kernel-fxtec-pro1x/net/core/secure_seq.c
David S. Miller 6e5714eaf7 net: Compute protocol sequence numbers and fragment IDs using MD5.
Computers have become a lot faster since we compromised on the
partial MD4 hash which we use currently for performance reasons.

MD5 is a much safer choice, and is inline with both RFC1948 and
other ISS generators (OpenBSD, Solaris, etc.)

Furthermore, only having 24-bits of the sequence number be truly
unpredictable is a very serious limitation.  So the periodic
regeneration and 8-bit counter have been removed.  We compute and
use a full 32-bit sequence number.

For ipv6, DCCP was found to use a 32-bit truncated initial sequence
number (it needs 43-bits) and that is fixed here as well.

Reported-by: Dan Kaminsky <dan@doxpara.com>
Tested-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-06 18:33:19 -07:00

184 lines
4.3 KiB
C

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/cryptohash.h>
#include <linux/module.h>
#include <linux/cache.h>
#include <linux/random.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <linux/string.h>
#include <net/secure_seq.h>
static u32 net_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
static int __init net_secret_init(void)
{
get_random_bytes(net_secret, sizeof(net_secret));
return 0;
}
late_initcall(net_secret_init);
static u32 seq_scale(u32 seq)
{
/*
* As close as possible to RFC 793, which
* suggests using a 250 kHz clock.
* Further reading shows this assumes 2 Mb/s networks.
* For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
* For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
* we also need to limit the resolution so that the u32 seq
* overlaps less than one time per MSL (2 minutes).
* Choosing a clock of 64 ns period is OK. (period of 274 s)
*/
return seq + (ktime_to_ns(ktime_get_real()) >> 6);
}
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport)
{
u32 secret[MD5_MESSAGE_BYTES / 4];
u32 hash[MD5_DIGEST_WORDS];
u32 i;
memcpy(hash, saddr, 16);
for (i = 0; i < 4; i++)
secret[i] = net_secret[i] + daddr[i];
secret[4] = net_secret[4] +
(((__force u16)sport << 16) + (__force u16)dport);
for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
secret[i] = net_secret[i];
md5_transform(hash, secret);
return seq_scale(hash[0]);
}
EXPORT_SYMBOL(secure_tcpv6_sequence_number);
u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
__be16 dport)
{
u32 secret[MD5_MESSAGE_BYTES / 4];
u32 hash[MD5_DIGEST_WORDS];
u32 i;
memcpy(hash, saddr, 16);
for (i = 0; i < 4; i++)
secret[i] = net_secret[i] + (__force u32) daddr[i];
secret[4] = net_secret[4] + (__force u32)dport;
for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
secret[i] = net_secret[i];
md5_transform(hash, secret);
return hash[0];
}
#endif
#ifdef CONFIG_INET
__u32 secure_ip_id(__be32 daddr)
{
u32 hash[MD5_DIGEST_WORDS];
hash[0] = (__force __u32) daddr;
hash[1] = net_secret[13];
hash[2] = net_secret[14];
hash[3] = net_secret[15];
md5_transform(hash, net_secret);
return hash[0];
}
__u32 secure_ipv6_id(const __be32 daddr[4])
{
__u32 hash[4];
memcpy(hash, daddr, 16);
md5_transform(hash, net_secret);
return hash[0];
}
__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport)
{
u32 hash[MD5_DIGEST_WORDS];
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
hash[3] = net_secret[15];
md5_transform(hash, net_secret);
return seq_scale(hash[0]);
}
u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
{
u32 hash[MD5_DIGEST_WORDS];
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = (__force u32)dport ^ net_secret[14];
hash[3] = net_secret[15];
md5_transform(hash, net_secret);
return hash[0];
}
EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
#endif
#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport)
{
u32 hash[MD5_DIGEST_WORDS];
u64 seq;
hash[0] = (__force u32)saddr;
hash[1] = (__force u32)daddr;
hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
hash[3] = net_secret[15];
md5_transform(hash, net_secret);
seq = hash[0] | (((u64)hash[1]) << 32);
seq += ktime_to_ns(ktime_get_real());
seq &= (1ull << 48) - 1;
return seq;
}
EXPORT_SYMBOL(secure_dccp_sequence_number);
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
__be16 sport, __be16 dport)
{
u32 secret[MD5_MESSAGE_BYTES / 4];
u32 hash[MD5_DIGEST_WORDS];
u64 seq;
u32 i;
memcpy(hash, saddr, 16);
for (i = 0; i < 4; i++)
secret[i] = net_secret[i] + daddr[i];
secret[4] = net_secret[4] +
(((__force u16)sport << 16) + (__force u16)dport);
for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
secret[i] = net_secret[i];
md5_transform(hash, secret);
seq = hash[0] | (((u64)hash[1]) << 32);
seq += ktime_to_ns(ktime_get_real());
seq &= (1ull << 48) - 1;
return seq;
}
EXPORT_SYMBOL(secure_dccpv6_sequence_number);
#endif
#endif