kernel-fxtec-pro1x/fs/nfs/nfs4proc.c
Trond Myklebust 2c56617d76 NFSv4: Fix the handling of the error NFS4ERR_OLD_STATEID
Ensure that we retry the failed operation...

 Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2005-11-04 15:33:50 -05:00

3232 lines
86 KiB
C

/*
* fs/nfs/nfs4proc.c
*
* Client-side procedure declarations for NFSv4.
*
* Copyright (c) 2002 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <andros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/mm.h>
#include <linux/utsname.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/sunrpc/clnt.h>
#include <linux/nfs.h>
#include <linux/nfs4.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_page.h>
#include <linux/smp_lock.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include "nfs4_fs.h"
#include "delegation.h"
#define NFSDBG_FACILITY NFSDBG_PROC
#define NFS4_POLL_RETRY_MIN (1*HZ)
#define NFS4_POLL_RETRY_MAX (15*HZ)
static int _nfs4_proc_open_confirm(struct rpc_clnt *clnt, const struct nfs_fh *fh, struct nfs4_state_owner *sp, nfs4_stateid *stateid, struct nfs_seqid *seqid);
static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
extern struct rpc_procinfo nfs4_procedures[];
/* Prevent leaks of NFSv4 errors into userland */
int nfs4_map_errors(int err)
{
if (err < -1000) {
dprintk("%s could not handle NFSv4 error %d\n",
__FUNCTION__, -err);
return -EIO;
}
return err;
}
/*
* This is our standard bitmap for GETATTR requests.
*/
const u32 nfs4_fattr_bitmap[2] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
};
const u32 nfs4_statfs_bitmap[2] = {
FATTR4_WORD0_FILES_AVAIL
| FATTR4_WORD0_FILES_FREE
| FATTR4_WORD0_FILES_TOTAL,
FATTR4_WORD1_SPACE_AVAIL
| FATTR4_WORD1_SPACE_FREE
| FATTR4_WORD1_SPACE_TOTAL
};
const u32 nfs4_pathconf_bitmap[2] = {
FATTR4_WORD0_MAXLINK
| FATTR4_WORD0_MAXNAME,
0
};
const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
| FATTR4_WORD0_MAXREAD
| FATTR4_WORD0_MAXWRITE
| FATTR4_WORD0_LEASE_TIME,
0
};
static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
struct nfs4_readdir_arg *readdir)
{
u32 *start, *p;
BUG_ON(readdir->count < 80);
if (cookie > 2) {
readdir->cookie = cookie;
memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
return;
}
readdir->cookie = 0;
memset(&readdir->verifier, 0, sizeof(readdir->verifier));
if (cookie == 2)
return;
/*
* NFSv4 servers do not return entries for '.' and '..'
* Therefore, we fake these entries here. We let '.'
* have cookie 0 and '..' have cookie 1. Note that
* when talking to the server, we always send cookie 0
* instead of 1 or 2.
*/
start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
if (cookie == 0) {
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_one; /* cookie, second word */
*p++ = xdr_one; /* entry len */
memcpy(p, ".\0\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
*p++ = htonl(8); /* attribute buffer length */
p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
}
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_two; /* cookie, second word */
*p++ = xdr_two; /* entry len */
memcpy(p, "..\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
*p++ = htonl(8); /* attribute buffer length */
p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
readdir->pgbase = (char *)p - (char *)start;
readdir->count -= readdir->pgbase;
kunmap_atomic(start, KM_USER0);
}
static void
renew_lease(struct nfs_server *server, unsigned long timestamp)
{
struct nfs4_client *clp = server->nfs4_state;
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,timestamp))
clp->cl_last_renewal = timestamp;
spin_unlock(&clp->cl_lock);
}
static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo)
{
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
nfsi->cache_validity |= NFS_INO_INVALID_ATTR;
if (cinfo->before == nfsi->change_attr && cinfo->atomic)
nfsi->change_attr = cinfo->after;
spin_unlock(&inode->i_lock);
}
/* Helper for asynchronous RPC calls */
static int nfs4_call_async(struct rpc_clnt *clnt, rpc_action tk_begin,
rpc_action tk_exit, void *calldata)
{
struct rpc_task *task;
if (!(task = rpc_new_task(clnt, tk_exit, RPC_TASK_ASYNC)))
return -ENOMEM;
task->tk_calldata = calldata;
task->tk_action = tk_begin;
rpc_execute(task);
return 0;
}
static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
{
struct inode *inode = state->inode;
open_flags &= (FMODE_READ|FMODE_WRITE);
/* Protect against nfs4_find_state_byowner() */
spin_lock(&state->owner->so_lock);
spin_lock(&inode->i_lock);
memcpy(&state->stateid, stateid, sizeof(state->stateid));
if ((open_flags & FMODE_WRITE))
state->nwriters++;
if (open_flags & FMODE_READ)
state->nreaders++;
nfs4_state_set_mode_locked(state, state->state | open_flags);
spin_unlock(&inode->i_lock);
spin_unlock(&state->owner->so_lock);
}
/*
* OPEN_RECLAIM:
* reclaim state on the server after a reboot.
*/
static int _nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_delegation *delegation = NFS_I(inode)->delegation;
struct nfs_openargs o_arg = {
.fh = NFS_FH(inode),
.id = sp->so_id,
.open_flags = state->state,
.clientid = server->nfs4_state->cl_clientid,
.claim = NFS4_OPEN_CLAIM_PREVIOUS,
.bitmask = server->attr_bitmask,
};
struct nfs_openres o_res = {
.server = server, /* Grrr */
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR],
.rpc_argp = &o_arg,
.rpc_resp = &o_res,
.rpc_cred = sp->so_cred,
};
int status;
if (delegation != NULL) {
if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
memcpy(&state->stateid, &delegation->stateid,
sizeof(state->stateid));
set_bit(NFS_DELEGATED_STATE, &state->flags);
return 0;
}
o_arg.u.delegation_type = delegation->type;
}
o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
if (o_arg.seqid == NULL)
return -ENOMEM;
status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
/* Confirm the sequence as being established */
nfs_confirm_seqid(&sp->so_seqid, status);
nfs_increment_open_seqid(status, o_arg.seqid);
if (status == 0) {
memcpy(&state->stateid, &o_res.stateid, sizeof(state->stateid));
if (o_res.delegation_type != 0) {
nfs_inode_reclaim_delegation(inode, sp->so_cred, &o_res);
/* Did the server issue an immediate delegation recall? */
if (o_res.do_recall)
nfs_async_inode_return_delegation(inode, &o_res.stateid);
}
}
nfs_free_seqid(o_arg.seqid);
clear_bit(NFS_DELEGATED_STATE, &state->flags);
/* Ensure we update the inode attributes */
NFS_CACHEINV(inode);
return status;
}
static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_open_reclaim(sp, state);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
{
struct nfs4_state_owner *sp = state->owner;
struct inode *inode = dentry->d_inode;
struct nfs_server *server = NFS_SERVER(inode);
struct dentry *parent = dget_parent(dentry);
struct nfs_openargs arg = {
.fh = NFS_FH(parent->d_inode),
.clientid = server->nfs4_state->cl_clientid,
.name = &dentry->d_name,
.id = sp->so_id,
.server = server,
.bitmask = server->attr_bitmask,
.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR,
};
struct nfs_openres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = sp->so_cred,
};
int status = 0;
if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
goto out;
if (state->state == 0)
goto out;
arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
status = -ENOMEM;
if (arg.seqid == NULL)
goto out;
arg.open_flags = state->state;
memcpy(arg.u.delegation.data, state->stateid.data, sizeof(arg.u.delegation.data));
status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
nfs_increment_open_seqid(status, arg.seqid);
if (status != 0)
goto out_free;
if(res.rflags & NFS4_OPEN_RESULT_CONFIRM) {
status = _nfs4_proc_open_confirm(server->client, NFS_FH(inode),
sp, &res.stateid, arg.seqid);
if (status != 0)
goto out_free;
}
nfs_confirm_seqid(&sp->so_seqid, 0);
if (status >= 0) {
memcpy(state->stateid.data, res.stateid.data,
sizeof(state->stateid.data));
clear_bit(NFS_DELEGATED_STATE, &state->flags);
}
out_free:
nfs_free_seqid(arg.seqid);
out:
dput(parent);
return status;
}
int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
{
struct nfs4_exception exception = { };
struct nfs_server *server = NFS_SERVER(dentry->d_inode);
int err;
do {
err = _nfs4_open_delegation_recall(dentry, state);
switch (err) {
case 0:
return err;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
/* Don't recall a delegation if it was lost */
nfs4_schedule_state_recovery(server->nfs4_state);
return err;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_open_confirm(struct rpc_clnt *clnt, const struct nfs_fh *fh, struct nfs4_state_owner *sp, nfs4_stateid *stateid, struct nfs_seqid *seqid)
{
struct nfs_open_confirmargs arg = {
.fh = fh,
.seqid = seqid,
.stateid = *stateid,
};
struct nfs_open_confirmres res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = sp->so_cred,
};
int status;
status = rpc_call_sync(clnt, &msg, RPC_TASK_NOINTR);
/* Confirm the sequence as being established */
nfs_confirm_seqid(&sp->so_seqid, status);
nfs_increment_open_seqid(status, seqid);
if (status >= 0)
memcpy(stateid, &res.stateid, sizeof(*stateid));
return status;
}
static int _nfs4_proc_open(struct inode *dir, struct nfs4_state_owner *sp, struct nfs_openargs *o_arg, struct nfs_openres *o_res)
{
