(&se_dev->t10_reservation.registration_list);
INIT_LIST_HEAD(&se_dev->t10_reservation.aptpl_reg_list);
spin_lock_init(&se_dev->t10_reservation.registration_lock);
spin_lock_init(&se_dev->t10_reservation.aptpl_reg_lock);
INIT_LIST_HEAD(&se_dev->t10_alua.tg_pt_gps_list);
spin_lock_init(&se_dev->t10_alua.tg_pt_gps_lock);
spin_lock_init(&se_dev->se_dev_lock);
se_dev->t10_reservation.pr_aptpl_buf_len = PR_APTPL_BUF_LEN;
se_dev->t10_wwn.t10_sub_dev = se_dev;
se_dev->t10_alua.t10_sub_dev = se_dev;
se_dev->se_dev_attrib.da_sub_dev = se_dev;
se_dev->se_dev_hba = hba;
se_dev->se_dev_su_ptr = t->allocate_virtdevice(hba, "virt_lun0");
if (!(se_dev->se_dev_su_ptr)) {
printk(KERN_ERR "Unable to locate subsystem dependent pointer"
" from allocate_virtdevice()\n");
ret = -ENOMEM;
goto out;
}
se_global->g_lun0_su_dev = se_dev;
memset(buf, 0, 16);
sprintf(buf, "rd_pages=8");
t->set_configfs_dev_params(hba, se_dev, buf, sizeof(buf));
dev = t->create_virtdevice(hba, se_dev, se_dev->se_dev_su_ptr);
if (!(dev) || IS_ERR(dev)) {
ret = -ENOMEM;
goto out;
}
se_dev->se_dev_ptr = dev;
se_global->g_lun0_dev = dev;
return 0;
out:
se_global->g_lun0_su_dev = NULL;
kfree(se_dev);
if (se_global->g_lun0_hba) {
core_delete_hba(se_global->g_lun0_hba);
se_global->g_lun0_hba = NULL;
}
return ret;
}
void core_dev_release_virtual_lun0(void)
{
struct se_hba *hba = se_global->g_lun0_hba;
struct se_subsystem_dev *su_dev = se_global->g_lun0_su_dev;
if (!(hba))
return;
if (se_global->g_lun0_dev)
se_free_virtual_device(se_global->g_lun0_dev, hba);
kfree(su_dev);
core_delete_hba(hba);
}