kernel-fxtec-pro1x/arch/m32r/mm/fault.c
Sukadev Bhattiprolu f400e198b2 [PATCH] pidspace: is_init()
This is an updated version of Eric Biederman's is_init() patch.
(http://lkml.org/lkml/2006/2/6/280).  It applies cleanly to 2.6.18-rc3 and
replaces a few more instances of ->pid == 1 with is_init().

Further, is_init() checks pid and thus removes dependency on Eric's other
patches for now.

Eric's original description:

	There are a lot of places in the kernel where we test for init
	because we give it special properties.  Most  significantly init
	must not die.  This results in code all over the kernel test
	->pid == 1.

	Introduce is_init to capture this case.

	With multiple pid spaces for all of the cases affected we are
	looking for only the first process on the system, not some other
	process that has pid == 1.

Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: <lxc-devel@lists.sourceforge.net>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:18:12 -07:00

582 lines
15 KiB
C

/*
* linux/arch/m32r/mm/fault.c
*
* Copyright (c) 2001, 2002 Hitoshi Yamamoto, and H. Kondo
* Copyright (c) 2004 Naoto Sugai, NIIBE Yutaka
*
* Some code taken from i386 version.
* Copyright (C) 1995 Linus Torvalds
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h> /* For unblank_screen() */
#include <linux/highmem.h>
#include <linux/module.h>
#include <asm/m32r.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/hardirq.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
extern void die(const char *, struct pt_regs *, long);
#ifndef CONFIG_SMP
asmlinkage unsigned int tlb_entry_i_dat;
asmlinkage unsigned int tlb_entry_d_dat;
#define tlb_entry_i tlb_entry_i_dat
#define tlb_entry_d tlb_entry_d_dat
#else
unsigned int tlb_entry_i_dat[NR_CPUS];
unsigned int tlb_entry_d_dat[NR_CPUS];
#define tlb_entry_i tlb_entry_i_dat[smp_processor_id()]
#define tlb_entry_d tlb_entry_d_dat[smp_processor_id()]
#endif
extern void init_tlb(void);
/*
* Unlock any spinlocks which will prevent us from getting the
* message out
*/
void bust_spinlocks(int yes)
{
int loglevel_save = console_loglevel;
if (yes) {
oops_in_progress = 1;
return;
}
#ifdef CONFIG_VT
unblank_screen();
#endif
oops_in_progress = 0;
/*
* OK, the message is on the console. Now we call printk()
* without oops_in_progress set so that printk will give klogd
* a poke. Hold onto your hats...
*/
console_loglevel = 15; /* NMI oopser may have shut the console up */
printk(" ");
console_loglevel = loglevel_save;
}
/*======================================================================*
* do_page_fault()
*======================================================================*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*
* ARGUMENT:
* regs : M32R SP reg.
* error_code : See below
* address : M32R MMU MDEVA reg. (Operand ACE)
* : M32R BPC reg. (Instruction ACE)
*
* error_code :
* bit 0 == 0 means no page found, 1 means protection fault
* bit 1 == 0 means read, 1 means write
* bit 2 == 0 means kernel, 1 means user-mode
* bit 3 == 0 means data, 1 means instruction
*======================================================================*/
#define ACE_PROTECTION 1
#define ACE_WRITE 2
#define ACE_USERMODE 4
#define ACE_INSTRUCTION 8
asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
struct task_struct *tsk;
struct mm_struct *mm;
struct vm_area_struct * vma;
unsigned long page, addr;
int write;
siginfo_t info;
/*
* If BPSW IE bit enable --> set PSW IE bit
*/
if (regs->psw & M32R_PSW_BIE)
local_irq_enable();
tsk = current;
info.si_code = SEGV_MAPERR;
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*
* This verifies that the fault happens in kernel space
* (error_code & ACE_USERMODE) == 0, and that the fault was not a
* protection error (error_code & ACE_PROTECTION) == 0.
*/
if (address >= TASK_SIZE && !(error_code & ACE_USERMODE))
goto vmalloc_fault;
mm = tsk->mm;
/*
* If we're in an interrupt or have no user context or are running in an
* atomic region then we must not take the fault..
*/
if (in_atomic() || !mm)
goto bad_area_nosemaphore;
/* When running in the kernel we expect faults to occur only to
* addresses in user space. All other faults represent errors in the
* kernel and should generate an OOPS. Unfortunatly, in the case of an
* erroneous fault occurring in a code path which already holds mmap_sem
* we will deadlock attempting to validate the fault against the
* address space. Luckily the kernel only validly references user
* space from well defined areas of code, which are listed in the
* exceptions table.
*
* As the vast majority of faults will be valid we will only perform
* the source reference check when there is a possibilty of a deadlock.
* Attempt to lock the address space, if we cannot we then validate the