struct nfs_server *server = NFS_SERVER(dir);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
.rpc_argp = o_arg,
.rpc_resp = o_res,
.rpc_cred = sp->so_cred,
};
int status;
/* Update sequence id. The caller must serialize! */
o_arg->id = sp->so_id;
o_arg->clientid = sp->so_client->cl_clientid;
status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
if (status == 0) {
/* OPEN on anything except a regular file is disallowed in NFSv4 */
switch (o_res->f_attr->mode & S_IFMT) {
case S_IFREG:
break;
case S_IFLNK:
status = -ELOOP;
break;
case S_IFDIR:
status = -EISDIR;
break;
default:
status = -ENOTDIR;
}
}
nfs_increment_open_seqid(status, o_arg->seqid);
if (status != 0)
goto out;
if (o_arg->open_flags & O_CREAT) {
update_changeattr(dir, &o_res->cinfo);
nfs_post_op_update_inode(dir, o_res->dir_attr);
} else
nfs_refresh_inode(dir, o_res->dir_attr);
if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
status = _nfs4_proc_open_confirm(server->client, &o_res->fh,
sp, &o_res->stateid, o_arg->seqid);
if (status != 0)
goto out;
}
nfs_confirm_seqid(&sp->so_seqid, 0);
if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
status = server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
out:
return status;
}
static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
{
struct nfs_access_entry cache;
int mask = 0;
int status;
if (openflags & FMODE_READ)
mask |= MAY_READ;
if (openflags & FMODE_WRITE)
mask |= MAY_WRITE;
status = nfs_access_get_cached(inode, cred, &cache);
if (status == 0)
goto out;
/* Be clever: ask server to check for all possible rights */
cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
cache.cred = cred;
cache.jiffies = jiffies;
status = _nfs4_proc_access(inode, &cache);
if (status != 0)
return status;
nfs_access_add_cache(inode, &cache);
out:
if ((cache.mask & mask) == mask)
return 0;
return -EACCES;
}
/*
* OPEN_EXPIRED:
* reclaim state on the server after a network partition.
* Assumes caller holds the appropriate lock
*/
static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
{
struct dentry *parent = dget_parent(dentry);
struct inode *dir = parent->d_inode;
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_delegation *delegation = NFS_I(inode)->delegation;
struct nfs_fattr f_attr, dir_attr;
struct nfs_openargs o_arg = {
.fh = NFS_FH(dir),
.open_flags = state->state,
.name = &dentry->d_name,
.bitmask = server->attr_bitmask,
.claim = NFS4_OPEN_CLAIM_NULL,
};
struct nfs_openres o_res = {
.f_attr = &f_attr,
.dir_attr = &dir_attr,
.server = server,
};
int status = 0;
if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
status = _nfs4_do_access(inode, sp->so_cred, state->state);
if (status < 0)
goto out;
memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
set_bit(NFS_DELEGATED_STATE, &state->flags);
goto out;
}
o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
status = -ENOMEM;
if (o_arg.seqid == NULL)
goto out;
nfs_fattr_init(&f_attr);
nfs_fattr_init(&dir_attr);
status = _nfs4_proc_open(dir, sp, &o_arg, &o_res);
if (status != 0)
goto out_nodeleg;
/* Check if files differ */
if ((f_attr.mode & S_IFMT) != (inode->i_mode & S_IFMT))
goto out_stale;
/* Has the file handle changed? */
if (nfs_compare_fh(&o_res.fh, NFS_FH(inode)) != 0) {
/* Verify if the change attributes are the same */
if (f_attr.change_attr != NFS_I(inode)->change_attr)
goto out_stale;
if (nfs_size_to_loff_t(f_attr.size) != inode->i_size)
goto out_stale;
/* Lets just pretend that this is the same file */
nfs_copy_fh(NFS_FH(inode), &o_res.fh);
NFS_I(inode)->fileid = f_attr.fileid;
}
memcpy(&state->stateid, &o_res.stateid, sizeof(state->stateid));
if (o_res.delegation_type != 0) {
if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM))
nfs_inode_set_delegation(inode, sp->so_cred, &o_res);
else
nfs_inode_reclaim_delegation(inode, sp->so_cred, &o_res);
}
out_nodeleg:
nfs_free_seqid(o_arg.seqid);
clear_bit(NFS_DELEGATED_STATE, &state->flags);
out:
dput(parent);
return status;
out_stale:
status = -ESTALE;
/* Invalidate the state owner so we don't ever use it again */
nfs4_drop_state_owner(sp);
d_drop(dentry);
/* Should we be trying to close that stateid? */
goto out_nodeleg;
}
static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
{
struct nfs_server *server = NFS_SERVER(dentry->d_inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_open_expired(sp, state, dentry);
if (err == -NFS4ERR_DELAY)
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_open_context *ctx;
int status;
spin_lock(&state->inode->i_lock);
list_for_each_entry(ctx, &nfsi->open_files, list) {
if (ctx->state != state)
continue;
get_nfs_open_context(ctx);
spin_unlock(&state->inode->i_lock);
status = nfs4_do_open_expired(sp, state, ctx->dentry);
put_nfs_open_context(ctx);
return status;
}
spin_unlock(&state->inode->i_lock);
return -ENOENT;
}
/*
* Returns an nfs4_state + an extra reference to the inode
*/
static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
{
struct nfs_delegation *delegation;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_client *clp = server->nfs4_state;
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs4_state_owner *sp = NULL;
struct nfs4_state *state = NULL;
int open_flags = flags & (FMODE_READ|FMODE_WRITE);
int err;
/* Protect against reboot recovery - NOTE ORDER! */
down_read(&clp->cl_sem);
/* Protect against delegation recall */
down_read(&nfsi->rwsem);
delegation = NFS_I(inode)->delegation;
err = -ENOENT;
if (delegation == NULL || (delegation->type & open_flags) != open_flags)
goto out_err;
err = -ENOMEM;
if (!(sp = nfs4_get_state_owner(server, cred))) {
dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
goto out_err;
}
state = nfs4_get_open_state(inode, sp);
if (state == NULL)
goto out_err;
err = -ENOENT;
if ((state->state & open_flags) == open_flags) {
spin_lock(&inode->i_lock);
if (open_flags & FMODE_READ)
state->nreaders++;
if (open_flags & FMODE_WRITE)
state->nwriters++;
spin_unlock(&inode->i_lock);
goto out_ok;
} else if (state->state != 0)
goto out_err;
lock_kernel();
err = _nfs4_do_access(inode, cred, open_flags);
unlock_kernel();
if (err != 0)
goto out_err;
set_bit(NFS_DELEGATED_STATE, &state->flags);
update_open_stateid(state, &delegation->stateid, open_flags);
out_ok:
nfs4_put_state_owner(sp);
up_read(&nfsi->rwsem);
up_read(&clp->cl_sem);
igrab(inode);
*res = state;
return 0;
out_err:
if (sp != NULL) {
if (state != NULL)
nfs4_put_open_state(state);
nfs4_put_state_owner(sp);
}
up_read(&nfsi->rwsem);
up_read(&clp->cl_sem);
if (err != -EACCES)
nfs_inode_return_delegation(inode);
return err;
}
static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
{
struct nfs4_exception exception = { };
struct nfs4_state *res;
int err;
do {
err = _nfs4_open_delegated(inode, flags, cred, &res);
if (err == 0)
break;
res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
err, &exception));
} while (exception.retry);
return res;
}
/*
* Returns an nfs4_state + an referenced inode
*/
static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
{
struct nfs4_state_owner *sp;
struct nfs4_state *state = NULL;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_client *clp = server->nfs4_state;
struct inode *inode = NULL;
int status;
struct nfs_fattr f_attr, dir_attr;
struct nfs_openargs o_arg = {
.fh = NFS_FH(dir),
.open_flags = flags,
.name = &dentry->d_name,
.server = server,
.bitmask = server->attr_bitmask,
.claim = NFS4_OPEN_CLAIM_NULL,
};
struct nfs_openres o_res = {
.f_attr = &f_attr,
.dir_attr = &dir_attr,
.server = server,
};
/* Protect against reboot recovery conflicts */
down_read(&clp->cl_sem);
status = -ENOMEM;
if (!(sp = nfs4_get_state_owner(server, cred))) {
dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
goto out_err;
}
if (flags & O_EXCL) {
u32 *p = (u32 *) o_arg.u.verifier.data;
p[0] = jiffies;
p[1] = current->pid;
} else
o_arg.u.attrs = sattr;
/* Serialization for the sequence id */
o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
if (o_arg.seqid == NULL)
return -ENOMEM;
nfs_fattr_init(&f_attr);
nfs_fattr_init(&dir_attr);
status = _nfs4_proc_open(dir, sp, &o_arg, &o_res);
if (status != 0)
goto out_err;
status = -ENOMEM;
inode = nfs_fhget(dir->i_sb, &o_res.fh, &f_attr);
if (!inode)
goto out_err;
state = nfs4_get_open_state(inode, sp);
if (!state)
goto out_err;
update_open_stateid(state, &o_res.stateid, flags);
if (o_res.delegation_type != 0)
nfs_inode_set_delegation(inode, cred, &o_res);
nfs_free_seqid(o_arg.seqid);
nfs4_put_state_owner(sp);
up_read(&clp->cl_sem);
*res = state;
return 0;
out_err:
if (sp != NULL) {
if (state != NULL)
nfs4_put_open_state(state);
nfs_free_seqid(o_arg.seqid);
nfs4_put_state_owner(sp);
}
/* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
up_read(&clp->cl_sem);
if (inode != NULL)
iput(inode);
*res = NULL;
return status;
}
static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
{
struct nfs4_exception exception = { };
struct nfs4_state *res;
int status;
do {
status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
if (status == 0)
break;
/* NOTE: BAD_SEQID means the server and client disagree about the
* book-keeping w.r.t. state-changing operations
* (OPEN/CLOSE/LOCK/LOCKU...)
* It is actually a sign of a bug on the client or on the server.
*
* If we receive a BAD_SEQID error in the particular case of
* doing an OPEN, we assume that nfs_increment_open_seqid() will
* have unhashed the old state_owner for us, and that we can
* therefore safely retry using a new one. We should still warn
* the user though...
*/
if (status == -NFS4ERR_BAD_SEQID) {
printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
exception.retry = 1;
continue;
}
/*
* BAD_STATEID on OPEN means that the server cancelled our
* state before it received the OPEN_CONFIRM.
* Recover by retrying the request as per the discussion
* on Page 181 of RFC3530.
*/
if (status == -NFS4ERR_BAD_STATEID) {
exception.retry = 1;
continue;
}
res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
status, &exception));
} while (exception.retry);
return res;
}
static int _nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
struct nfs_fh *fhandle, struct iattr *sattr,
struct nfs4_state *state)
{
struct nfs_setattrargs arg = {
.fh = fhandle,
.iap = sattr,
.server = server,
.bitmask = server->attr_bitmask,
};
struct nfs_setattrres res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(fattr);
if (state != NULL) {
msg.rpc_cred = state->owner->so_cred;
nfs4_copy_stateid(&arg.stateid, state, current->files);
} else
memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
status = rpc_call_sync(server->client, &msg, 0);
return status;
}
static int nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
struct nfs_fh *fhandle, struct iattr *sattr,
struct nfs4_state *state)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_do_setattr(server, fattr, fhandle, sattr,
state),
&exception);
} while (exception.retry);
return err;
}
struct nfs4_closedata {
struct inode *inode;
struct nfs4_state *state;
struct nfs_closeargs arg;
struct nfs_closeres res;
struct nfs_fattr fattr;
};
static void nfs4_free_closedata(struct nfs4_closedata *calldata)
{
struct nfs4_state *state = calldata->state;
struct nfs4_state_owner *sp = state->owner;
nfs4_put_open_state(calldata->state);
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_state_owner(sp);
kfree(calldata);
}
static void nfs4_close_done(struct rpc_task *task)
{
struct nfs4_closedata *calldata = (struct nfs4_closedata *)task->tk_calldata;
struct nfs4_state *state = calldata->state;
struct nfs_server *server = NFS_SERVER(calldata->inode);
/* hmm. we are done with the inode, and in the process of freeing
* the state_owner. we keep this around to process errors
*/
nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
switch (task->tk_status) {
case 0:
memcpy(&state->stateid, &calldata->res.stateid,
sizeof(state->stateid));
break;
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_state_recovery(server->nfs4_state);
break;
default:
if (nfs4_async_handle_error(task, server) == -EAGAIN) {
rpc_restart_call(task);
return;
}
}
nfs_refresh_inode(calldata->inode, calldata->res.fattr);
nfs4_free_closedata(calldata);
}
static void nfs4_close_begin(struct rpc_task *task)
{
struct nfs4_closedata *calldata = (struct nfs4_closedata *)task->tk_calldata;
struct nfs4_state *state = calldata->state;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
.rpc_argp = &calldata->arg,
.rpc_resp = &calldata->res,
.rpc_cred = state->owner->so_cred,
};
int mode = 0, old_mode;
int status;
status = nfs_wait_on_sequence(calldata->arg.seqid, task);
if (status != 0)
return;
/* Recalculate the new open mode in case someone reopened the file
* while we were waiting in line to be scheduled.
*/
spin_lock(&state->owner->so_lock);
spin_lock(&calldata->inode->i_lock);
mode = old_mode = state->state;
if (state->nreaders == 0)
mode &= ~FMODE_READ;
if (state->nwriters == 0)
mode &= ~FMODE_WRITE;
nfs4_state_set_mode_locked(state, mode);
spin_unlock(&calldata->inode->i_lock);
spin_unlock(&state->owner->so_lock);
if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
nfs4_free_closedata(calldata);
task->tk_exit = NULL;
rpc_exit(task, 0);
return;
}
nfs_fattr_init(calldata->res.fattr);
if (mode != 0)
msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
calldata->arg.open_flags = mode;
rpc_call_setup(task, &msg, 0);
}
/*
* It is possible for data to be read/written from a mem-mapped file
* after the sys_close call (which hits the vfs layer as a flush).
* This means that we can't safely call nfsv4 close on a file until
* the inode is cleared. This in turn means that we are not good
* NFSv4 citizens - we do not indicate to the server to update the file's
* share state even when we are done with one of the three share
* stateid's in the inode.
*
* NOTE: Caller must be holding the sp->so_owner semaphore!
*/
int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_closedata *calldata;
int status = -ENOMEM;
calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
if (calldata == NULL)
goto out;
calldata->inode = inode;
calldata->state = state;
calldata->arg.fh = NFS_FH(inode);
calldata->arg.stateid = &state->stateid;
/* Serialization for the sequence id */
calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
if (calldata->arg.seqid == NULL)
goto out_free_calldata;
calldata->arg.bitmask = server->attr_bitmask;
calldata->res.fattr = &calldata->fattr;
calldata->res.server = server;
status = nfs4_call_async(server->client, nfs4_close_begin,
nfs4_close_done, calldata);
if (status == 0)
goto out;
nfs_free_seqid(calldata->arg.seqid);
out_free_calldata:
kfree(calldata);
out:
return status;
}
static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
{
struct file *filp;
filp = lookup_instantiate_filp(nd, dentry, NULL);
if (!IS_ERR(filp)) {
struct nfs_open_context *ctx;
ctx = (struct nfs_open_context *)filp->private_data;
ctx->state = state;
} else
nfs4_close_state(state, nd->intent.open.flags);
}
struct dentry *
nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
struct iattr attr;
struct rpc_cred *cred;
struct nfs4_state *state;
struct dentry *res;
if (nd->flags & LOOKUP_CREATE) {
attr.ia_mode = nd->intent.open.create_mode;
attr.ia_valid = ATTR_MODE;
if (!IS_POSIXACL(dir))
attr.ia_mode &= ~current->fs->umask;
} else {
attr.ia_valid = 0;
BUG_ON(nd->intent.open.flags & O_CREAT);
}
cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
if (IS_ERR(cred))
return (struct dentry *)cred;
state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
put_rpccred(cred);
if (IS_ERR(state)) {
if (PTR_ERR(state) == -ENOENT)
d_add(dentry, NULL);
return (struct dentry *)state;
}
res = d_add_unique(dentry, state->inode);
if (res != NULL)
dentry = res;
nfs4_intent_set_file(nd, dentry, state);
return res;
}
int
nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
{
struct rpc_cred *cred;
struct nfs4_state *state;
struct inode *inode;
cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
if (IS_ERR(cred))
return PTR_ERR(cred);
state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
if (IS_ERR(state))
state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
put_rpccred(cred);
if (IS_ERR(state)) {
switch (PTR_ERR(state)) {
case -EPERM:
case -EACCES:
case -EDQUOT:
case -ENOSPC:
case -EROFS:
lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
return 1;
case -ENOENT:
if (dentry->d_inode == NULL)
return 1;
}
goto out_drop;
}
inode = state->inode;
iput(inode);
if (inode == dentry->d_inode) {
nfs4_intent_set_file(nd, dentry, state);
return 1;
}
nfs4_close_state(state, openflags);
out_drop:
d_drop(dentry);
return 0;
}
static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
struct nfs4_server_caps_res res = {};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
.rpc_argp = fhandle,
.rpc_resp = &res,
};
int status;
status = rpc_call_sync(server->client, &msg, 0);
if (status == 0) {
memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
server->caps |= NFS_CAP_ACLS;
if (res.has_links != 0)
server->caps |= NFS_CAP_HARDLINKS;
if (res.has_symlinks != 0)
server->caps |= NFS_CAP_SYMLINKS;
server->acl_bitmask = res.acl_bitmask;
}
return status;
}
static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_server_capabilities(server, fhandle),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs4_lookup_root_arg args = {
.bitmask = nfs4_fattr_bitmap,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = info->fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(info->fattr);
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_lookup_root(server, fhandle, info),
&exception);
} while (exception.retry);
return err;
}
static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs_fattr * fattr = info->fattr;
unsigned char * p;
struct qstr q;
struct nfs4_lookup_arg args = {
.dir_fh = fhandle,
.name = &q,
.bitmask = nfs4_fattr_bitmap,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
/*
* Now we do a separate LOOKUP for each component of the mount path.