* source. If this is invalid we can skip the address space check,
* thus avoiding the deadlock.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if ((error_code & ACE_USERMODE) == 0 &&
!search_exception_tables(regs->psw))
goto bad_area_nosemaphore;
down_read(&mm->mmap_sem);
}
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
if (vma->vm_start <= address)
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
#if 0
if (error_code & ACE_USERMODE) {
/*
* accessing the stack below "spu" is always a bug.
* The "+ 4" is there due to the push instruction
* doing pre-decrement on the stack and that
* doesn't show up until later..
*/
if (address + 4 < regs->spu)
goto bad_area;
}
#endif
if (expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
info.si_code = SEGV_ACCERR;
write = 0;
switch (error_code & (ACE_WRITE|ACE_PROTECTION)) {
default: /* 3: write, present */
/* fall through */
case ACE_WRITE: /* write, not present */
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
write++;
break;
case ACE_PROTECTION: /* read, present */
case 0: /* read, not present */
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
/*
* For instruction access exception, check if the area is executable
*/
if ((error_code & ACE_INSTRUCTION) && !(vma->vm_flags & VM_EXEC))
goto bad_area;
survive:
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
addr = (address & PAGE_MASK);
set_thread_fault_code(error_code);
switch (handle_mm_fault(mm, vma, addr, write)) {
case VM_FAULT_MINOR:
tsk->min_flt++;
break;
case VM_FAULT_MAJOR:
tsk->maj_flt++;
break;
case VM_FAULT_SIGBUS:
goto do_sigbus;
case VM_FAULT_OOM:
goto out_of_memory;
default:
BUG();
}
set_thread_fault_code(0);
up_read(&mm->mmap_sem);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
/* User mode accesses just cause a SIGSEGV */
if (error_code & ACE_USERMODE) {
tsk->thread.address = address;
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
tsk->thread.trap_no = 14;
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* info.si_code has been set above */
info.si_addr = (void __user *)address;
force_sig_info(SIGSEGV, &info, tsk);
return;
}
no_context:
/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))
return;
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice.
*/
bust_spinlocks(1);
if (address < PAGE_SIZE)
printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
else
printk(KERN_ALERT "Unable to handle kernel paging request");
printk(" at virtual address %08lx\n",address);
printk(KERN_ALERT " printing bpc:\n");
printk("%08lx\n", regs->bpc);
page = *(unsigned long *)MPTB;
page = ((unsigned long *) page)[address >> PGDIR_SHIFT];
printk(KERN_ALERT "*pde = %08lx\n", page);
if (page & _PAGE_PRESENT) {
page &= PAGE_MASK;
address &= 0x003ff000;
page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
printk(KERN_ALERT "*pte = %08lx\n", page);
}
die("Oops", regs, error_code);
bust_spinlocks(0);
do_exit(SIGKILL);
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
if (is_init(tsk)) {
yield();
down_read(&mm->mmap_sem);
goto survive;
}
printk("VM: killing process %s\n", tsk->comm);
if (error_code & ACE_USERMODE)
do_exit(SIGKILL);
goto no_context;
do_sigbus:
up_read(&mm->mmap_sem);
/* Kernel mode? Handle exception or die */
if (!(error_code & ACE_USERMODE))
goto no_context;
tsk->thread.address = address;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 14;
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *)address;
force_sig_info(SIGBUS, &info, tsk);
return;
vmalloc_fault:
{
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
*
* Do _not_ use "tsk" here. We might be inside
* an interrupt in the middle of a task switch..
*/
int offset = pgd_index(address);
pgd_t *pgd, *pgd_k;
pmd_t *pmd, *pmd_k;
pte_t *pte_k;
pgd = (pgd_t *)*(unsigned long *)MPTB;
pgd = offset + (pgd_t *)pgd;
pgd_k = init_mm.pgd + offset;
if (!pgd_present(*pgd_k))
goto no_context;
/*
* set_pgd(pgd, *pgd_k); here would be useless on PAE
* and redundant with the set_pmd() on non-PAE.
*/
pmd = pmd_offset(pgd, address);
pmd_k = pmd_offset(pgd_k, address);
if (!pmd_present(*pmd_k))
goto no_context;
set_pmd(pmd, *pmd_k);
pte_k = pte_offset_kernel(pmd_k, address);
if (!pte_present(*pte_k))
goto no_context;
addr = (address & PAGE_MASK) | (error_code & ACE_INSTRUCTION);
update_mmu_cache(NULL, addr, *pte_k);
return;
}
}
/*======================================================================*
* update_mmu_cache()
*======================================================================*/
#define TLB_MASK (NR_TLB_ENTRIES - 1)
#define ITLB_END (unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8))
#define DTLB_END (unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8))
void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr,