* The LOOKUPs are done separately so that we can conveniently
* catch an ERR_WRONGSEC if it occurs along the way...
*/
status = nfs4_lookup_root(server, fhandle, info);
if (status)
goto out;
p = server->mnt_path;
for (;;) {
struct nfs4_exception exception = { };
while (*p == '/')
p++;
if (!*p)
break;
q.name = p;
while (*p && (*p != '/'))
p++;
q.len = p - q.name;
do {
nfs_fattr_init(fattr);
status = nfs4_handle_exception(server,
rpc_call_sync(server->client, &msg, 0),
&exception);
} while (exception.retry);
if (status == 0)
continue;
if (status == -ENOENT) {
printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
}
break;
}
if (status == 0)
status = nfs4_server_capabilities(server, fhandle);
if (status == 0)
status = nfs4_do_fsinfo(server, fhandle, info);
out:
return status;
}
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_getattr_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_getattr_res res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fattr);
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_getattr(server, fhandle, fattr),
&exception);
} while (exception.retry);
return err;
}
/*
* The file is not closed if it is opened due to the a request to change
* the size of the file. The open call will not be needed once the
* VFS layer lookup-intents are implemented.
*
* Close is called when the inode is destroyed.
* If we haven't opened the file for O_WRONLY, we
* need to in the size_change case to obtain a stateid.
*
* Got race?
* Because OPEN is always done by name in nfsv4, it is
* possible that we opened a different file by the same
* name. We can recognize this race condition, but we
* can't do anything about it besides returning an error.
*
* This will be fixed with VFS changes (lookup-intent).
*/
static int
nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
struct iattr *sattr)
{
struct rpc_cred *cred;
struct inode *inode = dentry->d_inode;
struct nfs_open_context *ctx;
struct nfs4_state *state = NULL;
int status;
nfs_fattr_init(fattr);
cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
if (IS_ERR(cred))
return PTR_ERR(cred);
/* Search for an existing open(O_WRITE) file */
ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
if (ctx != NULL)
state = ctx->state;
status = nfs4_do_setattr(NFS_SERVER(inode), fattr,
NFS_FH(inode), sattr, state);
if (status == 0)
nfs_setattr_update_inode(inode, sattr);
if (ctx != NULL)
put_nfs_open_context(ctx);
put_rpccred(cred);
return status;
}
static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
int status;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_lookup_arg args = {
.bitmask = server->attr_bitmask,
.dir_fh = NFS_FH(dir),
.name = name,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fattr);
dprintk("NFS call lookup %s\n", name->name);
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
dprintk("NFS reply lookup: %d\n", status);
return status;
}
static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_lookup(dir, name, fhandle, fattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
struct nfs4_accessargs args = {
.fh = NFS_FH(inode),
};
struct nfs4_accessres res = { 0 };
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = entry->cred,
};
int mode = entry->mask;
int status;
/*
* Determine which access bits we want to ask for...
*/
if (mode & MAY_READ)
args.access |= NFS4_ACCESS_READ;
if (S_ISDIR(inode->i_mode)) {
if (mode & MAY_WRITE)
args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
if (mode & MAY_EXEC)
args.access |= NFS4_ACCESS_LOOKUP;
} else {
if (mode & MAY_WRITE)
args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
if (mode & MAY_EXEC)
args.access |= NFS4_ACCESS_EXECUTE;
}
status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
if (!status) {
entry->mask = 0;
if (res.access & NFS4_ACCESS_READ)
entry->mask |= MAY_READ;
if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
entry->mask |= MAY_WRITE;
if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
entry->mask |= MAY_EXEC;
}
return status;
}
static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_access(inode, entry),
&exception);
} while (exception.retry);
return err;
}
/*
* TODO: For the time being, we don't try to get any attributes
* along with any of the zero-copy operations READ, READDIR,
* READLINK, WRITE.
*
* In the case of the first three, we want to put the GETATTR
* after the read-type operation -- this is because it is hard
* to predict the length of a GETATTR response in v4, and thus
* align the READ data correctly. This means that the GETATTR
* may end up partially falling into the page cache, and we should
* shift it into the 'tail' of the xdr_buf before processing.
* To do this efficiently, we need to know the total length
* of data received, which doesn't seem to be available outside
* of the RPC layer.
*
* In the case of WRITE, we also want to put the GETATTR after
* the operation -- in this case because we want to make sure
* we get the post-operation mtime and size. This means that
* we can't use xdr_encode_pages() as written: we need a variant
* of it which would leave room in the 'tail' iovec.
*
* Both of these changes to the XDR layer would in fact be quite
* minor, but I decided to leave them for a subsequent patch.
*/
static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_readlink args = {
.fh = NFS_FH(inode),
.pgbase = pgbase,
.pglen = pglen,
.pages = &page,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
.rpc_argp = &args,
.rpc_resp = NULL,
};
return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
}
static int nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_readlink(inode, page, pgbase, pglen),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_read(struct nfs_read_data *rdata)
{
int flags = rdata->flags;
struct inode *inode = rdata->inode;
struct nfs_fattr *fattr = rdata->res.fattr;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
.rpc_argp = &rdata->args,
.rpc_resp = &rdata->res,
.rpc_cred = rdata->cred,
};
unsigned long timestamp = jiffies;
int status;
dprintk("NFS call read %d @ %Ld\n", rdata->args.count,
(long long) rdata->args.offset);
nfs_fattr_init(fattr);
status = rpc_call_sync(server->client, &msg, flags);
if (!status)
renew_lease(server, timestamp);
dprintk("NFS reply read: %d\n", status);
return status;
}
static int nfs4_proc_read(struct nfs_read_data *rdata)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
_nfs4_proc_read(rdata),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_write(struct nfs_write_data *wdata)
{
int rpcflags = wdata->flags;
struct inode *inode = wdata->inode;
struct nfs_fattr *fattr = wdata->res.fattr;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
.rpc_argp = &wdata->args,
.rpc_resp = &wdata->res,
.rpc_cred = wdata->cred,
};
int status;
dprintk("NFS call write %d @ %Ld\n", wdata->args.count,
(long long) wdata->args.offset);
nfs_fattr_init(fattr);
status = rpc_call_sync(server->client, &msg, rpcflags);
dprintk("NFS reply write: %d\n", status);
return status;
}
static int nfs4_proc_write(struct nfs_write_data *wdata)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
_nfs4_proc_write(wdata),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_commit(struct nfs_write_data *cdata)
{
struct inode *inode = cdata->inode;
struct nfs_fattr *fattr = cdata->res.fattr;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
.rpc_argp = &cdata->args,
.rpc_resp = &cdata->res,
.rpc_cred = cdata->cred,
};
int status;
dprintk("NFS call commit %d @ %Ld\n", cdata->args.count,
(long long) cdata->args.offset);
nfs_fattr_init(fattr);
status = rpc_call_sync(server->client, &msg, 0);
dprintk("NFS reply commit: %d\n", status);
return status;
}
static int nfs4_proc_commit(struct nfs_write_data *cdata)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
_nfs4_proc_commit(cdata),
&exception);
} while (exception.retry);
return err;
}
/*
* Got race?
* We will need to arrange for the VFS layer to provide an atomic open.