pte_t pte)
{
unsigned long *entry1, *entry2;
unsigned long pte_data, flags;
unsigned int *entry_dat;
int inst = get_thread_fault_code() & ACE_INSTRUCTION;
int i;
/* Ptrace may call this routine. */
if (vma && current->active_mm != vma->vm_mm)
return;
local_irq_save(flags);
vaddr = (vaddr & PAGE_MASK) | get_asid();
#ifdef CONFIG_CHIP_OPSP
entry1 = (unsigned long *)ITLB_BASE;
for(i = 0 ; i < NR_TLB_ENTRIES; i++) {
if(*entry1++ == vaddr) {
pte_data = pte_val(pte);
set_tlb_data(entry1, pte_data);
break;
}
entry1++;
}
entry2 = (unsigned long *)DTLB_BASE;
for(i = 0 ; i < NR_TLB_ENTRIES ; i++) {
if(*entry2++ == vaddr) {
pte_data = pte_val(pte);
set_tlb_data(entry2, pte_data);
break;
}
entry2++;
}
local_irq_restore(flags);
return;
#else
pte_data = pte_val(pte);
/*
* Update TLB entries
* entry1: ITLB entry address
* entry2: DTLB entry address
*/
__asm__ __volatile__ (
"seth %0, #high(%4) \n\t"
"st %2, @(%5, %0) \n\t"
"ldi %1, #1 \n\t"
"st %1, @(%6, %0) \n\t"
"add3 r4, %0, %7 \n\t"
".fillinsn \n"
"1: \n\t"
"ld %1, @(%6, %0) \n\t"
"bnez %1, 1b \n\t"
"ld %0, @r4+ \n\t"
"ld %1, @r4 \n\t"
"st %3, @+%0 \n\t"
"st %3, @+%1 \n\t"
: "=&r" (entry1), "=&r" (entry2)
: "r" (vaddr), "r" (pte_data), "i" (MMU_REG_BASE),
"i" (MSVA_offset), "i" (MTOP_offset), "i" (MIDXI_offset)
: "r4", "memory"
);
if ((!inst && entry2 >= DTLB_END) || (inst && entry1 >= ITLB_END))
goto notfound;
found:
local_irq_restore(flags);
return;
/* Valid entry not found */
notfound:
/*
* Update ITLB or DTLB entry
* entry1: TLB entry address
* entry2: TLB base address
*/
if (!inst) {
entry2 = (unsigned long *)DTLB_BASE;
entry_dat = &tlb_entry_d;
} else {
entry2 = (unsigned long *)ITLB_BASE;
entry_dat = &tlb_entry_i;
}
entry1 = entry2 + (((*entry_dat - 1) & TLB_MASK) << 1);
for (i = 0 ; i < NR_TLB_ENTRIES ; i++) {
if (!(entry1[1] & 2)) /* Valid bit check */
break;
if (entry1 != entry2)
entry1 -= 2;
else
entry1 += TLB_MASK << 1;
}
if (i >= NR_TLB_ENTRIES) { /* Empty entry not found */
entry1 = entry2 + (*entry_dat << 1);
*entry_dat = (*entry_dat + 1) & TLB_MASK;
}
*entry1++ = vaddr; /* Set TLB tag */
set_tlb_data(entry1, pte_data);
goto found;
#endif
}
/*======================================================================*
* flush_tlb_page() : flushes one page
*======================================================================*/
void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
if (vma->vm_mm && mm_context(vma->vm_mm) != NO_CONTEXT) {
unsigned long flags;
local_irq_save(flags);
page &= PAGE_MASK;
page |= (mm_context(vma->vm_mm) & MMU_CONTEXT_ASID_MASK);
__flush_tlb_page(page);
local_irq_restore(flags);
}
}
/*======================================================================*
* flush_tlb_range() : flushes a range of pages
*======================================================================*/
void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
struct mm_struct *mm;
mm = vma->vm_mm;
if (mm_context(mm) != NO_CONTEXT) {
unsigned long flags;
int size;
local_irq_save(flags);
size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
if (size > (NR_TLB_ENTRIES / 4)) { /* Too many TLB to flush */
mm_context(mm) = NO_CONTEXT;
if (mm == current->mm)
activate_context(mm);
} else {
unsigned long asid;
asid = mm_context(mm) & MMU_CONTEXT_ASID_MASK;
start &= PAGE_MASK;
end += (PAGE_SIZE - 1);
end &= PAGE_MASK;
start |= asid;
end |= asid;
while (start < end) {
__flush_tlb_page(start);
start += PAGE_SIZE;
}
}
local_irq_restore(flags);
}
}
/*======================================================================*
* flush_tlb_mm() : flushes the specified mm context TLB's
*======================================================================*/
void local_flush_tlb_mm(struct mm_struct *mm)
{
/* Invalidate all TLB of this process. */
/* Instead of invalidating each TLB, we get new MMU context. */
if (mm_context(mm) != NO_CONTEXT) {
unsigned long flags;
local_irq_save(flags);
mm_context(mm) = NO_CONTEXT;
if (mm == current->mm)
activate_context(mm);
local_irq_restore(flags);
}
}
/*======================================================================*
* flush_tlb_all() : flushes all processes TLBs
*======================================================================*/
void local_flush_tlb_all(void)
{
unsigned long flags;
local_irq_save(flags);
__flush_tlb_all();
local_irq_restore(flags);
}
/*======================================================================*
* init_mmu()
*======================================================================*/
void __init init_mmu(void)
{
tlb_entry_i = 0;
tlb_entry_d = 0;
mmu_context_cache = MMU_CONTEXT_FIRST_VERSION;
set_asid(mmu_context_cache & MMU_CONTEXT_ASID_MASK);
*(volatile unsigned long *)MPTB = (unsigned long)swapper_pg_dir;
}