* Until then, this create/open method is prone to inefficiency and race
* conditions due to the lookup, create, and open VFS calls from sys_open()
* placed on the wire.
*
* Given the above sorry state of affairs, I'm simply sending an OPEN.
* The file will be opened again in the subsequent VFS open call
* (nfs4_proc_file_open).
*
* The open for read will just hang around to be used by any process that
* opens the file O_RDONLY. This will all be resolved with the VFS changes.
*/
static int
nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
int flags, struct nameidata *nd)
{
struct nfs4_state *state;
struct rpc_cred *cred;
int status = 0;
cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
if (IS_ERR(cred)) {
status = PTR_ERR(cred);
goto out;
}
state = nfs4_do_open(dir, dentry, flags, sattr, cred);
put_rpccred(cred);
if (IS_ERR(state)) {
status = PTR_ERR(state);
goto out;
}
d_instantiate(dentry, state->inode);
if (flags & O_EXCL) {
struct nfs_fattr fattr;
status = nfs4_do_setattr(NFS_SERVER(dir), &fattr,
NFS_FH(state->inode), sattr, state);
if (status == 0)
nfs_setattr_update_inode(state->inode, sattr);
}
if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
nfs4_intent_set_file(nd, dentry, state);
else
nfs4_close_state(state, flags);
out:
return status;
}
static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_remove_arg args = {
.fh = NFS_FH(dir),
.name = name,
.bitmask = server->attr_bitmask,
};
struct nfs_fattr dir_attr;
struct nfs4_remove_res res = {
.server = server,
.dir_attr = &dir_attr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(res.dir_attr);
status = rpc_call_sync(server->client, &msg, 0);
if (status == 0) {
update_changeattr(dir, &res.cinfo);
nfs_post_op_update_inode(dir, res.dir_attr);
}
return status;
}
static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_remove(dir, name),
&exception);
} while (exception.retry);
return err;
}
struct unlink_desc {
struct nfs4_remove_arg args;
struct nfs4_remove_res res;
struct nfs_fattr dir_attr;
};
static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(dir->d_inode);
struct unlink_desc *up;
up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
if (!up)
return -ENOMEM;
up->args.fh = NFS_FH(dir->d_inode);
up->args.name = name;
up->args.bitmask = server->attr_bitmask;
up->res.server = server;
up->res.dir_attr = &up->dir_attr;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
msg->rpc_argp = &up->args;
msg->rpc_resp = &up->res;
return 0;
}
static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
{
struct rpc_message *msg = &task->tk_msg;
struct unlink_desc *up;
if (msg->rpc_resp != NULL) {
up = container_of(msg->rpc_resp, struct unlink_desc, res);
update_changeattr(dir->d_inode, &up->res.cinfo);
nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
kfree(up);
msg->rpc_resp = NULL;
msg->rpc_argp = NULL;
}
return 0;
}
static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
struct inode *new_dir, struct qstr *new_name)
{
struct nfs_server *server = NFS_SERVER(old_dir);
struct nfs4_rename_arg arg = {
.old_dir = NFS_FH(old_dir),
.new_dir = NFS_FH(new_dir),
.old_name = old_name,
.new_name = new_name,
.bitmask = server->attr_bitmask,
};
struct nfs_fattr old_fattr, new_fattr;
struct nfs4_rename_res res = {
.server = server,
.old_fattr = &old_fattr,
.new_fattr = &new_fattr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(res.old_fattr);
nfs_fattr_init(res.new_fattr);
status = rpc_call_sync(server->client, &msg, 0);
if (!status) {
update_changeattr(old_dir, &res.old_cinfo);
nfs_post_op_update_inode(old_dir, res.old_fattr);
update_changeattr(new_dir, &res.new_cinfo);
nfs_post_op_update_inode(new_dir, res.new_fattr);
}
return status;
}
static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
struct inode *new_dir, struct qstr *new_name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(old_dir),
_nfs4_proc_rename(old_dir, old_name,
new_dir, new_name),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_link_arg arg = {
.fh = NFS_FH(inode),
.dir_fh = NFS_FH(dir),
.name = name,
.bitmask = server->attr_bitmask,
};
struct nfs_fattr fattr, dir_attr;
struct nfs4_link_res res = {
.server = server,
.fattr = &fattr,
.dir_attr = &dir_attr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(res.fattr);
nfs_fattr_init(res.dir_attr);
status = rpc_call_sync(server->client, &msg, 0);
if (!status) {
update_changeattr(dir, &res.cinfo);
nfs_post_op_update_inode(dir, res.dir_attr);
nfs_refresh_inode(inode, res.fattr);
}
return status;
}
static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_link(inode, dir, name),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_fattr dir_fattr;
struct nfs4_create_arg arg = {
.dir_fh = NFS_FH(dir),
.server = server,
.name = name,
.attrs = sattr,
.ftype = NF4LNK,
.bitmask = server->attr_bitmask,
};
struct nfs4_create_res res = {
.server = server,
.fh = fhandle,
.fattr = fattr,
.dir_fattr = &dir_fattr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
if (path->len > NFS4_MAXPATHLEN)
return -ENAMETOOLONG;
arg.u.symlink = path;
nfs_fattr_init(fattr);
nfs_fattr_init(&dir_fattr);
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (!status)
update_changeattr(dir, &res.dir_cinfo);
nfs_post_op_update_inode(dir, res.dir_fattr);
return status;
}
static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_symlink(dir, name, path, sattr,
fhandle, fattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_fh fhandle;
struct nfs_fattr fattr, dir_fattr;
struct nfs4_create_arg arg = {
.dir_fh = NFS_FH(dir),
.server = server,
.name = &dentry->d_name,
.attrs = sattr,
.ftype = NF4DIR,
.bitmask = server->attr_bitmask,
};
struct nfs4_create_res res = {
.server = server,
.fh = &fhandle,
.fattr = &fattr,
.dir_fattr = &dir_fattr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs_fattr_init(&fattr);
nfs_fattr_init(&dir_fattr);
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (!status) {
update_changeattr(dir, &res.dir_cinfo);
nfs_post_op_update_inode(dir, res.dir_fattr);
status = nfs_instantiate(dentry, &fhandle, &fattr);
}
return status;
}
static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_mkdir(dir, dentry, sattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
u64 cookie, struct page *page, unsigned int count, int plus)
{
struct inode *dir = dentry->d_inode;
struct nfs4_readdir_arg args = {
.fh = NFS_FH(dir),
.pages = &page,
.pgbase = 0,
.count = count,
.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
};
struct nfs4_readdir_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
dentry->d_parent->d_name.name,
dentry->d_name.name,
(unsigned long long)cookie);
lock_kernel();
nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
res.pgbase = args.pgbase;
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (status == 0)
memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
unlock_kernel();
dprintk("%s: returns %d\n", __FUNCTION__, status);
return status;
}
static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
u64 cookie, struct page *page, unsigned int count, int plus)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
_nfs4_proc_readdir(dentry, cred, cookie,
page, count, plus),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, dev_t rdev)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_fh fh;
struct nfs_fattr fattr, dir_fattr;
struct nfs4_create_arg arg = {
.dir_fh = NFS_FH(dir),
.server = server,
.name = &dentry->d_name,
.attrs = sattr,
.bitmask = server->attr_bitmask,
};
struct nfs4_create_res res = {
.server = server,
.fh = &fh,
.fattr = &fattr,
.dir_fattr = &dir_fattr,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
int mode = sattr->ia_mode;
nfs_fattr_init(&fattr);
nfs_fattr_init(&dir_fattr);
BUG_ON(!(sattr->ia_valid & ATTR_MODE));
BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
if (S_ISFIFO(mode))
arg.ftype = NF4FIFO;
else if (S_ISBLK(mode)) {
arg.ftype = NF4BLK;
arg.u.device.specdata1 = MAJOR(rdev);
arg.u.device.specdata2 = MINOR(rdev);
}
else if (S_ISCHR(mode)) {
arg.ftype = NF4CHR;
arg.u.device.specdata1 = MAJOR(rdev);
arg.u.device.specdata2 = MINOR(rdev);
}
else
arg.ftype = NF4SOCK;
status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
if (status == 0) {
update_changeattr(dir, &res.dir_cinfo);
nfs_post_op_update_inode(dir, res.dir_fattr);
status = nfs_instantiate(dentry, &fh, &fattr);
}
return status;
}
static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, dev_t rdev)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_mknod(dir, dentry, sattr, rdev),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsstat *fsstat)
{
struct nfs4_statfs_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
.rpc_argp = &args,
.rpc_resp = fsstat,
};
nfs_fattr_init(fsstat->fattr);
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_statfs(server, fhandle, fsstat),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *fsinfo)
{
struct nfs4_fsinfo_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
.rpc_argp = &args,
.rpc_resp = fsinfo,
};
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_do_fsinfo(server, fhandle, fsinfo),
&exception);
} while (exception.retry);
return err;
}
static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
nfs_fattr_init(fsinfo->fattr);
return nfs4_do_fsinfo(server, fhandle, fsinfo);
}
static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_pathconf_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
.rpc_argp = &args,
.rpc_resp = pathconf,
};
/* None of the pathconf attributes are mandatory to implement */
if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
memset(pathconf, 0, sizeof(*pathconf));
return 0;
}
nfs_fattr_init(pathconf->fattr);
return rpc_call_sync(server->client, &msg, 0);
}
static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_pathconf(server, fhandle, pathconf),
&exception);
} while (exception.retry);
return err;
}
static void
nfs4_read_done(struct rpc_task *task)
{
struct nfs_read_data *data = (struct nfs_read_data *) task->tk_calldata;
struct inode *inode = data->inode;
if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
rpc_restart_call(task);
return;
}
if (task->tk_status > 0)
renew_lease(NFS_SERVER(inode), data->timestamp);
/* Call back common NFS readpage processing */
nfs_readpage_result(task);
}
static void
nfs4_proc_read_setup(struct nfs_read_data *data)
{
struct rpc_task *task = &data->task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct inode *inode = data->inode;
int flags;
data->timestamp = jiffies;
/* N.B. Do we need to test? Never called for swapfile inode */
flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
/* Finalize the task. */
rpc_init_task(task, NFS_CLIENT(inode), nfs4_read_done, flags);
rpc_call_setup(task, &msg, 0);
}
static void
nfs4_write_done(struct rpc_task *task)
{
struct nfs_write_data *data = (struct nfs_write_data *) task->tk_calldata;
struct inode *inode = data->inode;
if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
rpc_restart_call(task);
return;
}
if (task->tk_status >= 0) {
renew_lease(NFS_SERVER(inode), data->timestamp);
nfs_post_op_update_inode(inode, data->res.fattr);
}
/* Call back common NFS writeback processing */
nfs_writeback_done(task);
}
static void
nfs4_proc_write_setup(struct nfs_write_data *data, int how)
{
struct rpc_task *task = &data->task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct inode *inode = data->inode;
struct nfs_server *server = NFS_SERVER(inode);
int stable;
int flags;
if (how & FLUSH_STABLE) {
if (!NFS_I(inode)->ncommit)
stable = NFS_FILE_SYNC;
else
stable = NFS_DATA_SYNC;
} else
stable = NFS_UNSTABLE;
data->args.stable = stable;
data->args.bitmask = server->attr_bitmask;
data->res.server = server;
data->timestamp = jiffies;
/* Set the initial flags for the task. */
flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
/* Finalize the task. */
rpc_init_task(task, NFS_CLIENT(inode), nfs4_write_done, flags);
rpc_call_setup(task, &msg, 0);
}
static void
nfs4_commit_done(struct rpc_task *task)
{
struct nfs_write_data *data = (struct nfs_write_data *) task->tk_calldata;
struct inode *inode = data->inode;
if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
rpc_restart_call(task);
return;
}
if (task->tk_status >= 0)
nfs_post_op_update_inode(inode, data->res.fattr);
/* Call back common NFS writeback processing */
nfs_commit_done(task);
}
static void
nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
{
struct rpc_task *task = &data->task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct inode *inode = data->inode;
struct nfs_server *server = NFS_SERVER(inode);
int flags;
data->args.bitmask = server->attr_bitmask;
data->res.server = server;
/* Set the initial flags for the task. */
flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
/* Finalize the task. */
rpc_init_task(task, NFS_CLIENT(inode), nfs4_commit_done, flags);
rpc_call_setup(task, &msg, 0);
}
/*
* nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
* standalone procedure for queueing an asynchronous RENEW.
*/
static void
renew_done(struct rpc_task *task)
{
struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
unsigned long timestamp = (unsigned long)task->tk_calldata;
if (task->tk_status < 0) {
switch (task->tk_status) {
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_CB_PATH_DOWN:
nfs4_schedule_state_recovery(clp);
}
return;
}
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,timestamp))
clp->cl_last_renewal = timestamp;
spin_unlock(&clp->cl_lock);
}
int
nfs4_proc_async_renew(struct nfs4_client *clp)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = clp->cl_cred,
};
return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
renew_done, (void *)jiffies);
}
int
nfs4_proc_renew(struct nfs4_client *clp)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = clp->cl_cred,
};
unsigned long now = jiffies;
int status;
status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
if (status < 0)
return status;
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,now))
clp->cl_last_renewal = now;
spin_unlock(&clp->cl_lock);
return 0;
}
static inline int nfs4_server_supports_acls(struct nfs_server *server)
{
return (server->caps & NFS_CAP_ACLS)
&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
}
/* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
* it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
* the stack.
*/
#define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
static void buf_to_pages(const void *buf, size_t buflen,
struct page **pages, unsigned int *pgbase)
{
const void *p = buf;
*pgbase = offset_in_page(buf);
p -= *pgbase;
while (p < buf + buflen) {
*(pages++) = virt_to_page(p);
p += PAGE_CACHE_SIZE;
}
}
struct nfs4_cached_acl {
int cached;
size_t len;
char data[0];
};
static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
{
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
kfree(nfsi->nfs4_acl);
nfsi->nfs4_acl = acl;
spin_unlock(&inode->i_lock);
}
static void nfs4_zap_acl_attr(struct inode *inode)
{
nfs4_set_cached_acl(inode, NULL);
}
static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
{
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs4_cached_acl *acl;
int ret = -ENOENT;
spin_lock(&inode->i_lock);
acl = nfsi->nfs4_acl;
if (acl == NULL)
goto out;
if (buf == NULL) /* user is just asking for length */
goto out_len;
if (acl->cached == 0)
goto out;
ret = -ERANGE; /* see getxattr(2) man page */
if (acl->len > buflen)
goto out;
memcpy(buf, acl->data, acl->len);
out_len:
ret = acl->len;
out:
spin_unlock(&inode->i_lock);
return ret;
}
static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
{
struct nfs4_cached_acl *acl;
if (buf && acl_len <= PAGE_SIZE) {
acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 1;
memcpy(acl->data, buf, acl_len);
} else {
acl = kmalloc(sizeof(*acl), GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 0;
}
acl->len = acl_len;
out:
nfs4_set_cached_acl(inode, acl);
}
static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
{
struct page *pages[NFS4ACL_MAXPAGES];
struct nfs_getaclargs args = {
.fh = NFS_FH(inode),
.acl_pages = pages,
.acl_len = buflen,
};
size_t resp_len = buflen;
void *resp_buf;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
.rpc_argp = &args,
.rpc_resp = &resp_len,
};
struct page *localpage = NULL;
int ret;
if (buflen < PAGE_SIZE) {
/* As long as we're doing a round trip to the server anyway,
* let's be prepared for a page of acl data. */
localpage = alloc_page(GFP_KERNEL);
resp_buf = page_address(localpage);
if (localpage == NULL)
return -ENOMEM;
args.acl_pages[0] = localpage;
args.acl_pgbase = 0;
resp_len = args.acl_len = PAGE_SIZE;
} else {
resp_buf = buf;
buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
}
ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
if (ret)
goto out_free;
if (resp_len > args.acl_len)
nfs4_write_cached_acl(inode, NULL, resp_len);
else
nfs4_write_cached_acl(inode, resp_buf, resp_len);
if (buf) {
ret = -ERANGE;
if (resp_len > buflen)
goto out_free;
if (localpage)
memcpy(buf, resp_buf, resp_len);
}
ret = resp_len;
out_free:
if (localpage)
__free_page(localpage);
return ret;
}
static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
{
struct nfs_server *server = NFS_SERVER(inode);
int ret;
if (!nfs4_server_supports_acls(server))
return -EOPNOTSUPP;
ret = nfs_revalidate_inode(server, inode);
if (ret < 0)
return ret;
ret = nfs4_read_cached_acl(inode, buf, buflen);
if (ret != -ENOENT)
return ret;
return nfs4_get_acl_uncached(inode, buf, buflen);
}
static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
{
struct nfs_server *server = NFS_SERVER(inode);
struct page *pages[NFS4ACL_MAXPAGES];
struct nfs_setaclargs arg = {
.fh = NFS_FH(inode),
.acl_pages = pages,
.acl_len = buflen,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
.rpc_argp = &arg,
.rpc_resp = NULL,
};
int ret;
if (!nfs4_server_supports_acls(server))
return -EOPNOTSUPP;
nfs_inode_return_delegation(inode);
buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
if (ret == 0)
nfs4_write_cached_acl(inode, buf, buflen);
return ret;
}
static int
nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
{
struct nfs4_client *clp = server->nfs4_state;
if (!clp || task->tk_status >= 0)
return 0;
switch(task->tk_status) {
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
nfs4_schedule_state_recovery(clp);
if (test_bit(NFS4CLNT_OK, &clp->cl_state))
rpc_wake_up_task(task);
task->tk_status = 0;
return -EAGAIN;
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
task->tk_status = 0;
return -EAGAIN;
case -NFS4ERR_OLD_STATEID:
task->tk_status = 0;
return -EAGAIN;
}
task->tk_status = nfs4_map_errors(task->tk_status);
return 0;
}
static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
{
DEFINE_WAIT(wait);
sigset_t oldset;
int interruptible, res = 0;
might_sleep();
rpc_clnt_sigmask(clnt, &oldset);
interruptible = TASK_UNINTERRUPTIBLE;
if (clnt->cl_intr)
interruptible = TASK_INTERRUPTIBLE;
prepare_to_wait(&clp->cl_waitq, &wait, interruptible);
nfs4_schedule_state_recovery(clp);
if (clnt->cl_intr && signalled())
res = -ERESTARTSYS;
else if (!test_bit(NFS4CLNT_OK, &clp->cl_state))
schedule();
finish_wait(&clp->cl_waitq, &wait);
rpc_clnt_sigunmask(clnt, &oldset);
return res;
}
static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
{
sigset_t oldset;
int res = 0;
might_sleep();
if (*timeout <= 0)
*timeout = NFS4_POLL_RETRY_MIN;
if (*timeout > NFS4_POLL_RETRY_MAX)
*timeout = NFS4_POLL_RETRY_MAX;
rpc_clnt_sigmask(clnt, &oldset);
if (clnt->cl_intr) {
schedule_timeout_interruptible(*timeout);
if (signalled())
res = -ERESTARTSYS;
} else
schedule_timeout_uninterruptible(*timeout);
rpc_clnt_sigunmask(clnt, &oldset);
*timeout <<= 1;
return res;
}
/* This is the error handling routine for processes that are allowed
* to sleep.
*/
int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
{
struct nfs4_client *clp = server->nfs4_state;
int ret = errorcode;
exception->retry = 0;
switch(errorcode) {
case 0:
return 0;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
ret = nfs4_wait_clnt_recover(server->client, clp);
if (ret == 0)
exception->retry = 1;
break;
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
ret = nfs4_delay(server->client, &exception->timeout);
if (ret != 0)
break;
case -NFS4ERR_OLD_STATEID:
exception->retry = 1;
}
/* We failed to handle the error */
return nfs4_map_errors(ret);
}
int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port)
{
nfs4_verifier sc_verifier;
struct nfs4_setclientid setclientid = {
.sc_verifier = &sc_verifier,
.sc_prog = program,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
.rpc_argp = &setclientid,
.rpc_resp = clp,
.rpc_cred = clp->cl_cred,
};
u32 *p;
int loop = 0;
int status;
p = (u32*)sc_verifier.data;
*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
*p = htonl((u32)clp->cl_boot_time.tv_nsec);
for(;;) {
setclientid.sc_name_len = scnprintf(setclientid.sc_name,
sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
clp->cl_cred->cr_ops->cr_name,
clp->cl_id_uniquifier);
setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
sizeof(setclientid.sc_netid), "tcp");
setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
sizeof(setclientid.sc_uaddr), "%s.%d.%d",
clp->cl_ipaddr, port >> 8, port & 255);
status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
if (status != -NFS4ERR_CLID_INUSE)
break;
if (signalled())
break;
if (loop++ & 1)
ssleep(clp->cl_lease_time + 1);
else
if (++clp->cl_id_uniquifier == 0)
break;
}
return status;
}
int
nfs4_proc_setclientid_confirm(struct nfs4_client *clp)
{
struct nfs_fsinfo fsinfo;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
.rpc_argp = clp,
.rpc_resp = &fsinfo,
.rpc_cred = clp->cl_cred,
};
unsigned long now;
int status;
now = jiffies;
status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
if (status == 0) {
spin_lock(&clp->cl_lock);
clp->cl_lease_time = fsinfo.lease_time * HZ;
clp->cl_last_renewal = now;
spin_unlock(&clp->cl_lock);
}
return status;
}
static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
{
struct nfs4_delegreturnargs args = {
.fhandle = NFS_FH(inode),
.stateid = stateid,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
.rpc_argp = &args,
.rpc_cred = cred,
};
return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
}
int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_proc_delegreturn(inode, cred, stateid);
switch (err) {
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_state_recovery(server->nfs4_state);
case 0:
return 0;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
#define NFS4_LOCK_MINTIMEOUT (1 * HZ)
#define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
/*
* sleep, with exponential backoff, and retry the LOCK operation.
*/
static unsigned long
nfs4_set_lock_task_retry(unsigned long timeout)
{
schedule_timeout_interruptible(timeout);
timeout <<= 1;
if (timeout > NFS4_LOCK_MAXTIMEOUT)
return NFS4_LOCK_MAXTIMEOUT;
return timeout;
}
static inline int
nfs4_lck_type(int cmd, struct file_lock *request)
{
/* set lock type */
switch (request->fl_type) {
case F_RDLCK:
return IS_SETLKW(cmd) ? NFS4_READW_LT : NFS4_READ_LT;
case F_WRLCK:
return IS_SETLKW(cmd) ? NFS4_WRITEW_LT : NFS4_WRITE_LT;
case F_UNLCK:
return NFS4_WRITE_LT;
}
BUG();
return 0;
}
static inline uint64_t
nfs4_lck_length(struct file_lock *request)
{
if (request->fl_end == OFFSET_MAX)
return ~(uint64_t)0;
return request->fl_end - request->fl_start + 1;
}
static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_client *clp = server->nfs4_state;
struct nfs_lockargs arg = {
.fh = NFS_FH(inode),
.type = nfs4_lck_type(cmd, request),
.offset = request->fl_start,
.length = nfs4_lck_length(request),
};
struct nfs_lockres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = state->owner->so_cred,
};
struct nfs_lowner nlo;
struct nfs4_lock_state *lsp;
int status;
down_read(&clp->cl_sem);
nlo.clientid = clp->cl_clientid;
status = nfs4_set_lock_state(state, request);
if (status != 0)
goto out;
lsp = request->fl_u.nfs4_fl.owner;
nlo.id = lsp->ls_id;
arg.u.lockt = &nlo;
status = rpc_call_sync(server->client, &msg, 0);
if (!status) {
request->fl_type = F_UNLCK;
} else if (status == -NFS4ERR_DENIED) {
int64_t len, start, end;
start = res.u.denied.offset;
len = res.u.denied.length;
end = start + len - 1;
if (end < 0 || len == 0)
request->fl_end = OFFSET_MAX;
else
request->fl_end = (loff_t)end;
request->fl_start = (loff_t)start;
request->fl_type = F_WRLCK;
if (res.u.denied.type & 1)
request->fl_type = F_RDLCK;
request->fl_pid = 0;
status = 0;
}
out:
up_read(&clp->cl_sem);
return status;
}
static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(state->inode),
_nfs4_proc_getlk(state, cmd, request),
&exception);
} while (exception.retry);
return err;
}
static int do_vfs_lock(struct file *file, struct file_lock *fl)
{
int res = 0;
switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
case FL_POSIX:
res = posix_lock_file_wait(file, fl);
break;
case FL_FLOCK:
res = flock_lock_file_wait(file, fl);
break;
default:
BUG();
}
if (res < 0)
printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
__FUNCTION__);
return res;
}
struct nfs4_unlockdata {
struct nfs_lockargs arg;
struct nfs_locku_opargs luargs;
struct nfs_lockres res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
atomic_t refcount;
struct completion completion;
};
static void nfs4_locku_release_calldata(struct nfs4_unlockdata *calldata)
{
if (atomic_dec_and_test(&calldata->refcount)) {
nfs_free_seqid(calldata->luargs.seqid);
nfs4_put_lock_state(calldata->lsp);
put_nfs_open_context(calldata->ctx);
kfree(calldata);
}
}
static void nfs4_locku_complete(struct nfs4_unlockdata *calldata)
{
complete(&calldata->completion);
nfs4_locku_release_calldata(calldata);
}
static void nfs4_locku_done(struct rpc_task *task)
{
struct nfs4_unlockdata *calldata = (struct nfs4_unlockdata *)task->tk_calldata;
nfs_increment_lock_seqid(task->tk_status, calldata->luargs.seqid);
switch (task->tk_status) {
case 0:
memcpy(calldata->lsp->ls_stateid.data,
calldata->res.u.stateid.data,
sizeof(calldata->lsp->ls_stateid.data));
break;
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_state_recovery(calldata->res.server->nfs4_state);
break;
default:
if (nfs4_async_handle_error(task, calldata->res.server) == -EAGAIN) {
rpc_restart_call(task);
return;
}
}
nfs4_locku_complete(calldata);
}
static void nfs4_locku_begin(struct rpc_task *task)
{
struct nfs4_unlockdata *calldata = (struct nfs4_unlockdata *)task->tk_calldata;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
.rpc_argp = &calldata->arg,
.rpc_resp = &calldata->res,
.rpc_cred = calldata->lsp->ls_state->owner->so_cred,
};
int status;
status = nfs_wait_on_sequence(calldata->luargs.seqid, task);
if (status != 0)
return;
if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
nfs4_locku_complete(calldata);
task->tk_exit = NULL;
rpc_exit(task, 0);
return;
}
rpc_call_setup(task, &msg, 0);
}
static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_unlockdata *calldata;
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_lock_state *lsp;
int status;
status = nfs4_set_lock_state(state, request);
if (status != 0)
return status;
lsp = request->fl_u.nfs4_fl.owner;
/* We might have lost the locks! */
if ((lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0)
return 0;
calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
if (calldata == NULL)
return -ENOMEM;
calldata->luargs.seqid = nfs_alloc_seqid(&lsp->ls_seqid);
if (calldata->luargs.seqid == NULL) {
kfree(calldata);
return -ENOMEM;
}
calldata->luargs.stateid = &lsp->ls_stateid;
calldata->arg.fh = NFS_FH(inode);
calldata->arg.type = nfs4_lck_type(cmd, request);
calldata->arg.offset = request->fl_start;
calldata->arg.length = nfs4_lck_length(request);
calldata->arg.u.locku = &calldata->luargs;
calldata->res.server = server;
calldata->lsp = lsp;
atomic_inc(&lsp->ls_count);
/* Ensure we don't close file until we're done freeing locks! */
calldata->ctx = get_nfs_open_context((struct nfs_open_context*)request->fl_file->private_data);
atomic_set(&calldata->refcount, 2);
init_completion(&calldata->completion);
status = nfs4_call_async(NFS_SERVER(inode)->client, nfs4_locku_begin,
nfs4_locku_done, calldata);
if (status == 0)
wait_for_completion_interruptible(&calldata->completion);
do_vfs_lock(request->fl_file, request);
nfs4_locku_release_calldata(calldata);
return status;
}
static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *request, int reclaim)
{
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_lock_state *lsp = request->fl_u.nfs4_fl.owner;
struct nfs_lock_opargs largs = {
.lock_stateid = &lsp->ls_stateid,
.open_stateid = &state->stateid,
.lock_owner = {
.clientid = server->nfs4_state->cl_clientid,
.id = lsp->ls_id,
},
.reclaim = reclaim,
};
struct nfs_lockargs arg = {
.fh = NFS_FH(inode),
.type = nfs4_lck_type(cmd, request),
.offset = request->fl_start,
.length = nfs4_lck_length(request),
.u = {
.lock = &largs,
},
};
struct nfs_lockres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = state->owner->so_cred,
};
int status = -ENOMEM;
largs.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
if (largs.lock_seqid == NULL)
return -ENOMEM;
if (!(lsp->ls_seqid.flags & NFS_SEQID_CONFIRMED)) {
struct nfs4_state_owner *owner = state->owner;
largs.open_seqid = nfs_alloc_seqid(&owner->so_seqid);
if (largs.open_seqid == NULL)
goto out;
largs.new_lock_owner = 1;
status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
/* increment open seqid on success, and seqid mutating errors */
if (largs.new_lock_owner != 0) {
nfs_increment_open_seqid(status, largs.open_seqid);
if (status == 0)
nfs_confirm_seqid(&lsp->ls_seqid, 0);
}
nfs_free_seqid(largs.open_seqid);
} else
status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR);
/* increment lock seqid on success, and seqid mutating errors*/
nfs_increment_lock_seqid(status, largs.lock_seqid);
/* save the returned stateid. */
if (status == 0) {
memcpy(lsp->ls_stateid.data, res.u.stateid.data,
sizeof(lsp->ls_stateid.data));
lsp->ls_flags |= NFS_LOCK_INITIALIZED;
} else if (status == -NFS4ERR_DENIED)
status = -EAGAIN;
out:
nfs_free_seqid(largs.lock_seqid);
return status;
}
static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_do_setlk(state, F_SETLK, request, 1);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_do_setlk(state, F_SETLK, request, 0);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_client *clp = state->owner->so_client;
int status;
down_read(&clp->cl_sem);
status = nfs4_set_lock_state(state, request);
if (status == 0)
status = _nfs4_do_setlk(state, cmd, request, 0);
if (status == 0) {
/* Note: we always want to sleep here! */
request->fl_flags |= FL_SLEEP;
if (do_vfs_lock(request->fl_file, request) < 0)
printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
}
up_read(&clp->cl_sem);
return status;
}
static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(state->inode),
_nfs4_proc_setlk(state, cmd, request),
&exception);
} while (exception.retry);
return err;
}
static int
nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
{
struct nfs_open_context *ctx;
struct nfs4_state *state;
unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
int status;
/* verify open state */
ctx = (struct nfs_open_context *)filp->private_data;
state = ctx->state;
if (request->fl_start < 0 || request->fl_end < 0)
return -EINVAL;
if (IS_GETLK(cmd))
return nfs4_proc_getlk(state, F_GETLK, request);
if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
return -EINVAL;
if (request->fl_type == F_UNLCK)
return nfs4_proc_unlck(state, cmd, request);
do {
status = nfs4_proc_setlk(state, cmd, request);
if ((status != -EAGAIN) || IS_SETLK(cmd))
break;
timeout = nfs4_set_lock_task_retry(timeout);
status = -ERESTARTSYS;
if (signalled())
break;
} while(status < 0);
return status;
}
#define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
size_t buflen, int flags)
{
struct inode *inode = dentry->d_inode;
if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
return -EOPNOTSUPP;
if (!S_ISREG(inode->i_mode) &&
(!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
return -EPERM;
return nfs4_proc_set_acl(inode, buf, buflen);
}
/* The getxattr man page suggests returning -ENODATA for unknown attributes,
* and that's what we'll do for e.g. user attributes that haven't been set.
* But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
* attributes in kernel-managed attribute namespaces. */
ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
size_t buflen)
{
struct inode *inode = dentry->d_inode;
if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
return -EOPNOTSUPP;
return nfs4_proc_get_acl(inode, buf, buflen);
}
ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
{
size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
if (buf && buflen < len)
return -ERANGE;
if (buf)
memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
return len;
}
struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
.recover_open = nfs4_open_reclaim,
.recover_lock = nfs4_lock_reclaim,
};
struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
.recover_open = nfs4_open_expired,
.recover_lock = nfs4_lock_expired,
};
static struct inode_operations nfs4_file_inode_operations = {
.permission = nfs_permission,
.getattr = nfs_getattr,
.setattr = nfs_setattr,
.getxattr = nfs4_getxattr,
.setxattr = nfs4_setxattr,
.listxattr = nfs4_listxattr,
};
struct nfs_rpc_ops nfs_v4_clientops = {
.version = 4, /* protocol version */
.dentry_ops = &nfs4_dentry_operations,
.dir_inode_ops = &nfs4_dir_inode_operations,
.file_inode_ops = &nfs4_file_inode_operations,
.getroot = nfs4_proc_get_root,
.getattr = nfs4_proc_getattr,
.setattr = nfs4_proc_setattr,
.lookup = nfs4_proc_lookup,
.access = nfs4_proc_access,
.readlink = nfs4_proc_readlink,
.read = nfs4_proc_read,
.write = nfs4_proc_write,
.commit = nfs4_proc_commit,
.create = nfs4_proc_create,
.remove = nfs4_proc_remove,
.unlink_setup = nfs4_proc_unlink_setup,
.unlink_done = nfs4_proc_unlink_done,
.rename = nfs4_proc_rename,
.link = nfs4_proc_link,
.symlink = nfs4_proc_symlink,
.mkdir = nfs4_proc_mkdir,
.rmdir = nfs4_proc_remove,
.readdir = nfs4_proc_readdir,
.mknod = nfs4_proc_mknod,
.statfs = nfs4_proc_statfs,
.fsinfo = nfs4_proc_fsinfo,
.pathconf = nfs4_proc_pathconf,
.decode_dirent = nfs4_decode_dirent,
.read_setup = nfs4_proc_read_setup,
.write_setup = nfs4_proc_write_setup,
.commit_setup = nfs4_proc_commit_setup,
.file_open = nfs_open,
.file_release = nfs_release,
.lock = nfs4_proc_lock,
.clear_acl_cache = nfs4_zap_acl_attr,
};
/*
* Local variables:
* c-basic-offset: 8
* End:
*/